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The assertion concerning binary quadratic forms made by Ramanujan 
(“Notebook,” Vol. 2, p. 311, Tata Institute of Fundamental Research, Bombay, 
1957) is proved. c’ 1991 Academic Press, Inc. 

1. INTRODUCTION 

In Ramanujan’s notebook [7, Vol. 2, p. 31 l] is the statement 

“if a prime number of the form An + B can be expressed as 
ax* -by*, then a prime number of the form An - B can be 
expressed as bx* - ay*.” 

In a letter to the author [l], Bruce Berndt asked if this statement is 
true. After some preliminary results in Section 2 concerning the genera of 
classes of binary quadratic forms, we prove the following precise form of 
Ramanujan’s assertion in Section 3. The author is grateful to Professor 
Berndt for stimulating his interest in Ramanujan’s claim. 

THEOREM. Let a, b, A, B be positive integers satisfying 

GCD(a, 6) = GCD(A, B) = 1, ab # square, 

which have the following property : 

(*) Every prime p s B (mod A) with GCD(p, 2ab) = 1 is expressible 
in the form ax* - by* for some integers x and y. 
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Then every prime q satisfying 

q- -B(modA), GCD(q, 2ab) = 1 

is expressible in the form bX2 - a Y2 for some integers X and Y. 

EXAMPLE 1. It is well known [6, p. 2101 that every prime p- 1 
(mod 8) is expressible in the form x2-2yz (for example, 17 = 52-2.22, 
41 = 72 - 2.22, 73 = 92 - 2.22, 89 = 11’ - 2.42). The theorem guarantees that 
every prime q = - 1 (mod 8) is expressible in the form 2X2 - Y2. Since 
2X2 - Y2 = (2X+ Y)‘- 2(X+ Y)’ every prime qz 7 (mod 8) is also 
expressible in the form x2 - 2y2 (for example, 7 = 32 - 2.1 2, 23 = 52 - 2.1 2, 
31 = 72 - 2.32). 

EXAMPLE 2. It is well known [6, p. 2111 that every prime p E 1 
(mod 12) is expressible in the form .y2 - 3y2 (for example, 13 = 4*- 3.12, 
37 = 72 - 3.22, 61= 82 - 3.12). Hence, by the theorem, every prime q E - 1 
(mod 12) is expressible in the form 3X2 - Y2 (for example, 11 = 3.22 - 12, 
23 = 3.32 - 22, 47 = 3.42 - 1’). 

Suppose that a, b, A, B are positive integers satisfying GCD(a, b) = 
GCD(A, B) = 1, ab # square, which have property (*). It follows from 
Corollary 2 in Section 2 that either 

(a) ab=O, 3,4,6, 7 (mod 8), or 

(b) ab = 1,2, 5 (mod 8) and ab possesses a prime divisor = 3 
(mod 4), or 

(c) ab = 1,2,5 (mod 8), every odd prime divisor of ab is E 1 
(mod 4), and the equation T2 - abU2 = - 1 is solvable in integers T and ZJ. 

We note that if (a) or (b) holds then T* - abU2 = - 1 is not solvable in 
integers T and U. If (a) or (b) holds, it is shown that a prime q- -B 
(mod A), GCD(q, 2ab) = 1, is expressible in the form bX2 - aY2 but not by 
aX2 - bY2, whereas if (c) holds every such prime q is represented by both 
aX2 - bY2 and bX2 - aY2. Some of these remarks have been observed by 
Berndt [ 11. 

EXAMPLE 3. a = 1, b = 7, A = 28, B = 9 (type (a)) have property (*) as 
p = 9 (mod 28) implies that p = x2 - 7y2 for integers x and y [S, Table III] 
(for example, 37 = lo2 - 7.32, 149 = 182 - 7.52, 177 = 172 - 7.42). Indeed 
every prime q = -9 (mod 28) is expressible as 7X2 - Y2 but not as 
X2 - 7Y2 (for example, 19 = 7.22 - 32, 47 = 7.32 - 42, 103 = 7.42 - 32). 

EXAMPLE 4. a=3, b=7, A=42, B=17 (type (b)) have property (*) as 
p z 17 (mod 42) implies that p = 3x2 - 7y2 for some integers x and y [S, 

641138/l-9 
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Table III] (for example 17 = 3.8’ - 7.52, 59 = 3.132 - 7.8’, 101 = 3.62 - 7.12). 
Thus every prime q = - 17 (mod 42) is expressible as 7X2 - 3 Y2 but not as 
3X2 - 7Y2 (for example, 67 = 7.52 - 3.6’, 109 = 7.42 - 3.1’). 

