Characterization of Solvable Quintics
x> +ax + b

Blair K. Spearman and Kenneth S. Williams

We consider the quintic equation
x> +ax+b=0, (1)

where a and b are nonzero rational numbers. In general the roots of (1) cannot be
expressed as algebraic functions of the coefficients a and b. We will characterize
completely those irreducible quintics x° + ax + b which are solvable by radicals.
We do this by extending Cardano’s familiar method of solving the cubic equation
x3 + ax + b = 0. We begin by recalling Cardano’s method in a way which enables
us to apply it to the quintic equation (1).

If u,, u, are complex numbers and w is a complex cube root of unity, expanding
the product

(x = (uy + uz))(x — (ou, + (o2u2))(x - («0®u; + wu2)), (2)
we obtain the polynomial
x> = 3ugu,x — (uj + u3). (3)

As x; = w'u; + 0¥u, (j = 0,1,2) is a root of the cubic polynomial (2), substitut-
ing it into (3), we obtain the identity valid for j = 0,1,2

(o'u, + wz"uz)3 = 3uyuy(0’u, + 0¥u,) — (43 +u3) = 0.

Thus the cubic x + ax + b = 0 has the three solutlons x; = a)’u1 + w¥u, (j =
0,1,2), where u3 and u3 are determined from u} + u3 = b uiud = —(a/3)°.
An obvious generalization of this is to consider the quintic polynomial

4

IT(x - (0/u; + 0u,)), 4)

i=0
where w is now a complex fifth root of unity. Expanding the product (4), and
proceeding as above, we find that the quintic x> + ax® + (a?/5)x + b (sometimes
called DeMoivre s quintic) has the solutions i = w’ul + w4fu2, i=0,1,2,3,4,
where u3 and u3 are determined from u3 + u3 = —b, ujuj = —(a/5)°.

We refine this method by considering instead of (4) the quintic polynomial
4

l—%(x = (@u; + 0¥u, + 0¥uy + 0u,)), (5)
ol

where uy, u,,u,, u, are nonzero real numbers and w is a complex fifth root of
unity. Multiplying out (5) is somewhat more challenging than (4), so MAPLE was
employed to do the work. Replacing x by w/u; + w?u, + 0’ u; + w*u, in the
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expanded product, we obtain the identity valid for j = 0,1,2,3,4
(0’u; + 0¥u, + 03uy + a)“"u“)5
=5U(w'u; + 0*u, + 0*uy + (4)“"u4)3
=5V (wu; + 0*uy + 0¥uy + w""u“)2 (6)
+5W(w/u; + 0¥u, + 0¥u; + 0u,)
+5(X-Y)-2Z
=0,
where
U=uu, +u,u,,
V = uu? + uu? + usu? + u,ul,

3 3 3 3
iUy = Uplhy — U3l — UZUz — UjlylUsUy,

W =uu? + uiul —u
X = vwduzu, + udugu, + uduyu, + uduu
iUty + Ul Uy + U3U U, + UZUU,,
Y = uudul + uyuud + uzudu? + uuiul,
Z=uj+ul+u3+u;.

The essential ingredient of the proof of our characterization of solvable quintic
trinomials is the determination of real algebraic numbers u,, u,, u,, u, satisfying

Uy + uuy =0, (7
2 2 2 2 _
uus + u,uy + uzui +uuus =0, (8)
2,2 2.2 3, _ 3. _ 3. _ 3, _ -
S(uiug + udud — wdu, — udu, — uduy — uius — uuyuzu,) = a, 9)

and
5((udusuy + wdugus + udusuy + uzuu,)
— (wyu3ui + upuiud + uudul + uuiug)) (10)
—(u} +ul+u3+uj)=0»,
so that the quintic polynomial (5) becomes x° + ax + b and has the roots
x; = (0'u; + 0¥u, + 0Vus + 0¥u,) (7 =0,1,2,3,4). (11)
Theorem. Let a and b be rational numbers such that the quintic trinomial x° +

ax + b is irreducible. Then the equation x> + ax + b = 0 is solvable by radicals if
and only if there exist rational numbers (= £1), c(= 0) and e(# 0) such that

5e*(3 — 4ec) —4e’(11e + 2¢)
g=—- 77

= 12
c2+1 b c2+1 ’ (12)

in which case the roots of x°> + ax + b = 0 are

x]- = e((l)jul + wzju2 + w3ju3 + w4ju4) (j = Oa 1’ 273’4)7 (13)
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where o = exp(2mi/5) and
viv, v3v,
W=\ ’ =\ p2

l)1=\/B+\/D—E\/B, vz=—\/B— D+€‘/B, s
B +VD+elD, =D -yb-ab,

D=c?+1. (16)

