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THE DISTANCE BETWEEN IDEALS
IN THE ORDERS OF A REAL QUADRATIC FIELD

par Pierre KaPLAN and Kenneth S. WILLIAMS ')

1. INTRODUCTION

The notion of the distance between two equivalent, reduced, primitive
ideals of an order in the ring of integers of a real quadratic field was first
introduced by Shanks [7] in 1972 in order to develop a more efficient algorithm
for computing the fundamental unit of the field, although this notion was
already implicit in the work of earlier authors including Lagrange [2]. Shanks
used the language of binary quadratic forms to describe the concept of
distance. This concept, still described in terms of binary quadratic forms, was
made more precise and exploited by Lenstra [4] (1982) and Schoof [6] (1983)
in their work on quadratic fields and factorization. In 1986 Williams and
Wunderlich [12] gave a treatment of distance in terms of ideals, and used it
to develop a simple algorithm for use in the continued fraction factoring
algorithm. Parts of their theory have also been used in numerical studies of
Eisenstein’s problem [9] [11].

The aim of this papers is two-fold. We first give a complete treatment of
the basic theory of the distance between equivalent, reduced, primitive ideals
in the hope of making this attractive and useful theory better known and more
readily available for further research. Our treatment is based mainly on the
presentation of Williams and Wunderlich [12], but, in our view, is simpler in
some aspects. Our second objective is to define a homomorphism between the
ideal class groups of different orders and to apply this theory to compare
distances between corresponding ideals in the two orders. The presentation is
self-contained in that factorization of ideals in an order of a quadratic field
is not needed, nor do we use the theory of the units of a real quadratic field.
Indeed the theory of units is a consequence of our presentation, see
Corollary 5. We give known results as Propositions and new results as
Theorems.

') Research supported by Natural Sciences and Engineering Research Council of Canada
Grant A-7233.
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Throughout this paper, if A4 is a unitary commutative ring, and

a;,ds, ..., d, are elements of 4, the Z-module generated by o, a5, ..., &, is
denoted by [a;,a,,...,a,] and the A-module (ideal) generated by
a,ds, ..., d, by (0, Az, ..., a,). The product of the ideals (o, ..., a,,) and
(aj, ..., a,) is the ideal (a,ay, ..., 0,0}, ..., a,a;). If Iis an ideal, we often

write the product ideal (0)] as al.

2. BASIC DEFINITIONS

Let K be a quadratic field of discriminant D,. As D, is a discriminant we
have D, = 0 (mod 4) or Dy = 1 (mod 4). In §2 and §3 K may be real (Dy > 0)
or imaginary (D, < 0) but in the remaining sections K will be assumed to be
real. An element o of K can be written a = x + y] Dy, where x and y are
rational numbers. The conjugate of o is the element a = x — y|/D, of K.
The norm of a is the rational number N(a) = aa = x? — Dyy?. We define
the integer w, of K by

VDo

= if Do =0(mod4),

Q2.1 W =

1 _
SA+1Dy), it Do=1(mod4).

The ring of integers of K is Op, = [1, @,]. For a positive integer f , we set

)'D .

—_— if D = 0(mod4)
(2.2) D=Dyf?,® = 2

3 (1+1D), if D=1(mod4).
and
(2.3) Op = [1,0] = [1, foyl .

It is easy to check that Op is the subring of index f in Op,, called the order
of discriminant D. We note that

D
Z’ if D=0(mod4),
2.4) w? =
-1
03+(D ), if D=1(mod4).

4
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The multiplicative group of K is denoted by K*.
Next we describe the ideals of the order Op. Throughout this paper all
ideals will be nonzero.

ProposITION 1. ([10]: Theorem 5.6, [12]: Theorem 3.2) (i) The
(nonzero) ideals of the order Op are the Z-modules

I:d[a,b+LD] ’
where
2.5) D - b?
‘= 4a
is an infeger.
b+ /D

y , b'+|'D
(ii) Two ideals I = d|a, and I' =d’ a’,T are equal

if, and only if, |d|=\d’

Ja|=|a'), b = b’ (mod 2a).