EXAMPLE 5. a = 5, h = 13, A = 65, B = 7 (type (c)) have property (* ) as 
p = 7 (mod 65) implies that p = 5.~~ - 13~’ [S, Table III] (for example, 
7=5.22-13.12, 137=5.112-13.62, 397=5.112-13.42). Moreover every 
prime q = -7 (mod 65) is expressible as both 5X’- 13Y’ and 13X2 - 5Y2 
(for example, 383 = 5.10’- 13.32 = 13.26’- 5.412). 

Example 6 below shows that the requirement in the theorem that every 
prime p = B (mod A), GCD( p, 2ab) = 1, be expressible in the form 
ax2 - hy2 cannot be weakened to requiring only an infinity of such primes 
represented by ax2 -by’. 

EXAMPLE 6. Infinitely many primes p zz 1 (mod 328) are expressible in 
the form x2 - 82y2 (for example 21977 = 1652 - 82.82, 25913 = 1652 - 82.42, 
49201 = 2472 - 82.12’), but not every prime p = 1 (mod 328) is expressible 
as x2 - 82y2 (for example, p= 2297). Moreover, not every prime q- - 1 
(mod 328) is expressible as 82X2 - Y2 (for example, q = 3607). Theorems 5 
and V of [4] with r = 41 give necessary and sufficient conditions for a 
prime p to be represented by x2 - 82~‘. 

2. PRELIMINARY RESULTS 

If L, M, N are integers and x, y are independent variables, the function 
f =f(x, y) = Lx’ + Mxy + Ny2 is called an integral, binary quadratic form. 
If GCD(L, M, N) = 1, f is said to be primitive. A primitive, integral, binary 
quadratic form will just be called a form for short, and we will write 
(L, M, N) for the form Lx2 + Mxy + Ny2. The discriminant of the form 
(L, M, N) is the integer M2 - 4LN. We consider throughout only those 
forms having discriminant D = 4ab, where a and b are positive coprime 
integers with ab nonsquare. The forms (a, 0, - 6) = ax2 -by’ and 
(6, 0, -a) = bx2 - ay2, in which we are interested, both have discriminant 
4ab. 

Two forms (L, M, N) and (L’, M’, N’) of discriminant D = 4ab are said 
to be equivalent, written (L, M, N) N (L’, M’, N’), if and only if there exist 
integers p, q, r, s with ps - qr = 1 such that 

L(px + qy)* + M( px + qy)(rx + sy) + N(rx + sy)* 

= L’x’ -t- M’xv + N’y2. 
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The relation - is an equivalence relation on the set of all forms of 
discriminant D = 4ab. The equivalence classes are called form classes (of 
discriminant D = 4ab). The class containing the form (L, M, N) is denoted 
by [L, M, N]. It is well known that the number’h(D) of form classes of 
discriminant D is finite. 

A nonzero integer rn is said to be represented by the form (L, M, N) if 
there exist integers X, y such that m = Lx’ + Mxy + NY’. The representa- 
tion. is called proper if GCD(x, y) = 1. It is clear that forms in the same 
form class represent the same integers, so we can speak of a class repre- 
senting an integer. 

Next we recall the definition of the generic characters for the form classes 
of discriminant D = 4ab. First we set 

and 

Y = number of distinct odd primes dividing ab, (2.1) 

i 

r- 1, if ab=1,5(mod8), 

t= Y, if ab=2,3,4,6,7(mod8), (2.2) 

r+ 1, if ab z 0 (mod 8). 

We denote the r distinct odd primes dividing ab by pl, . . . . p,. The t + 1 
generic characters x, , . . . . xI + i for the form classes of discriminant D = 4ab 
are defined as follows: for any integer m coprime with 2ab 

xj(m)= m 0 Pi 

i 

xi(m)= Ilf 0 Pi 
Xl+l(m)= 0 ; 9 

i 

xi(m)= m 0 Pi 

Xt+,(mf= 
( > 

z_l > m 

I 

x&n)= m 
0 Pi 

z,+,(m)= -2 
( > m ’ 

(i= 1,2 3 ..., t+ 1 =r), ifabr 1,5 (mod 8); (2.3) 

