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AN UPPER BOUND FOR THE SUM Y% | f(n)

=a+1

FOR A CERTAIN CLASS OF FUNCTIONS f

EDWARD DOBROWOLSKI AND KENNETH S. WILLIAMS

(Communicated by William Adams)

ABSTRACT. For a certain class of functions f: Z — C an upper bound is
obtained for the sum Zﬁ:f“ f(n). This bound is used to give a proof of
a classical inequality due to Pdlya and Vinogradov that does not require the

value of the modulus of the Gauss sum and to obtain an estimate of the sum
of Legendre symbols Efz (((Rg* +8)/p) , where g is a primitive root of the
odd prime p, 1 < H<p-1 and RS is not divisible by p.

1. INTRODUCTION

Let f: Z — C be a function satisfying the following three conditions:

(1.1) there exists a positive real number 4 such that |f(n)] < A4 for all
neZz,

(1.2) there exists a positive integer k£ such that f(n + k) = f(n) for all
neZz,

(1.3) there exists a positive real number B such that

< Bhk

for all positive integers /.
In §2 we show that such a function f satisfies the following inequality:

Theorem 1. Let a and H be integers with 1 < H < k. Then, if [ satisfies
(1.1)-(1.3), we have

at+H
(1.4) > f(n) _2;/_ Vklogk + 3A4Vk.
n=a+l
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In §3 we apply Theorem 1 with f(n) = x(n), where x is a nonprincipal
Dirichlet character modulo k, to obtain the following form of the famous
inequality first proved independently by Pélya [8] and Vinogradov [10] 70 years
ago.

Theorem 2. Let a and H be integers with H > 1. If y is a nonprincipal
character modulo k then

(1.5) 3 am)| < 210(;g2 +3VE.
n=a+1

What is particularly interesting about our proof of Theorem 2 is that it does
not require the value of the modulus of the Gauss sum for a primitive character
x modulo k ; namely,

(1.6) = Vk.

k—1
Zx(n)exp(27zin/k)
n=0

All that is required is for y to satisfy an inequality of the type (1.3). The result
(1.6) is used in the proofs of the Pélya-Vinogradov inequality given in [5, 6,
8, 9, 10] (see also [1, Theorem 13.15, p. 299; 2, Theorem 5.1, p. 320]. No
attempt has been made to find the best possible constants multiplying the terms
Vklogk and vk in (1.4). It may therefore be possible to improve the constant
1/(21og2) in (1.5). The form of the Pdlya-Vinogradov inequality having the
smallest constant multiplying the term vk logk is due to Hildebrand [5]. Un-
der certain additional assumptions, Burgess [4] has significantly improved the
estimate 3417 ¥(n) = O(Vklogk).
In §4 we use Theorem 1 to estimate the sum of Legendre symbols

ZH: (Rgx + S)
x=1 p

where H is aninteger with 1 < H < p—1, p isan odd prime, g is a primitive
root (mod p), and R, S are integers with RS #0 (mod p). We prove

i (Rgx +S )
x=1 p

We conclude the introduction by sketching briefly the idea of the proof of
Theorem 1. Many values of 4 are chosen so that relatively many of the inner
sums in the inequality (1.3) are partial sums of the sum (1.4) and can be com-
bined to cover most of the range of summation of (1.4) a considerable number
of times. An application of the Cauchy-Schwarz inequality then gives inequality
(1.4).

Theorem 3.

< VP —Tlog(p — 1)

= 2log2 +3vp -1

2. PROOF OF THEOREM 1
If 1 <k <9 then inequality (1.4) is trivial as

a+H a+H \/_
> fm)| < Z|fn)|<AH<Ak<3A\/_< \/—logk+3A\/_
n=a+1 n=a+1
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Thus we may suppose that k > 10. If H < vk then inequality (1.4) is again
trivial as
a+H

Y fn)

n=a+1
Thus we may also suppose that H > vk . Let

(2.1) S={a+1,a+2,...,a+H},
and set

_ [ logk _H
22 o= [regr) =7

< AH < AVk < 34Vk < %ﬁlogk +34Vk.