Proof. (i) Let I be a (nonzero) ideal of Op. The set I n Z is a (nonzero)
ideal (ay) of Z. The set {y e Z:x + yw €1 for some x e Z} is also an ideal (d)
of Z, and, as ayw € I, we see that d]ao, say ap = da. Let qye 1 be such that
oy = by + do. Appealing to (2.4), we see that

daD .
— + by , if D=0(mod4),

(D(l():(l)(b()"f‘dw): D—1
d(T) +(@d+bye, if D=1(modd),

so that d|by, say b, = db,. Thus we have oy = d(b; + ®), which shows that
IDdla,by+w]. Now let BP=x+dyowel AsP —ay=x—-byyelnZ,
there exists ke Z such that P = kay + a,¥, which shows that I C [ay, ao]
=d[a, by+®]. Hence we have I=4d[a, b +w]. As dN(b +®)
=db + o) (b +w)el n Z = (da), we see that a divides N(b; + ®).

Now let I = dla, b, + ®], where ¢ = — N(b, + w)|a is an integer. We
show that I is an ideal of Op. It suffices to prove that wa and w(b, + ®)
belong to [a, b, + ®]. This follows from

wa = (—b)a + alb, + ®)
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and

(l)(b1+(l)) _(b1+€b)(b1+(0)+(b1+®+(b)(b]+(0)

i

ca+ b +to+m b +o).

We have thus shown that the ideals of O, are the Z-modules d[a, b, + ©],

where ¢ = — N(b, + ®)|a is an integer. Let b be the integer given by
b_{Zbl, if D=0(mod3),
2bi+ 1, if D=1(mod4),
so that '
b+1'D Nb +w) b*-D
b +m =— , = = —ce”Z.
2 a 4a

This completes the proof of Proposition 1 (i).

. b+| D , b+ |'D ,
(di) If d|a, - 5 =d'|a 5 we casily see that d|d’, d’|d,
ad|a’'d’ and @'d’|ad, from which Proposition 1 (ii) follows.
) » i 14145
Example 1. (i) By Proposition 1 (i) the Z-module A = |3, — 5 of

Oys is not an ideal of Oys as is not an integer. Indeed A is not closed

+1 45
under multiplication by elements of Oy as —2]—614 but

(l—|45) (1+1'45)
— :_II$A.
2 2

1+ 45

(i) By Proposition 1 (i) the Z-module B = [11, ] of Oy is an

ideal of O4s as ——— is an integer.
44

b+] D] . . . N
If I=dja, Ty is an ideal of Op, by Proposition 1 (ii), we see

that GCD(a, b, ¢) does not depend upon the choice of @, b and d. This enables
us to define the concept of a primitive ideal of Oy.
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. o . b+1'D .
Definition 1. (Primitive ideal) The ideal 7 = d|a, 5 of Op is

called primitive if, and only if,
d = GCD(a, b,c) =1,
where c¢ is defined by (2.5).

Our next result gives some basic properties of primitive ideals.

b+ D

PROPOSITION 2. ([10]: Theorem 5.9) (i) If [= [a,

primitive ideal of Op then
1= (),
b—) D

where [ = [a, ] is the conjugate ideal of I.

(i) If 1 is a primitive ideal of Op and o e€K* s such that I = ol,
then o is a unit of Op.

b+|'D B+ |'D

(iii) If I =

a,

] and J = [A, ] are primitive ideals

1 1
of Op such that ~1=;J then =7 and la{:lAl.
a

Proof. (i) We have
- ( b+|D b—|D )
a A

Il =aqa

B >

2 2
b+|'D b+ |'D
2 2

The ideal (a, , C) contains the ideal (a, b, ) = (1), so

that 11 = (a).

(ii) As a e K*, there exist p € O} and vy € O} such that a = B/Y; Then, we
have v/ = yal = B/, and so, by (i), we obtain (y)(a) = vII = Bll = (B)(a),
giving (B) = (y), so that a = B /v is a unit of Op.

(iiiy We have A7l = aJ so that, by (ii), a/A = + 1 and I = J.

Next we define the notion of equivalent ideals.

Definition 2. (Equivalent ideals) Two ideals 7 and I’ of Oy, are said to be
equivalent if there exists p e K* such that I’ = pl.
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Example 2. The ideals
1/200
2

2 4 /20 B
I= [7,1—+;Li0] =1[7,6+1/50] and J= [2, ] = [2,1/50]

of Oy are equivalent as

I =17, —8+]/50]

-8+150 —
- (—L) [-8-150,2]
2
— 16 +1/200 L
- () s
4
=uoJ,
— 16 + /200
where o :feK*.

It is clear that the notion of equivalence given in Definition 2 is an
equivalence relation. The equivalence classes are called ideal classes. The ideal
class of the ideal I'is denoted by C(). If I' e C(I) and J" € C(J) then I'J' € C(1)),
and we can define multiplication of ideal classes by C(I) C(J) = C(1J).