U3

Proof: We begin by supposing that the irreducible quintic polynomial x° + ax + b
is solvable by radicals. Thus the resolvent sextic of x> + ax + b, namely,

x6 + 8ax® + 40a%x* + 160a%x> + 400a*x?
+(512a° — 3125b*) x + (2564 — 9375ab*)
has a rational root r [1, Theorem 1]. Hence r satisfies
(r + 2a)*(r* + 16a%) — 55b*(r + 3a) = 0, (17)

which shows that r # —2a, —3a as a # 0. We define the nonnegative rational
number ¢ and the nonzero rational number e by

3r — 16a —5be

= , = 5 h = A 1. 18
€ 4(r + 3a) ¢ 2(r + 2a) where € = £ (18)
Then
2 2
2 1=25(r +16a),
16(r + 3a)?
25a
3 —4ec = R
r+ 3a
25(r + 2a)e
1lle + 2¢c = ———,
2(r + 3a)
so that
5¢*(3 — 4ec) 5%b*(r + 3a)
= =a,
ct+1 (r +2a)*(r* + 164%)
and
—4e3(11e + 2¢) 5%°(r + 3a)
c?+1 (r +2a)*(r* + 16a%)
giving the required parametrization.
We now show that the irreducible quintic trinomial
5e*(3 — 4ec 4e(1le + 2c
x5+ (2 )x - ( > ) (19)
c“+1 cc+1

with e = 1 is solvable by radicals with roots given by (11). In fact it is not necessary
to assume that the quintic is irreducible. For general e the transformation x — ex
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gives the required result (13). From (15) we see that

v,+v,=2VD, v,+v,=-2VD,
(20)
vlv4 = Em’ 1)21)3 = _6\/5,
and so
v, +v,+v,+0,=0,
{ 1 2 T U3+ Uy 1)
U0y + 005 = 0.
Further, from (14), we obtain
2 2 2 2
ViU ESON ViU, ViU,
W=prs W=y, W=y, Wi= e (2)
Easy calculations making use of (20) and (22) yield
€ €
Uy = — —, Uply = —=, 23
1%4 ‘/B 243 ‘/B ( )
Uy v v, Uy
ulu% = B’ u§u4 = Ba u%u3 = —Ea uzztuz = l_)'a (24)
and
Ui, = ——, U, = — ——, Ui, = — ——, U, = ——,
142 DVD 2Uy D\/B 3l DVD alUs3 DVD
(25)

which give the required equations (7) and (8) in view of (21). From (15), (22), (23),
(24) and (25), we deduce that

2,2 2,2 3, _ .3, _ 3., _ 3. ;
5(u1u4+b't2u3—u1u2 USUy — USU; — UGU5 — Ugliylisley)

_5(3-4e/D—1)  5(3 — 4ec)

= 26
D c2+1 (26)
and
5((uiusuy + udugus + udusuy + ujugu,)
= (wyuduf + uyuiud + uudul + u4ufu§)) 27

(44e + 8YD — 1) 4(11e + 2¢)
D T
which are the required equations (9) and (10). This proves that
5(3 — 4ec) 4(11e + 2c¢)
2+1 T 2+t
is solvable by radicals and has the roots given in (11).

—(ui +uj+u3+u3)=—

x5+

The discriminant of the trinomial quintic x> + ax + b is 4*a® + 5°b* [2, p. 259].
The equation x> + ax + b = 0 has exactly one real root if 44a> + 5°b* > 0 [3,
p. 113]. The discriminant of the quintic (19) is

4455e20
2
—— (4ec’® = 84c? = 3Tec — 122)" > 0 (28)

so that the quintic (19) has exactly one real root. Suppose now that (19) is
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irreducible over Q. By the Theorem, (19) is solvable by radicals, and so its Galois-
group is solvable. Hence its Galois group is isomorphic to the Frobenius group Fy
of order 20, the dihedral group Ds of order 10, or to the cyclic group of order 5.
However (19) has complex roots, so its Galois group cannot be cyclic of order 5. By
[1, Theorem 2] the Galois group of (19) is the dihedral group D5 of order 10 if and
only if 5D is a perfect square in Q. Otherwise the Galois group is the Frobenuis
group F,, of order 20.
We close with five examples.

Example 1. We consider the quintic f,(x) = x> — 5x + 12, which is irreducible as
fi(x — 2) is 5-Eisenstein. The resolvent sextic of f; is

x® — 40x3 + 1000x* + 20000x3 + 250000x% — 66400000x + 976000000,
which has the rational root r = 40. From (18) we see that e = 1, ¢ =2, e = —1,
so that by (16) D = 5. Since 5D = 5% the Galois group of f; is Ds. By the
Theorem the unique real root of f; is

(BB ) (5|

¥ 25
(V)5 -5

25
([ -5 E) S 5= )

25
(555 -5 E)

25

A little manipulation shows that this root can be rewritten as
x = %(R}/s +RY° +RYS + R},/S),
where R, R,, R;, R, are given at the bottom of page 399 of [1].