(2.3) hj = 25"7""¢], j=0,1,...,s—1

We note that s > [log 10/(21og2)] =1, and that

(2.4) 25 < Vk < 2541 1<c<2vVk.

From (2.2)-(2.4), we see that the A; are positive integers satisfying

(2.5) H >2h, H—-hy—h —---—hj_1 > 2h;j (j=1,...,5s=1).

Next we construct (H —hg+ 1)s sets S;; (i=1,..., H-h+1; j=
l,...,s) suchthat for k=1,...,5s,
(2.6)
Si 1 U---US;  consists of exactly s + - - - + hi_; consecutive integers of S.

For i=1,...,H—hyg+1 we set

(2.7) Sii={a+i,a+i+1,...,a+i+ho—1}.

Clearly each S; ; is a sequence of /o consecutive integers of S'. Now suppose
that S; 1, Si,2,...,S; k,where k is an integer satisfying 1 <k <s—1, have
been constructed such that for j =1,..., k theset S; ;U---US; ; consists

of exactly Ag+---+hj_; consecutive integers of S. We show how to construct
Si k1 sothat S; yU---US; x4 consists of exactly Ag + --- + h; consecutive
integers of S. Let

L={seS: s<min(S;;U---US; 1)},
R={seS:s>max(S;U---US; ¢}
Clearly we have
[L] + R = [S| = |Si,1 U---US; ]
=H—(ho+h +-+he_y) 2 2h,
so that max(|L|, |R|) > A . If |L| > |R|, so that |L| > k., we set

Si k+1 = {min(S; 1 U---US; ¢) = Ay, ..., min(S; 1 U---US; ) — 1},
whereas, if |L| < |R|, so that |R| > h; , we set
Sike1 = {max(S; 1 U---US; 1)+ 1, ..., max(S;1U---US; &) + A}

In both cases S; . consists of A, consecutive iritegers of § such that S; ;U
-++US; k41 comprises Ao+ --- + hy consecutive integers of S'. This completes
the required construction.
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Next, for i=1,..., H—hy+1, we set
Si=Si,1U"'USi,S,

and observe that

1S=8il=|S- S,
j=1
=H—(ho+h1+"'+hs_1)
=2 = (271 4257 4 D)e]
=2 = (2 = Dle] = (¢ = [c])2° +[c]
<2 +c<Vk+2Vk, (by(2.4)
so that
(2.8) IS—Si| <3k, i=1,....,H-hp+1.
Now, for i=1,..., H—ho+ 1, we have
a+H
S =D)<Y fm)] + > fm)f,
n=a+1 nes nes, nesS-Ss,

so, appealing to (1.1) and (2.8), we obtain

a+H
(2.9) Y )| < (> f(n) +34Vk  (i=1,...,H=hy+1).
n=a+1 nes,

Summing (2.9) over i, we obtain

H—hp+1

-5

i=1

a+H

> fn)

n=a+1

H—ho+1
> ( > fn)

i=1 nes;

a+H

Y f(n)

n=a+1

(H —ho+ 1)

IA

+ 3As/E)

H—ho+1
= +3AVE(H — ho+ 1),

> fm)

nes;

i=1
so that

a+H H—ho+l

> S

n=a+1

1
SI‘I—h()-i-l Z

i=1

(2.10) +34Vk.