Definition 3. (Primitive class) An ideal class of Op containing a
primitive ideal is called a primitive class.

It follows from Proposition 2 (i) that the primitive classes are invertible,
and so form a group Cp with respect to multiplication.

Definition 4. (1deal class group) The group Cp of primitive classes of the
order Op is called the ideal class group of Op.

The unit class of the ideal class group is called the principal class and
consists of all the principal primitive ideals of Op. In fact Cp is a finite
group.

Next we give a necessary and sufficient condition for two ideals 7 and I’
of Op to be equivalent, and, when [ and I’ are equivalent, a means of
calculating p in the relationship I’ = pl. It suffices to consider ideals of the

+)D

form [a, ] that is with d = 1.
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PROPOSITION 3. ([10]: Theorem 5.27) Let
[ b+)D
I=]a,

B+VD
and J = |A,

be two ideals of Op. Set
b+ 1D B+ /D
b=—,¥v=——7—
2a 2A

(i) Theideals I and J areequivalentif, and only if, thereexistsa 2 X 2
q

integral matrix p
ros

] of determinant € =ps — qr= =1 such that

_po+q
r(1)+s'

(ii) If I and J are equivalent the numbers peK* such that J = pl
are given by

A 1 -
(2.6) p=— =g(rp +9)
arp+s
and satisfy
A
(2.7) N@p)=¢—.
a

Proof. We have J = pl, that is A[1, y] = pa[l, ¢, if, and only if, there

. . . \P g .
exists an integral matrix [ ] of determinant € = + 1 such that
rs

A = rpap + spa,
2.8) { pag + sp

Ay = ppad + gpa .

The equations (2.8) are equivalent to

_pdb+aq A 1

r(1)+s’ arq)+s‘

This establishes (i) and the first equality of (2.6).

Taking conjugates in (2.8), we have

2.9) {A = rﬁa(f) + spa ,

AY = ppad + gpa ,
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so that (2.8) and (2.9) are equivalent to the matrix equality

[A\u A] 3 [aq)p ap] p r
Ay A] - laop ap [q s]'

Taking determinants we obtain
Ay —§) = eppa(¢ — ¢)

| D
a

_ ‘D - _ A .
which gives, as y — gy = LA_ and ¢ — ¢ = , pp = € —, proving (2.7).
a

Then the first equality in (2.6) shows that p = g(r¢ + s), establishing the
second equality in (2.6).

b+|D

COROLLARY 1. Let I = [a,
2

] be a primitive ideal of O,

b+ 1D
2a

and set ¢ = For geZ define ¢',b'a’ and I' by

(2.10)
! D~ b2 b +|D
b=g+—, b =-b+2aq, ada =——, I = a’,*lgl,
¢’ 4q 2

Then

D - b? b+ D
(2.11) a = — +bg —aqteZ, ¢ =———,
4q 2a’

and I' is a primitive ideal of Op such that

&
(2.12) I'=—¢T=—1I.
a &’

Proof. The formulas in (2.11) for ¢’ and ¢’ are easily proved by a
straightforward calculation, and Proposition 3 with p =0, g =1, r =1,
s = — g gives

, a1 -
r==——1=-@-9l,
a¢-q

1
which is equivalent to (2.12) as ¢’ = q)—— .
- q
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By Proposition 1 a primitive ideal I of Op can be written in the form
I = a[l, 0] (p=(b+| D)/2a), where a is an integer uniquely determined up to
sign by I and a¢ is determined modulo ¢ by I.

Definition 5. (Representation of a primitive ideal). Let 7 be a primitive
ideal of Op. A pair {a, b} such that I = a[l, ¢], where ¢ = (b+| D)/2a, is
called a representation of I.

Definition 6. (g-neighbour). When the representation {a, b} of the
ideal I and the representation {a’, b’} of the ideal /" are related as in (2.10),
we say that {a’, b’} is g-neighbour to {a, b}.

Definition 7. (Lagrange neighbour). When D > 0 and {a’, b’} is ¢-
neighbour to {a, b} with ¢ = [¢], we say that {a’, b'} is the Lagrange neighbour
of {a, b} and write {a, b} 5 {a’,b’}.

Definition 8. (Gauss neighbour). When D > 0 and {a’, b’} is g-neighbour
a [a
to {a, b} with g = ‘—‘ [— (1)] , we say that {a’, b’} is the Gauss neighbour of
al ||la
{a, b} and write {q, b} 4 {a’, b'}.

