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R. Scorr DANIELS, DONALD C. WIGFIELD, and KENNETH S. WILLIAMS. Can. J. Chem. 70, 1978 (1992). 
A mathematical model is presented to establish a relationship between the quantity of trace analyte vapor lost to the 

surface of delivery tubing and the tubing diameter, while in transit between stages of an instrument. Cold-vapor atomic 
absorption spectrometry for mercury, hydride generation techniques, and interfaces like the interface between electro- 
thermal vaporization and inductively coupled plasma mass spectrometry all risk significant analyte loss before measure- 
ment. The results of this modelling substantiate the results of limited experimental work published elsewhere suggesting 
the use of the smallest possible tubing diameter for the delivery of atomic vapor through a tube. This diameter is cal- 
culable using Poiseuille's formula. Using this model, kinetic theory, and experimental data, the sticking probability for 
mercury on latex tubing is calculated to be approximately 1.6 X 

R. Scorr DANIELS, DONALD C.  WIGFIELD et KENNETH S. WILLIAMS. Can. J. Chem. 70, 1978 (1992). 
On prCsente un modkle mathkmatique permettant d'ktablir une relation entre le diamktre du tube et la quantitC d'une 

trace a analyser en phase vapeur qui est perdue sur la surface du tube de transfert entre deux stades d'u" instrument. 
Dans les techniques de gCnCration d'hydrure de la spectroscopie d'absorption atomique de vapeurs froides pour le mer- 
cure et dans les interfaces comme celle qui existe entre la vaporisation Clectrothermique et la spectromCtrie de masse 
aux plasmas couplCs d'une f a ~ o n  inductive, il existe des risques importants de perte des produits a analyser. Les rksultats 
de notre modkle permettent de circonstancier les rksultats expkrimentaux limitks qui ont CtC publiCs ailleurs et qui suggkrent 
qu'il est utile d'utiliser des tubes ayant des diamktres les plus faibles que possible pour transfkrer une vapeur atomique 
a travers un tube. On peut calculer ce diamktre ti l'aide de la formule de Poiseuille. Utilisant ce modkle, la theone cinCtique 
et les donnCes expkrimentales, on a calculC que le probabilitC d'adhCrence du mercure sur un tube de latex est approxi- 
mativement 1,6 x lo6. 

[Traduit par la rCdaction] 

I. Introduction 
The substance of this communication lies in a single 

question; that is, for a given standard flow rate of a carrier 
gas containing a trace analyte, which is the best for mini- 
mizing analyte loss to the surface of the delivery tubing: a 
small diameter tube, a large diameter tube, or is there an 
optimum diameter?3 

Cold-vapor atomic absorption spectrometry, hydride 
generation techniques, electrothermal vaporization induc- 
tively coupled plasma mass spectrometry, and gas chroma- 
tography graphite furnace atomic absorption share one thing 
in common: the transport of trace molecular or atomic vapor, 
or aerosols, through delivery tubing. To ensure optimum 
analytical sensitivity, it is necessary to provide conditions to 
minimize analyte loss due to surface interactions along the 
walls of the delivery tubing. An earlier communication ad- 
dressed the question of tubing type and optimum tubing di- 
ameter from an experimental perspective (1). Due to a limited 
number of available tubing diameters for testing, it was felt 
that a mathematical model of atom loss in tubing, particu- 
larly as a function of tubing diameter and flow rate, would 
add further justification to, and understanding of, the trends 
observed for the limited number of diameters tested. In ad- 
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 h here is an analogous question, and an apparent lack of a sci- 

entific answer for this question, pertaining to minimizing the heat 
loss during the transport of a warm gas through optimum piping 
diameters. 

dition, this model would permit predictions beyond the scope 
of readily available tubing diameters. A brief summary of 
transport efficiency and particle size is given by Lubman (2). 
Although omitting a sticking probability factor that is intro- 
duced in this model, a solution to the ratio of the number of 
particles at the exit of a tube to the number at the entrance 
is given by Gormley and Kennedy (3). Their model is most 
applicable to mass transport of larger particles and aerosols 
transported by a carrier gas through a horizontal tube. 