> fm)

nes;
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n=a+1

Next, making use of the Cauchy-Schwarz inequality, we have

Y S| < Y fn)

nes; nes;,

H—hp+1

>

i=1

H—ho+l Ky

> 2

=1 j=1

H—hy+1 s 12 H—hy+1 s 0"
(zzﬂ PO
i=1 =1 i=1  j=1|n€sS; ;
2 172
H—hy+1 s
=VWH =+ s| 3 32 30 S :
i=1 j=1|ne€s, ;
so that
(2.11)
1 H—ho+1 5 H—ho+l s E .
S — f(n)| £ ——= f”)
H—-hy+1 ; r;, H—ho+1 ,2; _12;7165,,

Furthermore, we have

H—hy+1 s H—hy+1 s a+H—h,_,
> 2 Zf(n) PIDIEDD > S
i=1 j=1|n€s; =1 j=1 =a nes;
(2.12) Si, j={b+1,.. b+h, 1}
s a+H—hj_,
= Y W b)Zf(b+r)
j=1 b=a

where N;(b) = number of i (1 < i < H—hg+ 1) such that S; ; = {b+
,b+hj_1}. As Nj(b) <271, j=1,...,s, we have
2

s a+H—h;_;
Z Z N;(b) Zf(b+r
b=a
s a+H—h,_ |hj_y 2
<>t 3 Y b+
j=1 b=a r=1
2

a+k

<sz ‘E if(b+r) (as H—-hj_y <H<k)
r=1

h,—

—Ezf IZ Zf(b+r (by (1.2))
j=1

r=1

< Z2j_lth—1k (by (1.3)),
=1
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that is

2
< sBk257![c].

K a+H—h,-_1
(2.13) N;(b)
j=1 b=a

oy
Z f(b+r)

r=1

Hence, by (2.10)=(2.13), (2.5), (2.3), and (2.2), we have

a+H
Y )| < \/s—\/sBkZS—l[c] +34Vk
n=a+1

- ,/—H ho +_‘/—f23 Ve 3avk

[c]

1
sVBVE2s=012 /by
-~ 2(3/2)_1+3As/E

= svVBVEk + 34VE < \/Es/Ezli’—fék—z +34VEk,

as asserted.

3. PROOF OF THEOREM 2

Let a and H be integers with H > 1, and let y be a nonprincipal character

modulo k. Now Y, x(n) =0 if n runs through any complete residue system
modulo k, so that Z“fffﬂ x(n) = YOHH-KHIKL 4 (1) . Hence we may assume

that H < k The function f(n) = x(n) satisfies (1.1) with 4 =1, (1.2), and
(1.3) with B =1 (see [3]). Theorem 2 now follows immediately from Theorem
1.

4. PROOF OF THEOREM 3

Let p be an odd prime, g a primitive root (mod p), R and S integers
with RS # 0 (mod p), and H an integer satisfying 1 < H < p — 1. Next we
define

(“.1) s = (R£L3),

where ( /p) denotes the Legendre symbol, so that f: Z — {-1, 0, 1}. Clearly
S satisfies (1.1) with 4 = 1 and (1.2) with k = p — 1. Next we show that f
satisfies (1.3) with B = 1. First we recall that for a Z 0 (mod p) we have

= am2+bm+c —(a/p), if b? # 4ac (mod p),
“2) ( ) { (p — )(a/p), if b?=4ac (mod p).

m=0
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a+1

Then we have

p—1] h 2 otk ok
R n+r+S R n+S+S
Y 3smen) =233 (52) (F5)
n=1|r=1 n=1 r=1 s=1 p p
3> (e + (RS + g)g7 + )
r,s=1n=1 p
5 ‘((RngH)m2 (RS(g'+gS)>m+S2)
r,s=1m=1 p
_y (¥ (s s (RS s g + 7Y 1)
r,s=1 \m=0 p
h h
=) -1+ ) (-(-1)*+) -
r=1 r,s=1
r#£s
h h
=h(p—1)— Z(_l)r+s_ Z _1)r+s _h2
r,s=1 r,s=1

r=s

=h(p—1)—Q[h/2] - h)*> +h —h?

_ > JO, heven
=hp—h {1, hodd}

so that (1.3) holds with B = 1. Theorem 3 now follows from Theorem 1.
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