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SOME INFINITE SERIES INVOLVING
THE RIEMANN ZETA FUNCTION

Zhang Nan-Yue and Kenneth S. Williams

We derive in a systematic straightforward manner from Euler's infinite prod-
uct for the reciprocal of the gamma function, the sums of a number of infinite
series involving the Riemann zeta function. Our presentation overlaps consider-
ably with, and owes much to, the comprehensive unified treatments of these series
by H.M. Srivastava ([9] and [10]). Nevertheless we do obtain some new results.
An alternative approach starting with the Euler-Maclaurin summation formula

has been given by the first author [14].

1. Families of Infinite Series involving the Riemann Zeta Function

We start our discussion with Euler’s infinite product for the reciprocal of the

gamma function I'(z), namely,

I"(lz) = ze7* fi] (1 + s> e m, (1.1)

n=

where 5 denotes Euler’s constant. The formula (1.1) is valid for all complex z

and can be found for example in (1, formula 6.1.3, p. 255]. Taking logarithms in
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(1.1), we obtain
o< -
logf(z)=—]ogz—7z+2(:—1—log(l+%)), (1.2)
n=1

which is valid for all = except z=-n(n=0,1,2,...). Differentiating (1.2) we
obtain for z #0,-1,-2,...

'z 1 = (1 1
¥(z) = I'(z) ~ = 7+nz=]<n n+z)' (2:3)
Replacing z by 1+ z in (1.3), we deduce for z # ~1,-2,...
1 = (1 1 = (1 1
h z = — —_———  } = - - .
v(I+) 4 1+z+"z=:l(n n+1+z> fi-:](n n+z) (14)

Equation (1.4) is formula 6.3.16 of [1].
The Riemann zeta function ((s) is an analytic function of s except for a

simple pole at s =1 with residue 1. For Re(s) >1 we have

c(s)=2%.

k=1

For n > 2 wehave

so that for |z| < 1

oc oc bt 1 o Z\ " = 22
(—1)7¢(n)e" = (-1 Y - = -1) = :
; )"¢(n) n; )"z ;kn ;;( k) ;k(k-+z)
that is

Z(—l)"((n)z" =2y (%-ni). (1.5)
n=2

From (1.4) and (1.5) we obtain

z(—l)"C(n)z" =z[P(l+2)+9)=1+z[(z)+7], [zl<], (1.6)

n=2
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as Y(z+1)=y(z) + % 1, formula 6.3.5, p. 258]. Subtracting

Ew n_n 22
=2(_1) - —_— __1+z' '2! <1,
from (1.6) we obtain

D1 -t =2 [+ 4= 1] k<,

n=2

that is (as Vv(z+2)=y¢(z+1)+ _1_)

z+1
YD) - D) =z [z 4+ 2) 4y -1, 2l < 1.
n=2

Now for n > 2 we have

1 1 1
0<C(n)-1=2—n+3—n+4—n+"

=i(1+ 1 + 1 +)

2 " T G2 T @y

1 1 1

SE(HW”‘W*“)

_2/1 1 1

—5;(§+-3-2+;;2-+---)

22 7|.2

=2_n<€_1)

4

<§,

so that Z(—l)" (¢(n) = 1)z" converges absolutely for |z] < 2. But
n=2
z[¢(z +2) + v — 1] is an analytic function of z for |z| < 2, so we have proved

the following result (see, for example, Hansen [4, p. 358, formula (54.10.1) with

a=2 and t=-z}).

Theorem 1. For |z] <2

Y (=1 [Gn) = 1) 2" = 2 [z + 2) + v - 1). (1.7)

n=2
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Taking particular values of z in (1.7) we obtain the following corollary.

Corollary 1.

o0 !