The presentation of this model will be in two parts: a 
simple intuitive approach will be given, followed by a more 
detailed model of atom loss. 

11. Experimental section 
An evaluation of the atom loss dependence on the tubing di- 

ameter used 3.7 m lengths of latex tubing (Fisher Cat. No. 14-150) 
of varying diameters. While the tube was attached to the inlet of 
the spectrometer, and ambient air was being drawn by a pump 
through the tubing, 10 p,L H ~ O  vapor (21-23"C, approximately 
0.15 ng) injections were made alternately at a port directly adja- 
cent to the inlet to the spectrometer and at an injection port at- 
tached to the end of the 3.7 m length of tubing. 

Apparatus 
A Laboratory Data Control/Milton Roy UVD 253.7 nm spec- 

trometer was used for measuring the integrated absorbance sig- 
nals. The fluid flow cell from the UVD monitor was removed and 
the detector was fixed to the end of a 30-cm double beam gas flow 
cell. Data acquisition was performed using a Jones Chromatogra- 
phy 6000 data system. Mercury vapor injections were performed 
using a 10-p,L gas-tight syringe (Hamilton, 1801RN-3). The mer- 
cury vapor was housed in a septum-sealed 25-mL volumetric flask 



DANIELS ET AL. 1979 

containing 5 mL of elemental mercury. Temperature-sensitive 
fluctuations of the vapor pressure of mercury were minimized by 
partially immersing the volumetric flask in water contained in a 
double-insulated 200-mL beaker. The flow rate was monitored using 
a bubble-meter calibrated mass flow meter (Matheson 0-2000 
standard mL min-' , model 8 1 1 1 1-0423). 

111. Results and discussiod 

I I I .  I .  A simplified perspective of atom loss 
Consider a segment of tubing of length 1 (cm), diameter d 

(cm), standard flow rate f (mL min-I), volume v (cm3), and 
internal surface area, s (cm2). As a plug of vapor traverses 
the length of the tube there is some function h,  describing 
atom loss, that depends both on the mean atom residence time 
T (s) (4), and the tube surface to volume ratio s / v ,  eq. [ I 1. 

[2] loss = h,(d) 

Since the standard flow rate is to be considered constant, then 
the new loss function h , ,  eq. [2], is some unknown function 
of the delivery tube diameter. In eq. [ l ]  it is not immedi- 
ately clear how T and s / v  will be a function of atom loss, but 
it is reasonable to argue that an increased atom residence 
time, and (or) an increased surface to volume ratio (i.e., de- 
creased diameter), would result in increased atom loss. A 
longer atom residence time would give a higher probability 
of a surface adsorption, and the greater the amount of sur- 
face, the higher would be the probability of a surface inter- 
action. Clearly then, as the tube diameter is varied, these two 
factors act in opposition insofar as atom loss is concerned. 
To  illustrate this Fig. 1 shows how T and s / v  vary with the 
tube diameter at a constant flow rate. If the loss function is 
an algebraic sum of the contributions from T and s / v  (curve 
3, a simplistic view, yet mathematically incorrect), then there 
would be a local minimum in the loss function versus tube 
radius. This will be shown to be incorrect. 

To overcome the inadequacies of this simplified view of 
atom loss, a detailed model of atom loss will permit a rig- 
orous evaluation of h ,  . 

111.2. A detailed model of atom loss 
The development of this detailed atom loss model entails 

12 assumptions listed below: 
1. No mercury atoms are instantaneously injected into a 

flow of ambient nitrogen canier gas such that the mercury 
atoms are evenly distributed across a plug volume of radius 
r and length x .  

2. In the time increment 1 / Z ,  all atoms a distance A or 
less from the tube surface are lost to the tube wall. Z is the 
collision frequency and A is the mean free path of mercury 
atoms with nitrogen molecules under ambient conditions. 
This assumption disregards the sticking probability p, and the 
kinetic geometry term, g. See Appendix. 