Example 2. We take f,(x) =x°+ 15x + 12, which is irreducible as fx) is
3-Eisenstein. The resolvent sextic of f, is

(x + 30)*(x2 + 1800) — 28 - 34 - 5%(x + 45),
which has the rational root r = 0. Hence, by (16) and (18), we have € = —1,

c=4/3,e=1, D =25/9. Since 5D is not the square of a rational number, the
Galois group of f, is F,,. By the Theorem the unique real root of f, is

—75 - 21Y10 ' (225 — 7210 |\
x= 125 + 125
225 + 72910 \'° [ =75+ 21v10 \"”°
+t—— +|——
125 125

in agreement with the more complicated formula given at the top of page 399
in [1].
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Example 3. Here we take e =1, e =5/2, ¢ =7/24, s0 D =1+ (£)* = (&),
and the quintic (19) is f3(x) = x° + 330x — 4170, which is irreducible as f,(x) is
5-Eisenstein. Since 5D = 5°/(2° - 3%2) the Galois group of f; is F,,. By the
Theorem the unique real root of f; is

x = 5415 + 1215 + 648V/5 — 144175,

Example 4. Here we take e = —1, e=1, ¢ = 11/2, so D = 125/4, and the
quintic (19) is f,(x) = x° + 4x, which is clearly reducible. However, by the remark
preceeding (20), the roots of x° + 4x = 0, namely x = 0, +(1 + i), are given by
(13). Here

= (505 BVB A DS ) vy i(-505 4 5V - 25 ),
viv, 1
p? 5
1

5(1000 — 500/5 + 1205 + 25 — 6605 — 2/5 ),

(1000 — 500V5 + 180v25 + 25 - 240125 — 2/5 )

(9]

and
1/5

- L(-F V525,

The conjugates of u, are

V5 - V5+25 ),
%(\/5 +v5+2/5 ),

u, = %(—\/g +V5-2/5 )

Clearly x, = u, + u, + u; + u, = 0. Further, as

w = exp(2mi/S) = ((V5 = 1) + /10 + 245 ) /4,
we have
X = w0+ Uu,0® + uyw® + u,0
=5((—x—y)(x—-14+i(y+2)) +(x—2)(-x — 1 —i(y — 2))
+(x+z)(—x—-1+i(y—2))+(—x+y)(x—1-i(y +2))),
where x = V5, y = m ,zZ= \/5+—2\/_57 . Simplifying the expression for x;,
we deduce
X = 2—10(—4x2 —2iy? - 2iz%) = —_—%92—8—%(2 =-1-i.
We leave it to the reader to show that x, =1 +i, x;=1—1i, x, = —1 +i.

Example 5. Let p be a prime with p = 3 (mod 4). We show using the Theorem
that the quintic equation x> + 2px + 2p? = 0 is not solvable by radicals. We first
observe that x° + 2px + 2p? is 2-Eisenstein so that it is irreducible. Suppose
however that the equation is solvable by radicals. Then, by the Theorem, there
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exist rational numbers e(= +1), c(= 0) and e(# 0) such that

2 Set 3-4 29

p= (3 - dec), (29)
¢S

2p? = — ———(11e + 2¢).

)4 c2+1( le + 2¢) (30)

Expressing the rational numbers ¢ and e in the form ¢ = m/n and e = r/s, where
m,n,r,s are integers with gcd(m, n) = gcd(r, s) = 1, and appealing to (29) and
(30), we obtain

2p(m* + n*)s* = 5r*(3n — d4em)n, (31)

2p*(m? + n?)s® = —4r3(1lne + 2m)n. (32)

As p is a prime =3 (mod4) and ged(m,n) =1, p does not divide m? + n2.
Further, as gcd(r,s) = 1, it is clear from (31) that p does not divide r. Let
p°, pP, p?, p° be the exact powers of p dividing n, 3n — 4em, llen + 2m,s
respectively. As p does not divide both of n and 3n — 4em we see that a or

B = 0. Similarly & or y = 0 and B8 or y = 0. Equating powers of p on both sides
of (31) and (32), we obtain

1+46=a+8,

2+55=a+vy,
which contradicts that at least two of «, 8,y are 0. Hence the equation x° +
2px + 2p? = 0 is not solvable by radicals.

Other examples of solvable quintics are given below together with their Galois
groups. .

e=1, e=—1, c=2/11 ¥+ 1lx + 44 . Dj

e=1, e=—1, c=0 x5+ 15x + 44 Fy,

e=—1, e=1, c=1/2 x5+ 20x + 32 D,

€e=1, e= —2, c=17 x5 — 40x + 64 F,,
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