2(—1)'1[4(,1)_ 1= % (1.8) ‘
Sl =11 ws)
2[4(271) -1 = g- (1.10)
}?[((2“1)- =1 (111)
g(—lrlc(n)— 3(3) = 5 - steg2. (112)
2((@)-1] (g)n=3log‘2+g. (1.13)
2[«%)— 1) G)n = % (1.14)
2[4(%“)—11 (§>n=2]og2—1—85. (1.15)

Proof. Taking z =1 in (1.7), we obtain

3 (=1)"[¢(n) - 1] = $(3) + 7~ 1.

n=2
Now

n-1
1
Y(n)=-7+ Z I (n22) {1, formula 6.3.2, p. 258]
k=1
so ¥(3) = —y+ 3, which proves (1.8), which is formula (1.7) of [10].
Taking z = —1 in (1.7), we obtain

Y le(n) - 1) =1 -7 - ¥(1),
n=2



— 695

which proves (1.9) as #(1) = =7 (1, formula 6.3.2, p. 258]. Our formula (1.9) is
formula (1.4) of {10].

Adding and subtracting (1.8) and (1.9) yields (1.10) and (1.11). These are
given in (1.8) of [10].

Taking z =2 in (1.7), we have

S (-1 lc(m) - 1) (g) _ g

n=2

ot =)

Qo
Now (1, formula 6.3.4, p. 258)

2n+1 - 1
J = —~ —2log? —_— >
v( 3 ) v - 2log +2k§=1 oy (n21)

so ¢ (7)) =—7-2log2+ 4§, which proves (1.12).

-]

which proves (1.13) as % (3) = -y — 2log?2 [1, formula 6.3.3, p. 258].
Adding and subtracting (1.12) and (1.13) yields (1.14) and (1.15). Formulae
(1.12)-(1.15) appear to be new.

Taking z = —% in (1.7), we have

Siem-1(3) =~

n=2

KW

Dividing (1.6) and (1.7) by z and integrating, we obtain the following result

(see, for example, Srivastava [9, formulae (4.1) and (4.2))).

Theorem 2.

i(—l)"%n)z" =logl'(1+2z)+7vz, |z|<1, (1.16)
n=2
Z(—l)"&n)n—_ﬂz" =logl'(2+z)+(y- l)z; lz] < 2. (1.17)
n=2

Taking particular values of z in Theorem 2, we obtain the formulae of the next

corollary.
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Corollary 2.

= 1

Z(-nn%"_j = 5 (log7 +1) ~ log2. (1.18)
n=2

Z_;i(;) = %(logr—v). (1.19)
Z(—l)"-(ﬁ%;l—) =log2+7-1. (1.20)
n=2

> C(ni_ e (1.21)
n=2 )

= ((2n) -1

Z — = log 2. (1.22)
n=1

= ((2n+1)-1 1

n; T = 1T gls2 (1.23)
o _ 1 3 n

Z(—l)"g—(ﬁ%—— (-2-> = log-lgs + %logﬁ + g('f -1). (1.24)
n=2

> C(”l‘ ! (g) = %logr + -?;(1 =) (1.25)
n=2 -

Zs(—zﬂ——l (9) =logw+log£. (1.26)
= n 4 8

= ((2n+1)—1(9\" _ 1, 15

Proof. Taking z = 3 in (1.16), and remembering that r3/2) = ='1?/2 1,
formula 6.1.9, p. 255), we obtain (1.18), which is formula (4.5) of [10].

Next, taking z = —31 in (1.16), and recalling that Ir(1/2) = =*/? {1, formula
6.1.8, p. 255], we obtain (1.19), which is formula (4.6) of [10].

With z=1 and z = -1 in (1.17), we obtain (1.20) and (1.21), respectively,
which are (4.4) and (2.33) of [10}.

Adding (1.20) and (1.21), we obtain (1.22), which is a result of Johnson [5).
Subtracting (1.20) from (1.21) we deduce (1.23), which is due to Legendre.
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Taking z = % and z = —-g— in (1.17), we get (1.24) and (1.25) respectively,
which are formulae (4.9) and (4.10) of [10].
Finally (1.26) and (1.27) follow by adding and subtracting (1.24) and (1.25).

Integrating (1.7) we have the following theorem (see {10, formula (5.3), p.
13)).