3. No pressure drop occurs along the tube length, for all 
tube radii and flow rates, omitting the Poiseuille pressure 
drop. 

4. Following each 1 /Z increment, the remaining atoms 

0.010 0.110 0.210 0.310 0.410 0.510 

Tube diameter / cm 

FIG. 1 .  Variation of atom residence time (1); surface to volume 
ratio (2); and their sum4 (3); with tube diameter at 100 mL min-l. 

instantaneously redistribute themselves across the plug vol- 
ume v .  

5.  No axial diffusional broadening of the plug occurs as 
it moves along the length of the tube. 

6. There will exist a uniform non-parabolic velocity 
distribution along the tube cross section. 

7. The tube wall surface is ideal: no eddies. 
8. Syringe injection produces a homogeneous disk dis- 

tribution of mercury vapor in nitrogen. 
9. Nitrogen, N2(g), and mercury, H ~ O ( ~ ) ,  behave as ideal 

gases. 
10. Flow is generated by draw from the atmosphere, 

through the tubing, to a vacuum pump. 
11. The tube radius will not be less than the mean free 

path A. 
12. The tube wall is flat, not curved. See Appendix. 
The philosophy adopted for developing this model has been 

to obtain a mathematical solution for the simplest case: 
making all the assumptions above, for model 1, then re- 
moving the assumptions sequentially until it is felt that there 
is sufficient agreement with experimental data. This out- 
look has resulted in three models presented in the order of 
making (1) all the assumptions above, (2) assumptions 3-8 
above, and (3) assumptions 4-8 above. 

111.3. Model I 
The goal of model 1 is to obtain a mathematical expres- 

sion for the ratio of the number of atoms lost at the tube sur- 

4Arithmetically incorrect, but presented for illustrative pur- 
poses. 
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TABLE 1. Model 1 : incremental atom loss 

Time Number of atoms lost, N Number of atoms remaining 

0 0 
1 /z Atom density X rim volume 

[ { r  ( r  - A)'' 
where K = 

rim volume 
- 

I 
plug volume 

2 / z  N&(l - K) No(] - K)? 
3 /z N&(l - K)' No(] - K ) ~  
4 / z  N&(l - K ) ~  No(l - K ) ~  

face to the number of atoms before any loss, N/No. The fol- 
lowing notation will be used: 

Term Symbol Units 

Carrier gas N2 
Carrier gas viscosity 
Flow rate 
Tube length 

F 
1 

Tube radius r 
Plug length x 
Plug volume u 
Plug, atom residence time T 

Mean free path of X 
in N,(g) 

Collision frequency, Z 
~gO(g)  with N2(g) 

The total number of atoms lost is the sum of the number of 
atoms lost in each of q time increments of 1/Z, where q is 
the floor5 of the product of the collision frequency Z and the 
plug residence time T. Table 1 lists the number of atoms lost 
to the tube wall, and the number of atoms remaining, for each 
of the first four of q, 1/Z increments of time. The number 
of atoms lost in the first time increment of 1/Z is the num- 
ber of atoms contained in the rim of the disk whose thick- 
ness is A, the mean free path of a mercury atom in nitrogen 
(approximately 45.7 nm, for 20°C), and whose len th is x. H This number is the product of the rim volume, xr{r - (r - 
A)') and the initial atom density No/v. 

Similarly, the number of atoms lost at the time 2/Z is the 
product of the new atom density (No - N&)/v and the rim 
volume. As shown in Table 1,  this number is merely the 
product of the remaining number of atoms in the plug vol- 
ume (No - N&) and K, where K is the ratio of the rim vol- 
ume to the plug volume. 

The total number N of atoms lost is 

where 

 h he floor operator ([x]) takes the integer portion of its argu- 
ment; for example, [3.7] = 3. 

