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SOME SERIES REPRESENTATIONS OF ((2n+1)
ZHANG NAN YUE AND KENNETH S. WILLIAMS

1. Introduction. For Re (s) > 1 the Riemann zeta function ¢(s) is
defined by

ns’
n=1

It is well known that ((s) can be continued analytically to the whole
complex plane except for a simple pole at s = 1 with residue 1.
Moreover, ¢(0) = —1/2.

In [2] Boo Rim Choe gives an elementary proof of the classical result

(1.1) Z ni -

by making use of the power series expansion of arcsinz. In [4] Ewell
modifies Boo Rim Choe’s method to give a new series representation
of ¢(3), namely,

2

B 4n? & ¢(2n)
(1.2) @) =-— ;} (2n +1)(2n +2)220"

Then in [5] Ewell further modifies the method of Boo Rim Choe to
obtain the following representation of {(r) (valid for an integer r > 2):

or— 2 o
7r2 Z )™ Ay (1 — 2)72™ /(2m + 2).
=0

(1.3) ¢(r) =

The coefficients A, (r) are given by

2m
201,209, ... ,2i,

Z(22'1 +1)(2(61 +d2) +1)--- (200 + 2+ - -+ 4p1) + 1)
- By;, By, - - - Bai,.,

Agm (’I") =
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where the sum is taken over all r-tuples (iy,...,%,) of nonnegative
integers whose sum is m,

2m
201,209, .. , 21,

is a multinomial coefficient, and Bs; is a Bernoulli number as defined
in [5]. When r = 3, the formula (1.3) reduces to (1.2) recalling Euler’s
result

(27r)2k
2(2k)!

C(2k) = (—=1)*+1 Bow, k=1,2,....

The aim of this paper is two-fold. First in Section 2 we replace
the use of the power series expansion of arcsinz in [2, 4] by that of
(arcsinz)? in order to give a new short proof of (1.1) as well as a new
series representation of ¢(3) analogous to (1.2), namely,

& o
(1.4) ¢(3) = —2n n; (2n 1 2)(2n 1 3)220°

Then, in Section 3, we use an idea of Moiseyev [7] and a result of
Elizalde about ¢'(—2n), n = 1,2,..., [3] to obtain a series represen-
tation of ¢(2n + 1), n = 1,2,..., which is simpler than that given by

(1.3).

2. Some series representations of ((3). Recall that

22n—1 2w2n

2.1 inz)? = E 2 (nl)2™ <1
(2.1) (arcsin z) 2 2 (on , lz| <1,

)!
(see, for example, [1, p. 262]). Taking z = sint in (2.1), we have

o 22n—1(n!)2

(2.2) t? = “Ean)

sin®" ¢, [t] < /2.

n=1
Then, integrating both sides of (2.2) from 0 to /2, we obtain
3 0 22n71(n!)2 w/2 )
oy 2 in2" ¢ dt,
24 Z n2(2n)! /0 S

n=1
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and, appealing to the well-known formula of Wallis

/2 (2n)'m
. 2n _ :
(23) /0' sin“" tdt = W,
we deduce ((2) =Y > | 1/n* = 72/6.
Further, dividing (2.1) by  and integrating from 0 to sin ¢, we have

/Sint (arcsin )? dr — > 22"3_2(n!)2 Gin2" 1.
0 x —  n3(2n)!
n=1

Making the substitution = sinw in the integral, we obtain

t © 522 2
2 !
/u2cotudu:E ﬁsin%t.
0 n=1

n3(2n)!

Recalling the power series expansion of ucotu (see, for example, [6,
p. 35])

= ¢(2n)u®
(2.4) ucotu = —2 Z T lu| <,

we have

2 2n+1 ot 22n72 ! 2

that is,

2n t2n+2 o0 22n—2(n!)2 . om
— E = sin“" t.
(2n+2)7? = n3(2n)!

Integrating both sides from 0 to 7/2, and appealing to (2.3), gives

73— ¢(2n) T o= 1
_Zn; (2n+2)(2n + 3)227 57;1?’

that is,

S )
(2:5) () = —2n T;O (2n +2)(2n + 3)22°
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In addition, from (2.4), we have

2n1

(2 1
(2.6) 22 ¢(2n)u = — —cotu, lu] < .
u

Integrating (2.6) from 0 to z gives

oo

(2.7) Z mZn /0 ’ (% ~ cot u> du = log(z/ sin z).