Theorem 3. For |[z| <2

Z(—-l)"%:l—l-z"“ = :logF(z+2)—/:logf(t+2)dt+ %(7- 1)z2. (1.28)
0

n=2

Corollary 3.

i(—l)"%’—)f = -;—(3+7—log87r). (1.29)
n=2

i(—l)"% =1—-;-(log‘2r—7)_ (1.30)
g:g%_l—l=%(3—'r—log27)- (1.31)
ZE%%_TE = %(3-1°g4ﬁ)- (1.32)
2%7—1 =log2-17. (1.33)

Proof. Taking z =1 in (1.28) we obtain

] _ 1
z:(—l)"c—(’:l—_)-*_—l1 = log2—/; logI'(t +2)dt + %(‘r -1).

n=2

But for ¢ > 0 we have

1
/ logI'(t+ ¢q)dt = %log2r+q(logq_ 1),
0
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see for example [3, formula 6.441(1), p. 661], so that
! 1
/ logI'(t+2)dt = §log‘2‘z +2log?2 -2,
0

and (1.29) follows. Formula (1.29) is due to Suryanarayana [11). Formula (1.30)

follows from (1.29) as Z %1__-:—)_1- = log2 - % .

n=2

Next taking z = —1 in (1.28) we deduce

S .Cil_)___l.—/—] 9 ] 1
";‘nﬂ =/, log I'(t +2)dt + 5(1 = 7).

Now

-1 1
/ logI"(t+2)dt=—/ logI'(2 - t)dt
0 0

1 1
=-/ logI‘(l—t)dt—/ log(1 — t) dt
0 0

1 1
=-/ logf(i)dt-—/ logtdt
0 0

= —% log 27 + 1,
so that (1.31) follows. The formulae (1.30) and (1.31) occur in the work of Verma
and Kaur [12].
Adding and subtracting (1.29) and (1.31) we obtain (1.32) and (1.33), which
are (5.8) and (5.9) of [10].

Replacing z by —z in (1.6) we have

oo

Z ((ﬂ)z" = —z¢(1 - z) -7z, Jz]< 1.

n=2
Adding this to (1.6) we obtain
22 ((2n)z" = z[Yp(1+2) -1 —-2)], [zl< 1
n=2

From the recurrence formula

¥(1+2)=y(z)+ % (1, formula 6.3.5, p. 258]

L et



a=d the reflection formula

¥(1 —z) =y (z) + meotwz, [1, formula €.3.7, p. 259)
we deduce
1
Yp(l+z)—-9(l-2)= - - 7mcotwz,

so that

- 1 1

E ¢(2n)2%" = 5577 cotwz, |z] <1, (1.34)

n=1 -
and thus

S ¢(en+ 1) = Y ((n)" = 3 ((2n)"
n=1 n=1

n=2
=(-z¢(1-2)—7z) - (l —'-1-7rz cot r.z)
2 2
, 1 1
= —z(z) =7z — 573" cotrwz.

We have proved the following well-known result (see, for example, Hansen [4, p.

46, formula (54.3.4))).

Theorem 4. For |z| <1

i ¢(2n +1)" = —%(1 + wzeotmz) — z(¥(z) + 7)- (1.35)

n=1

From Theorem 4 it is easy to deduce that

oo
Z(((Zn +1)-1)2" = %—%rz cot Tz — +(1-7)z=zp(142), |2} <2,

n=1

z
1-22
(1.36)

which is formula 6.3.15 of [1].
The generalized Euler constant 4(r, k) is defined for an integer r and a -

positive integer k by

m

7(r,k)=m1i;nx{ )y },—%logm},

nxl
nEr(modk)
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so that
7(0,1) =1.
Lehmer [7, Theorem 7} has shown that
Srok) = —{S(r/k) +log)/k (0 <r <K
Hence

Y(r/k) = —ky(r,k) - logk (0<r<k) (1.37)

Corollary 4. Let v and k be integers with 0 <r < k. Then

> r\2n e k
;z:]c(zn +1) (%) = logk ~ 5 cot(ra /) + kr(r,F) =7 = 5 (1.38)

In particular

X ((2n+1

Z——2_2_11—_) =2]0g2-—1. (139)

— ((2n+1) _3 3

; T =3 l82- 3 (1.40)

= ((2n+1)

3 v 3log2 - 2. (1.41)

n=1 .