(i = 1, 2, . . . . t = r), 

if ab = 2 (mod 8); 
(2.4) 

(i = 1, 2, . . . . t = r), 

if ab = 3,4,7 (mod 8); 
(2.5) 

(i = 1, 2, . . . . t = r), 

if ab = 6 (mod 8); 
(2.6) 
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(2.7) 

if ab = 0 (mod 8); 

where (m/pi) is the Legendre symbol of quadratic residuacity (mod pi) and 

1, if mrl (mod4) 

-1, if 

2 

0 { 

1, if mr1,7(mod8) -= 
m -1, if 

1, if m=l,3(mod8) 

-1, if 

see, for example, [3]. The generic characters (- l/m), (2/m), (-2/m) are 
often called supplementary characters. 

If m and m’ are two different integers, both coprime with 2ab, which are 
represented by the form class [L, M, N] of discriminant 4ab, then X,(m) = 
xi(m’) (i= 1, 2, . . . . t + 1). Thus we may partition the set of form classes of 
discriminant 4ab into 2’+ i subsets 

16 I, . ..1 b+,> = {f orm classes C of discriminant 4ab such 

that Xi(m) = Si(i = 1, . . . . t + 1) for some integer 
m coprime with 2ab represented by the class C>, (2.8) 

where each di= +l (i=l,..., t+l). A nonempty set {6i,...,6,+i} is called 
a genus (plural: genera). Gauss proved that there are exactly 2’ genera and 
that each genus contains exactly h(4ab)/2’ form classes. The genera for dis- 
criminant D = 4ab can be determined by means of the product rule. In 
order to state the product rule we must introduce a little more notation. 
For each i= 1, . . . . r we let p: denote the exact power of pi dividing ab so 
that di > 1 (i = 1, . . . . r). We also let 2d denote the exact power of 2 dividing 
ab and set E = ab/2d, so that E = 1 (mod 2). We also define e, for 
i = 1, . . . . t + 1 as follows: 

for i = 1, . . . . r 0, if dir0 (mod2), 
e, = 

1, if di= 1 (mod 2); (2.9) 
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ifab=2(mod8) 
0, if dr0 (mod 2), 

e r+1= 
1, if d- 1 (mod2); 

(2.10) 

ifab=3,4,7(mod8) 0, if E= 1 (mod 4), 
et+]= 

1, if E- 3 (mod 4); 
(2.11) 

ifab=6(mod8) 

ifabEO(mod8) 

e Ifl- - 1. 9 (2.12) 

e, = 
i 

0, if dr0 (mod 2) 
1, if d= 1 (mod 2) 

0, if E= 1 (mod 4) 
(2.13) 

e 1+1= 
1, if E = 3 (mod 4). 

The product rules asserts 
r+l 

if GCD(m,2ab)= 1, (2.14) 

EXAMPLE 7. a=2,b=41.Hereab=82=2(mod8), t=r=l.Thereare 
t + 1 = 2 generic characters, namely, x, (m) = (m/41 ) and x2(m) = (2/m). 
The product rule gives xi(m) x2 (m) = 1, if GCD(m, 82) = 1, (82/m) = 1. 
There are h(328) = 4 form classes, namely, [ 1, 0, - 821, [2, 0, -411, 
[3,2, -271, [3, -2, -271 and these fail into 2’ = 2 genera as follows 

{+I, +l}={CLO, -821, C&O, -411), 
(-1, -1}=([3,2, -27],[3, -2, -271). 

If m is an integer such that (m/41) = (2/m) = - 1 then m is represented by 
the form (3,2, - 27). If m is an integer such that (m/41) = (2/m) = 1 then 
m is represented by at least one of the two forms (1, 0, -82), (2,0, -41) 
and additional information regarding m is needed before it can be deter- 
mined exactly which of these represents m. For example m = -319 is 
represented by both of them as - 319 = 32 - 82.22 = 2.52 - 41.32, whereas 
-1 is represented by (l,O, -82)(-1=92-82.12) but not by (2,0, -41). 
However, when p is a prime such that (p/41) = (2/p) = 1, then p is 
represented by exactly one of the forms (1, 0, - 82), (2, 0, - 41). Kaplan, 
Williams, and Yamamoto [4, Theorems 5, V with r = 411 have shown 

p=X’-82Y2, if 

p=2X2-41Y2, if 

where a and b are positive integers such that p = a2 - 2b2. 
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We are now ready to give the preliminary results we shall need in order 
to prove the theorem. It is convenient to set for i = 1, . . . . Y 