Summing the geometric series gives eq. [ 5 ] ,  

where v = xrr2 .  
Figure 2 is a plot of the adsorptional loss, N/No, versus 

the log of the tube radius. This model, like the simplified 
view of Fig. 1, also predicts a local minimum in the loss 
function versus tube radius. In model 1 ,  increased tube length 
has two effects: a shift in optimum diameter to larger radii, 
and greater losses at all radii. 

111.4. Model 2 
Model 2 corrects for the certainty that not every atom 

striking the tube surface is lost. It also corrects for the fact 
that not all atoms at a distance A or less from the tube wall 
will have trajectories in the direction of the wall. The cor- 
rection terms will be p and g respectively. In fact, only one 
quarter of the atoms ,within the distance A from the wall will 
strike the wall (g = i, Appendix). Table 2 is a modification 
of Table 1, taking into account the sticking probability p, and 
the geometry factor, g. 

Summipg the geometric series as in model 1, and substi- 
tution of i for g, gives eq. [6], 

Figure 3 is a plot of the adsorptional loss, N/No, versus the 
log of the tube radius, for p values of lop4, lo-', and 1 . Like 
the previous model, this model also predicts the existence of 
a local minimum in the loss functions of Fig. 3 at radii of 
7.6A. 

According to this intermediate and still very naive model, 
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log (radiudmm) 

FIG. 2. Atom loss model 1. Plot of N/No versus log(tube ra- 
dius) for 100 mL min-' and tube lengths/nm: (1) (2) 40; (3) 
400. 

TABLE 2. Model 2: incremental atom loss 

Time Number of atoms lost, N 

1 /z gp x atom density X rim volume 
No 

gp - {x-rr[r2 - (r - A)~]}  = pN& 
u 

x-rr[r2 - (r - A ) ~ : )  
where K = 

2 / z  gpN&( 1 - ~ P K )  
3 /Z gpN&( 1 - gpK12 
4 / z  gpN&(l - gpK13 

the limiting tube radius would be A ,  when, in this limit, the 
loss, N / N , ,  would approach a value of pg. Very small di- 
ameters lead to the ludicrous situation of linear atomic tra- 
jectories surpassing the speed of light: in fact, 3c, for a flow 
rate of 100 mL min-' and a tube radius of A/2! The real 
limiting diameter would be the diameter, calculable from the 
Poiseuille equation, for a given standard flow rate through a 
defined length of tubing, and the condition of a pressure drop 
of 1 atmosphere along the length of the tube. This limiting 
diameter is best illustrated in Model 3. 

111.5. Model 3 
This, the third and final model, takes into account the 

pressure drop at some distance y along the tube length 1. As 
the pressure drops in the direction of the vacuum pump, from 
ambient pressure PI at the open end of the tube to some lower 
pressure P2 at the pump end of the tube, the kinetic proper- 
ties Z, the flow rate f, and A change. P2 is a function of y. 

FIG. 3. Atom loss model 2. Plot of N/No versus log(tube ra- 
dius) for: f = 100 mL min-', 1 = 1.0 mm, and sticking probabil- 
ity, p: (1) 1; (2) lo-'; (3) 

log (radiudmm) 

FIG. 4. Atom loss model 3. Plot of N/No versus log(tube ra- 
dius) for: 1 = 1.0 m, p = and f/(mL min-I): (1) 10; (2) 100; 
(3) 1000. 
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To correct for this, the mean values of Z, f, and A  are calculated and used in place of the fixed values in model 2 .  The 
variables Z ' ,  f ', and A' ,  are the values of Z, f, and A  respectively under ambient conditions, and are defined collectively in 
eq. [7] as follows: 

and dy is some infinitesimal of the tube length 1. Solving the Poiseuille equation: 

for P,, and substitution into the previous integral eqs. [7] gives equation set [9]. 

The solution for these integral equations is given in eq. [lo]. 