= ¢(@n+1) 5 V5 145\ 5 ,

n};——‘szn = Jlog5+ 5 log | — -3 (1742)

o

((2n+1) _ 3

?A;T =2log2+ 7 log3 - 3. (1.43)

2 ((2n+1

ZC_(_ZT}_)=4log2+\/§log(1+\/§)—4. (1.44)

n=1

= ((2n+1

S C-(—l’%:——) =(3-V3)log2+ %logB +2V3log(1 +V3)—6. (1.49)

n=1 -

- -] 2n

2 3 3

;((Zn +1) (5) = 5log3- 3. (1.46)

[~ <] 3 2n )

Yoc@n+n(y) =8le2-3 (1.47)

n=1

oo 5 2n 3 3

Z((2n+1) (6) =210g2+§log3—-3. (1.48)




Proof. Formula (1.38) follows from (1.35) and (1.37). Formulae (1.39)-(1.48)
Hllow from (1.38) as [7, p. 134]

1 1
1,2 = = - 2
7(1,2) 2'r+210g ,
1 T 1
7(1,3)—§1+-1—8J§+-élog3,

1 1
v(1,4) = il +24 —1052,

8

1 [5+2V5 V5 145
7(1,8) = 57+10 3 010g5+—1—0-10g< 5 |

1
~(1,6) = (—3’7+ f+—log2+—log3

7(1,8) = %‘7 + —(1 +V2)+ 3 log2 + —\/—-: log(1 + V2),

+(1,12) = -l-'y+——(2-r\/§)———(\/_—1)log2+ -—log3+-\—£—log 1+V3),

12
1
7(2,3) = —7——\/.+—log3
3 6
1
— — — - Zloc?2
7(3,4) = 37 s+41°°’

1 1
¥(5,6) = 57~ —\/_+€log2+ ——1og3

We remark that the values of ~(1,6),7(2,3), 4(3,4) and %(5,6) are not actually

given on p. 134 of [7] but are easily deduced from the expressions given there.

For example we have

~(1,6) = 7(1,3) - 1(4, 6) 7, formula (3), P 126]
= ~(1,3) - -7( 3)+llog2 (7, formula (13), p. 130]

=~(1,3) - —(1 ~(0,3) = 7(1,3)) + —log‘7 [7, formula (3), p- 126]

1 log3
b QS - | — 9
log 2 27+ 27(1,3) + 5 ( 3 ) [7, formula (2), p. 12 €]

1 1 3/1 T 1
log2—glog3—-§7+§ <§7+ -igx/g+-élog3) [7, p. 134]

Nl O [ X Md
.

g 1 1
+ -1—5\/§+glog2+-1-§log3,
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as asserted. -
In a similar manner we can determine Z ¢(2n + 1)a®® explicitly for
n=1
a= %,%,%,%,%,%,]—52,%, 13- Making use of (1.36) we can find the sums of such
9 n
infinit i m+1)-1)t-) .
infinite series as ;(((n-f- ) )(4>
Rewriting (1.35) as
kad 7n 1 .
24(2n+1)z =3 —;cotr:—;/r(1+z)—-7, lz] < 1, (1.49)

and integrating, we obtain the following well-known result (see, for example,

Hansen [4, p. 356, formula (54.5.8)]).

Theorem 5. For 2] <1

log —logI'(14 z) - 4=. (1.50)

i(%'*‘l) 2n+1=
= 2n+1 2

Appealing to the recurrence and reflection formulae for the gamma function [1,
formulae 6.1.15 and 6.1.17, p. 236], we obtain formula (4.12) of [10]. Taking
z =1/2 in (1.50) we obtain the following formula, which was obtained by Euler

in 1781.

Corollary 5.

((2n+1)
Z(9n+1)?2n =log?2 - 1. (1.51)

Differentiating (1.49) we have the next theorem.

Theorem 6. For |z] <1

oc 2

Z2n((2n +1)227 0 = % (su;; " 212) ¥'(z2), (1.52)
n=1

o 2

S (@n+1)((@n+1)" = % (Sh’;; - 7 cot m) —P(z) =7 = ¢'(z)z.  (1.53)

n=]
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Corollary 6.