O, 
fli= * 

I- 

if pi- 1 (mod 4) 
if p, = 3 (mod 4) 

(2.15) 

so that pi = ( - 1 )“* (mod 4) and xj( - 1) = ( - l/y,) = ( - 1 )@t, 

LEMMA 1. If the form class [a, 0, -h] belongs to the genus 
,6,, . . . . 6, + , } then the form class [ -a, 0, b] belongs to the genus 

(i) {(-1)“6 ,,..., (-1)“i+‘fi,+1j,~fab=1,5(mod8), 

(ii) {(-1)@6i ,..., (-1)016,,S,+,},~fub=2(mod8), 

(iii) ((-l)“‘S, ,..., (-1)“1~,,-S~+,j,z~ab~3,4,6,7(mod8), 

(iv) {(-l)@J ,,..., (-l)“m16, ,,6,, -6,+,),ifabzO(mod8). 

Proof. Let m be an integer coprime with 2ab which is represented by 
the class [-a, 0, b]. Then there exist integers .X and JJ such that 
m = -ax2 + by’. Clearly -m = ax’ - by2 so that -m is represented by the 
form class [a, 0, -61. As the form class [a. 0, -b] belongs to the genus 
(6,, . . . . St+,], we have 

Xi(-m)=6, (i= 1, 2, . . . . t+ 1). 

Thus, for i = 1, . . . . r, we have 

xi(m)=xi(-l)xj(-m)=(-l)H’S,. 

Next we determine X;(m) (i = r + 1, . . . . t + 1). We consider cases depending 
on ab (mod 8). 

(i) ab = 1, 5 (mod 8). Here r = t + 1 and there are no supplementary 
characters. Thus [-a,O, b] belongs to the genus ((-l)O’6i, . . . . (- 1)‘1+‘6,+, ). 

(ii) ab E 2 (mod 8). Here r = t and there is one additional generic 
character xr + i to consider. We have 

if m- _+l (mod8) 
if m- +3 (mod8) 

so that [--a, 0, b] belongs to the genus { (- 1 )‘I 6,, . . . . (- 1 )e’ 6,, a,+ r }. 
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(iii) ab 3 3,4, 7 (mod 8). Here r = t and there is one additional 
generic character x,+ i to consider. We have 

if m=l (mod4) 
if m-3 (mod4) 

= -x,+,(-m)= -d,+,, 

so [-a,O,b] belongs to the genus ((-1)“6i,,.., (-l)‘/b,, -S,+,}. 

(iv) ab z 6 (mod 8). Here r = t and there is one additional generic 
character xt + 1 to consider. We have 

-2 =- - ( > =- 
-m Xt+l(-m)= -a,+,, 

so [-a, 0, b] belongs to the genus ((-l)“‘S,, . . . . (-l)‘~h~, -6,+,). 

(v) ab=O (mod 8). Here r = t - 1 and there are two additional 
generic characters to consider, namely x,(k) = (2/k), x,+ I (k) = (- l/k). 
ExactlyasabovewehaveX,(m)=6,,X,+,(m)=-6,+,,sothat [-a,O,b] 
belongs to the genus ((-1)“6i ,..., (-1)01-1hIP,,6,, -S,+,}. 

This completes the proof of Lemma 1. m 

LEMMA 2. The form classes [a, 0, -61 and [ -a, 0, b] belong to the 
same genus if and only if 

(i) ab E 1,2, 5 (mod 8) and 

(ii) every odd prime dividing ah is E 1 (mod 4). 

ProoJ It is clear from Lemma 1 that [a, 0, -61 and [-a, 0, b] cannot 
belong to the same genus if ab = 0,3,4,6,7 (mod 8). If ab = 1,2, 5 (mod 8) 
they belong to the same genus if and only if Bi = 0 (i = 1, . . . . r), that is, if 
and only if all the odd prime factors of ab are = 1 (mod 4). This completes 
the proof of Lemma 2. 1 

LEMMA 3. The form classes [a, 0, -61 and [ -a, 0, b] are equal if and 
only if there are integers T and U such that T2 - abU2 = - 1. 

Proof: The two forms (a, 0, -b) and (-a, 0,b) have the same discrimi- 
nant 4ab. Hence, by a well-known criterion (see, for example, [2, 
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Theorem 68]), they are equivalent if and only if there exist two integers a 
and y such that 

-a=aa’-by2, 

2aa = 0 (mod 2a), 

2by E 0 (mod 2~). 