Substitution of these average values of 2, f, and A  into the general solution from model 2 gives eq. [ l  11, the general solution 
for model 3. 

where 

A plot of this equation using 1 = 1.0 m, p = and IJ, = 1.76 x lop5 kg m-I s-' is given in Fig. 4 for f ' = 10, 100, and 
1000 mL min-'. The model 3 functions are truncated at radii predicted by the Poiseuille equation. These limiting radii get 
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TABLE 3. Estimation of the latex sticking probability, p, by comparison of experimental and theoretical 
loss data 

Loss N / N ,  

Experimental Theory: model 3 
Flow rate Internal radius 

(mL min-') (mm) Day 1 Day 2 p = 1.6 x p = 1.6 x lo-' 

solution of Table 3 according to the conditions that pre- 
vailed while data was collected. An estimate of p = 1.6 x 

gives model 3 solutions for N / N o  that agree satisfac- 
torily with experimental values shown in Table 3. The 
mathematical model is more sensitive to a change in loss, 
with changing tube radii, than is observed experimentally. 
At higher flow rates, there is a larger uncertainty and poor 
reproducibility between days, in experimental values of N/No. 
This model, in addition to predicting trends, was expected 
to give values of p, at best, to within an order of magnitude 
of its real value. Calculated values are listed in Table 3 
showing the model 3 estimates for N/No at 50 rnL mine' and 
for three radii, when a value of p 1.6 X was used, which 
varies by an order of magnitude from the best estimate of p. 
IV. Conclusions 

The atom loss model has been developed to the point at 
which it vredicts loss trends as a function of varied tube radii 

FIG. 5 .  Solution for the geometry term g: the fraction of atoms for all possible flow rates, sticking probabilities, and tube 
within the distance A from the tube wall that strike the wall. lengths. The primary trend, that is, trace analyte loss in- 

creases with increasing tube diameter. was confirmed with 
u 

this model, and corroborates inferences by the solution pro- 
posed by Gormley and Kennedy ( 2 ) .  Further to this and in 

smaller as the flow rate decreases. Just as predicted by the conjunction with experimental data, the model allowed the 
experimental data of ~ ~ b l ~  3, the ideal conditions to mini- estimation of a sticking probability. For latex tubing it was 
mize analyte loss to tubing surfaces are (1) use the smallest found that One mercury in 0.83 (P = 
tube diameter possible, and ( 2 )  use the highest flow rate 10-4 that strikes the tube wall surface actually remains 
possible. adsorbed for a sufficient length of time to be termed "lost." 
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Appendix 
Solution for the geometry term g: the fraction of atoms 

within the distance A from the tube wall that strike 
the wall 

In Fig. 5, consider a wall at some distance b, 0 5 b 5 A, 
from an atom at the origin.6 On this microscale, where X is 
the mean free distance travelled by a mercury atom before 
collision with a nitrogen molecule, the tube wall will be 
considered to be flat and not curved. 

The geometry term, g,  represents the probability that an 
atom, at some distance less than or equal to X from a wall, 
will strike the wall before hitting a nitrogen molecule. g is 
the ratio of the average sector-area of a sphere swept out by 
revolving the curve y = (X2 - x2)'l2, b 5 x 5 X, for 0 5 

b 5 X, about the x-axis to the total sphere surface area 47rX2. 
The general area of a surface, a sector-area of a sphere, 

swept out by revolving the curve y = f(x), a 5 x 5 b, about 
the x-axis (5) is given in eq. [13]. 

Therefore eq. [14] gives the sector-area of a sphere swept out 
by revolving the curve J? = (X2 - x2)'12, b 5 x 5 A, about 
the x-axis, where X is the sphere radius, and eq. [15] gives 
the general sector-area A, swept out by revolving the curve 
y = (X2 - x2)'I2 about the x-axis. 

6 ~ t  is more convenient to consider an atom at the origin and the 
wall at different distances from the origin, than the reverse case. 

Equation [16] gives the average A, of the general sector-area 
A, swept out by revolving the curve y = (X2 - x2)'I2 about 
the x-axis, for 0 r x 5 X. 

Therefore, g,  eq. [17], is the ratio of A, to the total sphere 
surface area 47rX2 