2 2n((2n + 1)

n=1

2 (2n+1)¢(2n + 1)

Y, Siti = log2. (1.55)

3
!_l‘

Proof. Taking z = 1/2 in (1.52) we have
o0

2n¢(2n +1) =2 M1
Y HEma =g Vg

n=1

Formula (1.54) now follows as ¢’ (1) = "72 [1, formula 6.4.4, p. 260].
Taking z =1/2 in (1.53) we deduce

°°(2n+1)C(2n+1)_1r_2_l<_(l) ) 1,(1 _
?:l 92n+1 =% 723 ¥ 3 +v —211) §>—1og2.

The formulae (1.54) and (1.55) appear to be new.
Changing z into iz and recalling that

cotwiz = l_cothr.’z, €(0) = -=,
i 2
formula (1.34) becomes

oc
wzcothmz = =2 Z(—l)"((?n)zz", lz| < 1.

n=0

Manipulating this formula we get the next theorem (see, for example, Hansen [4,

p. 356, formula (54.3.3))).

Theorem 7. For |z| <1

[~ =)
1
Y (-1 () = -’25coch S (1.56)

n=1
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and for |z| <1
2(—1)"" (¢(2n) -1 = %coth z— 2(73(2:—2%1—1)—) (1.57)
Corollary 7.
i(‘l)"_l (¢@n)-1)= 1;-cothw -1 (1.58)
n=1
i (——1—)-“2——2:1—4@-2 = -Ecoth-;[ - % (1.59)

n=1

Proof. Formulae (1.58) and (1.59) result by taking z =1 in (1.57) and 2 =1/2
in (1.56).

The formulae of Corollary 7 are formulae (15) and (16) of [14) suitably cor-
rected.

Integrating (1.56) we obtain (see, for example, Hansen [4. p. 356, formula
(54.5.3) with t =iz ]).

Theorem 8. For |z| <1

Z ——-———( 1)"71¢0Cn) 2 =log (smh‘ ‘> . (1.60)

n=1

Taking z =1 and z=1/2 in (1.60) we obtain

Corollary 8.

oo (;__I)L__]_g@ - sinh 7
Feme ().
Z( 1),,225(2”) tog (zsin:rﬁ) (1.62)

A variant of formula (1.61) can be found in Knopp [6, p- 271, Exercise 124(f)]




We conclude this section by remarking that many of the formulae of the
corollaries can be obtained by changing the order of summation and then appealing

as necessary to known results. We give three examples.

Proof of (1.20). We have

- ,,-lc(n) NER Rl

from which (1.20) follows.

Proof of (1.58). We have

Z ()" (¢(2n) — 1) = ) _(-1)"" ‘Zkgn

n=1 n=

—

n—1

since 3, formula 1.445]

= 1
§k2+a2 —-z—acoth,.a——g?_; (a #0).
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Proof of (1.61).

since [3, formula 1.431, p. 37]

2
smhrz_-r:tH (1+ k2)

k=1
Many other formulae can be derived from those aboxe by taking linear com-
)

binations: for example 3 (1.22)-(1.32) gives (as Z o +1 =2-2log2)
2n

n=l

a result which is due to Wilton {13)].

2. Three Infinite Series Representations of {(3)

We may rewrite (1.34) in the form

o0

-~ —cotz= lz] < =. (2.1)

Integrating (2.1) yields

C(QTI) z2n
2nm2n”

oo
logz-—logsinz=2z

n=]

|2} < 7. (2.2)
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 Bsolacing z by z/2 in (2.2) gives

i = i ¢(2n) 227 |z < 27,

log 2sinz/2 = n(2x)"

Iztegrating from z =0 to z =1 we deduce

c- ¢(2n) 2n+1 9
zlogz — z / log (2sm )d"—zln(2n+1)(21r)?"z , =l < 2m.

Iztegrating again yields for |z} < 27

z? 372 ¥ v = ((2n)r2n+?
_ - - 2 dt | du = .
s ose~ - | (fo 1°g< "3 ) ) 4= L D@ D

Taking ¢ = = /3 gives

LR B & ~/3 “ iR ¢(2n)
Tlogs — = - log 2 dt ) du= - .
1§63 " 12 /o (/ °g( s“‘2) ) 9 ¥n<°n+1)(2n+2>e”"

Integrating by parts we deduce

IR N & n/3 ® z ™ ¢(2n)
gz - = - Z)tog (2sin 3 ) dr = 5 ,
15163 T 13 +/0 (I 3) °°( 0 2) ’ z:n('>n+1)(2n+2)6’n

Since [8, p. 230]

((3)= g /"/3 (z - %) log (2sin %) dz,
0

we obtain our first formula for ((3) .