The first congruence holds trivially and the second congruence is 
equivalent to y E 0 (mod a) as GCD(a, 6) = 1. The solvability of the pair 

-a = aa2 - by2, y E 0 (mod a), 

in integers a and y is clearly equivalent to the solvability of the equation 

T2-abU’= -1, 

in integers T and U. This completes the proof of Lemma 3. 1 

Remark. It follows immediately from Lemmas 2 and 3 that 

T2 - abU’ = - 1 solvable in 
integers T and U I 

ab-1,2,5(mod8)and 
* every odd prime divisor of ab is E 1 (mod 4). 

(2.16) 

The implication (2.16) is also easily proved directly. 

COROLLARY 1. (i) [a, 0, -b] = [-a, 0, b], if T’-abU2 = - 1 is 
solvable, 

(ii) [a, 0, -b], [-a, 0, b] are distinct but belong to the same genus, 
if T2 - abU2 = - 1 is insolvable, ab = 1,2, 5 (mod 8), and every odd prime 
divisor of ab is 5 1 (mod 4) 

(iii) [a, 0, -b], [-a, 0, b] belong to different genera, if either 
ab E 0, 3,4, 6, 7 (mod 8) or ab - 1, 2, 5 (mod 8) and ab possesses a prime 
divisor E 3 (mod 4). 

Prooj: This follows immediately from Lemmas 2 and 3. m 

LEMMA 4. Suppose that a, 6, A, B are positive integers satisfying 
GCD(a, 6) = GCD(A, B) = 1, ab # square, which have property (*). Then, 
without loss of generality, we may suppose that A is even and B is odd, and, 
moreover, we have 

A=O(mod2p,...p,), if ab = 1, 5 (mod 8), 

A = 0 (mod 4p, .p,), if ab=3,4,7(mod8), 

A =O (mod Sp, -..p,), if ab=0,2,6(mod8). 
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ProoJ Let p be an odd prime = B (mod A). As GCD(A, B) = 1 at least 
one of A and B is odd. If A and B are both odd we have p s B (mod 2A). 
If A is odd and B is even we have p = A + B (mod 2A). Hence, without loss 
of generality, we may suppose that A is even and B is odd. 

We let XS,, . . . . 6,+ ,} be the genus containing the form class [a, 0, -b]. 
We first show that A E 0 (mod p1 . ..p.). Suppose that this is not the case. 
Then there is at least one integer i (1 < id r) with pi [ A. Let k be an 
integer such that (k/pi) = -hi. Let M be an integer such that Mpi= 1 
(mod A) and N an integer such that NA E 1 (mod p,). Then, as 

GCD( Mp,B + NAk, Ap,) 

= GCD(Mp, B + NAk, A) GCD( Mpi B + NAk, pi) 

= GCD(MpJ, A) GCD(NAk, p,) 

= GCD(B, A) GCD(k, pi) 

= 1, 

by Dirichlet’s theorem, there exist infinitely many primes p s Mp,B + NAk 
(mod Ap,). Choose one of these primes p so that GCD( p, 2ab) = 1. Clearly 
p E B (mod A), and, as a, b, A, B have property (*), p must be represented 
by the form (a, 0, -6). Since [a, 0, -b] belongs to the genus { 6,) . . . . 6,+, } 
we have xj(p)=6, (j= 1, . . . . t + 1). Thus, in particular for j= i, we have (as 
p E k (mod pi)) 

which is impossible. Hence each pi (16 i < r) divides A and so 

A E 0 (mod 2p, pz . . . p,). 

To complete the proof of Lemma 4 we show that (a) 4 1 A if ab = 3,4,7 
(mod 8) and (b) 8 1 A if ab E 0,2,6 (mod 8). 

(a) ub E 3,4,7 (mod 8). Suppose that 4 j A. As A is even we have 
A E 2 (mod 4). Let k be an odd integer such that (- l/k) = -6,+ r. Then 

=GCD (k-B) 4 ‘-MA GCD (k-B) 4 *+I?4 
( (2) ‘2) ( 0 ’ ! 