Taking = /2 in (2.7) gives

> ™
(28) Z 22” log 57

which is formula (6) of [8]. Next, integrating (2.7) from 0 to 7/2 gives

00 w/2 s
2 W = [ ogs -~ togsine)de = Jogm 1),

that is,

2. =1 -1

(2.9) Zl 2n+122” 08T L
which is formula (7) of [8]. Further, we obtain successively from (2.8),
(2.9) and (2.10) using

11 1 _
2n+1  2n  2n(2n+1)’

(2.11) and (1.2) using

1 1 1
2n+2 2n+1 (2n+1)(2n+2)

(2.12) and (2.5) using

1 1 1
m+3 2m+2 (2n+2)(2n+3)’
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(2.10) g (;g;) = %1og7r - %bg 2,
(2.11) nil 2n+ 1 22n - % - %10%2’
(2.12) :1 2n+2 22n _ 4—; 3) — %10g2+ i
(2.13) ::1 2n+3 22n = 4i7r2§(3) - %log2+ %

Then, setting

S 2n)
0< b<3
z:: 2n—|—a) 2n+b)22" Sasbs

we deduce from (2.10)—(2.13) and the identity

1 1 11
(2n+a)(2n+b) b—a\2n+a 2n+b

the following table of values

b F(a,b) a|b F(a,b)
1 tlogm— 1 12| —55%¢(3)

—# (3)+ilog7r—% 1

o| o ole
w [\]
w w
Lo
[V

oo
ﬂj\r ﬂm@
o=
= | «»

N
T+ +
E|"‘ o= =

—22C(3) + glogm — 15 | 2
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Thus we have the following five different series representations of ¢(3):

872 ¢(2n) 272 w2
= - —_— —1 [ —
¢3) 7 nzzjl(zn)(2n+2)22nJr 7 BT
4% & ¢(2n) 2m2 2,
_ — — _— —1 _ —
3 nz::l(zn)(27~b+3)22n4r 9 BT 7"

4r? & ¢(2n)
Z (2n + 1)(2n + 2)22»

8% ¢(2n)
ng (2n +1)(2n + 3)227

_ 2 — ¢(2n)
=2 ;} (2n + 2)(2n + 3)220°

3. Series representation of ((2n + 1). For 0 < a < 1 and
Re (s) > 1 the Hurwitz zeta function ((s, a) is defined by

- 1
¢(s,a) —nz:%m-
We set (see [9])

p(s,a) =¢(s,a) — ¢(s,1 —a), 0<a<1,Re(s)>1.

Then, following an approach of Moiseyev [7], we have

oo o0

1
S z_;om_a
Z 1+a/n r; 1—a/n

Since
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where
(s) (s+1)--(s+m—1) (s)o=1,

we have

oo —1 o0 l

_9 2m 1CL

that is,

= + 2m —1) gpe
3.1 _2 )am-— IC s 2m—1,

Similarly, with
A(s,a) =((s,a) +((s,1 —a), 0<a<1,Re(s)>1,

we have

(3.2) A(s,a) = — +2 Z —2’"4 3 2m) o,

Letting a = 1/2 and changing s into s + 1 in (3.1), we have

oo

(3.3)  2°- Z (4 DomaC(s +2m) — poy o)
=1

(2m — 1)122m
Letting a = 1/2 in (3.2) and recalling A(s,1/2) = 2{(s,1/2) =
2(2% — 1)¢(s), we obtain
> omC(s + 2m
(3.4) (2% — 2)¢( => (8)2mC(s +2m)

(2m)!122m
m=1

Adding (3.3) to (3.4) and noticing
(s)2m +2m(s + 1)om—1 = (s + 1)2m,

we obtain

> (s + D)am(s +2m)
(3-5) (2° = 2)¢(s) = Z (2m)!122m :
=1
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Recalling the functional equation for ((s), namely,
2°T'(1 — $)¢(1 — s) sin %s =7'7%((s),
we obtain from (3.5)