Theorem 9.

= 7?2 ¢(2n)
((3)= log 3T % Z  n(2n +1)(2n + 2)672"

Next, recalling that ((0) = —3, we can rewrite (2.1) in the form

1
21

—ucotu = 22 (2n) u, Jul < 7 (2.3)
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Integrating (2.3) between 0 and t, we obtain

¢(2n) 2
- tudu = — T 42n+] T 2.
[J ucotudu =2 5 @ + 1) , i< (2.4)

Now integrating (2.4) between 0 and 7/2 we have

O _T5 ((2n)
_/0 (/o ucotudu)dt—-2—2(2n+1)(2n+2)22n.

Changing the order of integration, we obtain

T /2 /2 ) - o (-‘)n)
_5/0 ucotudu+/0 u® cot udu = -2—2 Gni)on 1o

n=0

Then, integrating by parts, we deduce

1/1/21 sin ud —‘7/”/2 lo d Z ¢(2n)
2 A Og s1in uau < o u gsmu U= (9n+1)(2n+2)22"'
Recalling that
/2 -
/ logsin zdz = -3 log2 |1, formula 4.3.145, p. 78] (2.5)
0
and
/o zlog (25in—;-) dr = 2’4(3) (8. p. 164) (2.6)
we have our second series for ((3).
Theorem 10.
472 & ¢(2n)

(@)= T NZ_O (2n +1)(2n + 2)220°

This formula can be found for example in (10, formula (2.23), p. 7], [2. formula
(1), p. 219] and [15, formula (1.2)].
Finally, multiplying (2.3) by u, integrating twice and taking = = #/2 , we

i = ((2n)
_/o (/0 u cotudu) -?Z("n+2) (on 7 3)077

have
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& Interchanging the order of integration, we obtain -

x/2 /2 e ,
= ) R o ¢(2n)
2/0 u cotudu+'/0‘ u” cot udu = 4 Z (2n 4+ 1)(2n + 3)22n°

n=0

Integrating by parts yields

x/2 n/2 3 =
. 2 0o o _r C(Qn)
”/o ulogsin udu - 3/0 wPlogsinudu = Z- 3 (2n + 2)(2n + 3)227°

n=0

that is

oc /2
3 ¢(2n) _ 2 .
" Zg (2n +2)(2n + 3)22% "/0 (124% — 47u) log sin udu.

Now

—~\3 1
¢(3) = %/ Bi(z)cot rzdr [1, formula 23.2.17, p. 807]
- Jo

_ (2r)®
| 3!

_ (2

3!

:1,.;2

3

1/2
/ Bi(z)cot rzdz [1, formula 23.1.8, p. §04]

Bj(r)d(log sin rz)

'o\o
pA
=
NS

1/2
Bj(z)log sin mzdr

o

1/2
= —4r7? By(z)logsinmzdz  [1, formula 23.1.5, p. 804]

<o

1/2 1
= —4r? (2-z+ E)log sin rzdr
0

®/2 2
= _i/ <u2—7.—u+7r—)logsiuudu
0 6

2
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and
n/2
/0 (2u - %) log sinudu
1 /7 T .z
= 5/; (1 - 5) logsin §dz
1 f7 .z x [T o
= 5/; log sin §d1 - Z/o log sin Edr
n o = [T/2
= %/0 z log (253112) dz — log'/o zdr — 5./0 log sin ydy
7 2 72
= 54(3) -7 log2 + T log2  (by (2.5) and (2.6))
7
so that

3 - ((2n)
i ';(211 +2)(2n + 3)227
/ ™ %
= /0 i (—1.‘2 (u’ —-7u+ g) —4x (Qu - 5)) log sin udu
7 4
=37((3) - 57((3) = —5¢(3).

We have proved the following result.

Theorem 11.

L e ¢(2n)
(3= -2 2 (2n +2)(2n + 3)227°

The formula of Theorem 11 was obtained in a different way in [15).
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