= 1, 
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and so, by Dirichlet’s theorem, there are infinitely many primes 
p = (k- B)(~t/2)~ + B (mod 2A). Choose one of these so that 
GCD( p, 2ab) = 1. Clearly p E B (mod A/2) and, as p is odd, we have p E B 
(mod A). Thus, as a, h, A, B have property (*), p must be represented by 
the form (a,O, -!I). Since [a,O, -b] belongs to the genus {6,, . . . . 6,+,j 
we have xj(p)=6, (j= 1, . . . . t + 1). Thus, in particular, for j = t + 1, we 
have, a‘s p = k (mod 4), 

6,+, =Xr+,(P)= ($)=(+ -6,+,, 

which is impossible. Hence A E 0 (mod 4) in this case. 

(b) ab = 0,2,6 (mod 8). Suppose that 8 1 A, so that (as A is even) 
we have (i) A = 2 (mod 4) or (ii) A = 4 (mod 8). 

(i) A = 2 (mod 4). We let k be an odd integer such that 

= - 6 ItIT if ab = 0 (mod 8), 

0 k= 2 -6 *+ 17 if ab=2(mod8), 

=- t+ir 6 if ab=6 (mod 8). 

Next we note that 

=GCD (k-B) 4 ‘+B 8 GCD (k-B) 4 ‘+BA 
( (2) ’ > ( (2) 2) 

= GCD(k, 8) GCD(B, A/2) 

so that there exist infinitely many primes p = (k - B)(A/2)’ + B (mod 4A). 
Choose one of these primes so that GCD( p, 2ab) = 1. Clearly we have 
p E B (mod A/2) and so, as p is odd, we have p z B(mod A). Thus, as 
a, 6, A, B have property (* ), p is represented by the form (a, 0, -b). As the 
form class [a, 0, -61 belongs to the genus {6,, . . . . a,+, ), we have 
x,(p)=d, (j= 1, . . . . t + 1). Thus, in particular, for j = t + 1, we have (as 
p=k (mod8)) 
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($)=($)= -c?,+~, if ab=O(mod8), 

6 t+,=X,+,(P)= if abr2(mod8), 

1+1, if ab=6(mod8), 

which is impossible. 

(ii) A E 4 (mod 8). We define an odd integer k as follows: 
if ab E 0 (mod 8 ) 

if ah=2 (mod 8) 

if ab = 6 (mod 8) 

Hence we have 

and 

if BEl(mod4),6,6,+,=-1, 
if B-3 (mod4),6,6,+,= -1, 
if B-1 (mod4),6,6,+,=1, 
if B~3(mod4),6,6~+~=1; 

if Bzl (mod4),6,+,= -1, 
if Br 3 (mod 4), 6,+, = 1, 
if Brl (mod4),6,+,=1, 
if Br3 (mod4),6,+,= -1; 

if B=l (mod4),6,+,= -1, 
if Br3(mod4),6,+,=-1, 
if Brl (mod4),6,+,=1, 
if Br3(mod4),6,+,=1. 

krB(mod4) 

if ab E 0 (mod 8), 

i 

2 -- 0 k ’ 
if abs2 (mod8), 

6 1+1= 
if abr6(mod8). 
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Next we note that 

=GCD (k-B) 4 ‘+B 8 GCD (k-B) 4 ‘+BA 
( (4) ’ ) ( (4) .4) 

= GCD(k, 8) GCD B, $ 
( > 

Hence, by Dirichlet’s theorem, there exist infinitely many primes 
p- (k- B)(A/4)* + B (mod 2A). Choose one of these so that 
GCD( p, 2ab) = 1. Clearly we have p = B(mod A/4) and p = k (mod 8). As 
kr B (mod 4) we have pz B (mod 4) so that p-B (mod A). Hence, as 
a, 6, A, B have property (*), p is represented by the form (a, 0, -b). As the 
form class [a, 0, -b] belongs to the genus (6,) . . . . 6, + 1}, we have 
x,(p) = dj (j = 1, . . . . t + 1). Thus, in particular, we have 

6, d*+ I =X,(P),,,,(P)=(;)($)=(<)=(~) 

= -6,6,+,, if ah = 0 (mod 8) 

i i; 
0 i = 0 - k 2 = - 6 r+1, if ub E 2 (mod 8), 

6*+1= 
7 

-2 ) = ( -2 
- = -a,+13 k 

) 
if ub = 6 (mod 8), 

which is impossible. This completes the proof of Lemma 4. 1 

LEMMA 5. Suppose that a, b, A, B are positive integers satisfying 
GCD(u, b) = GCD(A, B) = 1, ub #square, which possess property (*). Then 
every genus of discriminunt 4ub contains exactly one form class. 

