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A short proof of the formula for the
conductor of an abelian cubic field

James G. Huard, Blair K. Spearman and Kenneth S. Williams*

Abstract: Let Q denote the field of rational numbers and let K be an
abelian cubic extension of Q, that is [K:Q] = 3 and Gal (K/Q) = Z/3Z.
An explicit formula for the conductor f(K) of K is given in terms of
integers A and B, where K = Q (0), 8°+ A0+ B=0.

Let O denote the field of rational numbers. The smallest field contain-
ing both Q and a complex number 8 is called the field generated by 6,
and is denoted by Q(8). If 0 is a root of unity, Q(0) is called a cyclo-
tomic field. Subfields of cyclotomic fields are called abelian fields. The
smallest positive integer f for which a given abelian field K is con-
tained in the cyclotomic field generated by an f-th root of unity is cal-
led the conductor of K, and is denoted by f(K). It is known that f(K) is
a product of powers of those primes which ramify in K. In the case of
an abelian field K of degree 3, Hasse [1] has shown that if p,..., p, are
the primes other than 3 which ramify in K then

p,-.-p, if 3 does not ramify in K,
(0) fIK) = { 1

9p,...p, 1f 3 ramifies in K.

Such a field K can be expressed in the form K = Q(6), where 0 is a root
of an irreducible cubic polynomial X*+ AX + B with integral coeffi-
cients for which the discriminant

(1) —4A% — 27B* = C?

for some positive integer C. With this representation of K, one can ask
for an explicit formula for f(K) in terms of A and B. This is the question
we address.
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If R is an integer with R?|A and R*| B, then K = Q(6/R), so we may
assume that

©)) R|A, R B = |R| = 1.

From (1) and (2) we deduce that exactly one of the following possibil-
ities occurs:

(3) 31A(=31C)or3ll4, 31 B= 3% C)or 324 32||B= 3%l C).

We split the possibilities in (3) into two cases as follows:

case 1: 3fA or 3ll4 3tB 3*|C
4
case 2 : 32HA, 32HB or 3||A, 3*8, 32HC,

and set

0, incasel,
2, incase 2.

(5) a={

Using only the basic properties for cubic Gauss sums, and without ap-
pealing to Hasse’s formula (0), we give a short proof of the following
formula for f(K).

Theorem

(6) f(K)=3" [Ip

p(prime) =1 (mod 3)
plA.p|B



Proof

Let 7 be a primary Eisenstein prime whose norm is a rational prime p = 1
(mod 3). Let @ denote a complex cube root of unity and let x be an inte-
ger not divisible by p. The cubic residue character [%L is defined by
[%L = o*, where x "V3 = ©* (mod 7), k=0, 1, 2, and the cubic Gauss
sum G(r) by

p—1

(7 G(n)=Y [%]3827rix/p e 0 (7Y
x=1

The basic properties of G(7) are G(7) G(r) = p, G(n) = G(%), G(n)’ = pr.

Let A4 be the Eisenstein integer A = (=27B + 3CV=3)/2 of norm N(A) =

(-34)°. Clearly (V=3)“|| A, where 3 || N(A). Let 7 be the product of
ANN=3)

primary Eisenstein primes such that . is cubefree. Let F; be

T
the largest positive integer dividing A/((N—3)°7%). Let p be the product
of primary Eisenstein primes such that A/ (V=3)° 7°F,p) is a unit, say,

(8) = (-’ where a=0,1; b=0,12.

A
(V=3)TFp

Simple arithmetical arguments show that

0, in case 1,
9 = ‘
1 or 2, incase 2,
and
(10) N(p)=F = I1»
p(prime)=1 (mod 3)
plA.plB

Let p =7, ... m, be the factorization of p into primary Eisenstein primes
and set



(11) H = (-1)*e?™P (=32 1G(n))... G(r)).

We note from (7) and (10) that G(x,) ... G(m) € Q(e *™3F1). Using (8),
(10) and (11) it is easy to check that H > = 1/27 so that H> + H 3 = -B,
HH =-A/3. Thus the three roots of the equation x> + Ax + B = 0 are

(12) 0=H+H, 0 =owH+o’H, 6= oH+oH,

and so K = Q(0) = Q(0") = Q(8"). A little checking using (7) and (11)
shows that 8 € Q(e 2™/31), so that K = Q(e 7*/3), and thus

(13)  f(K) < 3°F,.

For any prime p dividing F',, we have

pO, =<p, 6>, if pllB
pO, =< p, 6°/p >, if p’| B, (sothat p*|A, p*||B),

so that p ramifies in K and thus in Q (e 2™/®), proving p| f(K). Hence
(14 Flfm.

From (13) and (14) we deduce f(K) = F, in case 1.

In case 2 another simple calculation shows that

30, =<3, 6 +(A/3)>7  if3lla 3t 3Fllc
30, =<3, (8*+A4)/3)>° it3 A 37 B 3llc

so that 3 ramifies in K and thus in Q(e ¥7®). Hence 3| f(K). From
(11) and (12) we deduce

2mb/9 (0°0-6")

27i/f(K)
(@ — )~ TG(m,)...G(m)(N=3) T - Qe )




so that, as b= 1 or 2 by (9), we have Q™% < Q™)) and thus
9| f(K). Appealing to (14) we deduce that 9F, | f(K) in case 2, and so,
by (13), f(K) =9F,incase2. W

The only primes p(# 3) which ramify in K are those primes p = 1
(mod 3) such that p|A and p | B. Moreover, 3 does not ramify in case 1
but does ramify in case 2. This establishes Hasse’s formula (0) for f(X).
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