(s 4+ 1)2mC(s + 2m)
(2m)122m ’

(3.6) (2°—2)2°7* T (1—s )g(l—s)sin§: 3

m=

or equivalently,

(3.6) (22¢ — 2°*L)rs~ID(1 — 5)¢(1 — s) sin %S

= (s4+1)(s+2)--- (5 +2m)¢(s + 2m)
Z (2m)122m '

m=1

Dividing (3.3) by (s + 1)/4 and letting s — —1, we have

2s+1 > ¢(2m+1)
li - 2)
sin_l1<s+ Cls+ > mz::l 2m + 1)22m°

However, as

25+1 (s+1) log 2

P ((s+2) = P}

_ H—l{l +log2(s+1) + O(|s+1]%)} — {SL +7+0(5+1|)}

+1
= (log2 —v) + O(|s+1]),

- (sil +y+ O(|s+1|)>

we deduce

N ((2m+1
(3.7) 3 (@m+1) log 2 — 7.
Similarly, taking s = 1 in (3.3), we obtain

(3.8) 3 W ~ 1
m=1
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Letting s — 1 in (3.6), and recalling that ¢(0) = —1/2, we have

i (2m + 1)¢(2m + 1)

(3.9) e

=log 2.

m=1

We remark that (3.7)—(3.9) can also be obtained by using the Euler-
Maclaurin summation formula (see [8]).

Dividing (3.6)" by (s + 1)(s + 2) and letting s — —2 gives

7 . sin(ms/2) o= (s43)- - (s+2m)
0, T - S .
= (2m —2)!
-y %C@m - 2)
m=1
w ¢(2m)
B mZ:o (2m + 1)(2m + 2)22m+2°
Since
L )
s——2 s+2 ’
we have
- 472 & 2m)
(3.10) -7 ZO 2m+1 2m+2)22m’

which is (1.2).

We now carry out the above argument in general. First, we separate
the right side of (3.6)’ into two parts as follows:

(3.11) (22 — 2°F)rs=1P(1—5)¢(1—s) sin ?

Z (s+1)- S+2m)§(s+2m)

— (2m)122m
2 (s+1)---(s+2m)
+ Z (@m)122m C(s+2m), n>2.

m=n
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Next we divide (3.11) by (s +1)(s+2)--- (s + 2n) to obtain
(22 — 25T~ (1—5)¢(1—s)
1 sin(ws/2)
(s+1)---(s+2n—1) s+2n

(3.12) _ ”Zl 1 ((s+2m)
(2m)122m(s4+2m+1)---(s+2n—1)  s+2n
2 (s4+2n+1)---(s+2m)
+ Z )i ¢(s+2m).

Then, letting s — —2n in (3.12), we have as

lim sin(ms/2) _ (=1)"m :
s——2n S§-+2n 2

n(220+ —1)(-1)" z’: —(2n—2m))

¢(2n+1)
9in2n (2n+1) (2m) '22m 2n_2m1)!

3
22 £~ (2m+1)- .- (2m+2n)22m

Hence, we obtain for n > 2:

oy = I {2

(22n+1 -1

22 (om)
(2m—1)!(2n—2m)!

> 2m)
+ Z (2m+1)--- (2m+2n)22m }

(3.13)

In particular, if n = 2, we have

8t 2m)
(8:14) <) = 31 { +Z 2m+1 2m+4)22m }
Elizalde [3] has shown for k > 1 that
(3.15)
(k) =~
(k1)

e () S e

=1 h=0
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Using (3.15) in (3.13), we obtain

Theorem. Forn > 2,

_ (C)ren (R call
(3.16) C(2"+1)—(22n+1_1 {Z 2m—1)!/(2n—2m)!(2m+1)2

m:l

(2m—-1)!(2n— 2m'l71 22’ L2l

mm(zzfz,zm) om\ (=1)"C(2) = (2m)!¢(2m)
DY <h>m+n§m}

h=0

Although complicated, this expansion for {(2n+1), n > 2, is simpler
than the formula given by Ewell [5]. In particular, we have

m = (—1)1(21 — 4)!
311) <) = 1 (35 + 2 S
=2

— ¢(20)
+; 21+1) 21+2)(21+3)(21+4)22l>'
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