Proof: Suppose that not every genus of discriminant 4ub contains a 
single form class. Since each genus contains exactly the same number of 
form classes, each genus must contain at least two form classes. Thus, in 
particular, the genus { 6,, . . . . 6,+, } containing the form class [a, 0, -b] 
must also contain a form class [u, u, w] # [a, 0, -61. Since the integers 
a, b, A, B possess property (*), every prime p-B (mod A) with 
GCD( p, 2ub) = 1 is represented by the form class [a, 0, -b] of the genus 
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(6 1, .**> 6,+,}, and so the arithmetic progression (An+B} must be consis- 
tent with the values 6,) . . . . 6, + I, of the generic characters x1, . . . . 1, + , . By 
Weber’s theorem [S] the form (u, u, w) represents infinitely many primes in 
any arithmetic progression consistent with the generic characters of the 
form, that is, with the values 6,) . . . . 6,+, of x,, . . . . x,+ , . Thus we can find 
a prime q ‘with GCD(q, 2ab) = 1 in the arithmetic progression {An + B} 
which is represented by (u, v, w). But, by property (*), q is represented by 
(a, 0, -b). However, as q is prime, the only form classes which can repre- 
sent q are [u, v, w] and [u, -II, w]. Since [a, 0, -b] # [u, u, w] we must 
have [a, 0, -b] = [u, -u, w], from which it easily follows that [u, v, w] = 
[a, 0, -b], which is impossible. Hence every genus contains exactly one 
form class. 1 

COROLLARY 2. If a, b are positive coprime integers with ah #square and 

ub z 1,2,5 (mod 8) 

every oddprime divisor of ub is E 1 (mod 4), 

T2 - ub U2 = - 1 is insolvable in integers T and U, 

and A, B are positive coprime integers, then the integers a, 6, A, B do not 
have property (*). 

Proof: This follows immediately from Corollary l(ii) and Lemma 5. 1 

3. PROOF OF THEOREM 

We suppose that a, b, A, B are positive integers with GCD(a, b) = 
GCD(A, B) = 1, ab # square, which possess property (*). Further, by 
Lemma 4, we may suppose that A is even and B is odd. 

Let p,, be a prime =B (mod A) with GCD(p,, 2ub)= 1. As a, b, A, B 
possess property (*), pO is represented by the form (a, 0, -b). Set 
6,=xi(pO) (i= 1, . . . . t + 1). The form class [a, 0, -b] belongs to the genus 
IS , , . . . . 6,+ ,}. By Lemma 5 [a, 0, -b] is the only form class in the genus 
(6 1, .**, a,+ 1}. Now let q be a prime 3 -B (mod A) with GCD(q, 2ub) = 1, 
so that q- -p,, (mod A). Hence, by Lemma 4 we have 

q- -p. (mod 2~~ . ..P.), if ub = 1,5 (mod 8), 

q- -p. (mod4~, . ..P.), if ub - 3,4,7 (mod 8), 

q = -p. (mod 8~~ ... P,), if ub-0,2,6(mod8). 
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Hence for i= 1, . . . . r we have 

If&z0 (mod8) we have r=t-1 and 

X’(4)=(~)=(~)=(~)=%r(Po)=6,. 

I’+‘(Y)=($)=($-)= -(S)= -x,+,(.&J= -d,+, 

If ab E 2 (mod 8) we have r = t and 

If ab E 3,4,7 (mod 8) we have r = t and 

xl+&)=($)=(~)= -(=J= -x,+l(po)= -6,+,. 

If ab=6 (mod8) we have r=t and 

xt+M=($)=(=J= -(Z)= -xr+,(po)= -6,+,. 

Thus q is represented by a form class in the genus 

{(-l)Qr, . . . . (-1)e’~i~r~l,~r,-6,+,}, if abE0 (mod 8), 

((-l)%,, . ..) (-1p+‘c%+1}, if ab = 1, 5 (mod 8), 

{(-l)%r,..., (-vw,+,~~ if ab=2(mod8), 

{(-lP6 I,.“, (-l)“‘S,, -a,+,], if ab = 3, 4, 6, 7 (mod 8). 

However, by Lemmas 1 and 5, this genus contains only the form class 
[-a, 0, b]. Hence q is represented by the form ( -a, 0, b) completing the 
proof of the theorem. 1 
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