Lagrange’s reduction process using Lagrange neighbours is described in §3
and Gauss’s reduction process using Gauss neighbours in §8.

. b+| D —-b+|'D
COROLLARY 2. The ideals 1 = |a, and J=|c, # R
where ¢ is given by (2.5), are equivalent and satisfy
~b+|'D
g= 0D
2a
1 b+ -b+ D
Proof. We have y = — , where ¢ = -and y = ———, so
0} 2a 2c
. .. . - —b+|D
that, by Proposition 3(ii), we have J = p/ with p = (- 1) = 27 .
a
b+ D B+ |D
COROLLARY 3. If I = |a, and J=|A, ————| aretwo

equivalent ideals of Op, with [ primitive then J is also primitive.

+| D B+ 1D
and y =
2A

b
Proof. Set ¢ = . As I and J are equivalent,
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. pd+q A 1
by Proposition 3, we have J = pl, where y = , p=—
re + s arp+s

= s(r&) +s) and € = ps — gr = + 1. Clearly we have

ga(rd +5) (ro +s) = e(as?+ bsr—cr?) ,

B = A(y+y) = ea(y +y) (rd +5) (ro+5)
ea((po+q) (ro+5) + (pd +q) (rdp +5))
e(2asq + b(sp + rq) — 2cpr),

I

— C = Ayy = eayy(rd +5) (ro +5) = sa(pd+q) (pd +q)
glag®+ bgp — cp?) .

i\

Thus A, B, C are integral linear combinations of a, b, c. Similarly, «, b, ¢ are
integral linear combinations of 4, B, C. Hence GCD(A, B, C) = GCD(a, b, ¢)
= 1 so that J is primitive.

3. THE HOMOMORPHISM 6

Let Op and Op be two orders of Op, with Op C Op. Then we have
D’ = D f? for some positive integer f. This notation will be used throughout
the rest of the paper. Our aim is to define a surjective homomorphism 6 from
the ideal class group Cp. onto the ideal class group Cp. After proving three
lemmas, we will prove the following theorem.

THEOREM 1. (i} Every class C of Cp. contains a primitive ideal I
fb+1D
of the form I = |a, —2— , Wwhere GCD(a, f) =1, such that the

b+)'D

ideal J = [a, ] is a primitive ideal of Op.

fb+)'D’
2
(GCD(a', f)=1) are two primitive ideals in the same class C of Cp-

, S +'D’
Gi) If I=|a, (GCD(@a, f)=1) and T = a,f
with I' = plpeK*), then the ideals
b+ )'D

J= [a,

] , [,b’+L'D]
and J' =\|a,———

2
of Op satisfy J' = pJ and are in the same class 6(C) of Cp.
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(iii) The mapping C — 8(C) is a homomorphism of Cp toon Cp.
Part (ii) of Theorem 1 will be the main tool in relating distances between
ideals of different orders of the same real quadratic field.

b+1D ,
— contains a number

LEMMA 1. A primitive ideal I = [a,

b+|'D

a=xa+y ( ) , where x and y are coprime integers, such that
the integer N(0)/a is prime to a given nonzero integer m. '

b+ D
5 = ax?® + bxy

—cy? in view of (2.5). If |m|=1 we take x=1, y=0, a=xa

1
Proof. We begin by noting that — N (xa +y (
a

b+ /D ,
+y 5 = g, so that GCD(N(a)/a, m) = GCD(a, 1) = 1, as required.

Hence we may suppose that |m|> 1. Let p,(i=1,2, ..., n) be the distinct

prime factors of m. For i =1,2,...,n we set
(150) > if pi*a >
(deyi) = (0, 1) 5 if Di | a, p[*c »

(1,1), if pilas pi|cs

so that pfax?+ bxy; —cy?. Let x and y be integers such that
x'=x;modp;) and y =y (modp;) for i=1,2,...,n, so that
GCD(ax'*+bx'y'—cy’2, m) = 1. The required number a is given by a = xa

(b + D
+y

’ ’

X y
> y = M
GCD(x', y") GCD(x', y)

) , where x =

LEMMA 2. Let m be a given nonzero integer. Every class C of Cp
b+|/D

contains a primitive ideal [a, ] with GCD(a, m) = 1.

Proof. Let [a’, be a primitive ideal of the class C. By

b+ ]/D]
Lemma 1 there exist coprime integers x and y such that
3.0 GCD(a’x? + b'xy —c'y*, m) = 1.

Set @ = a'x?> + b'’xy — c'y? and let r and s be integers such that xs — yr = 1.
Next set
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b —1'D
(3.2) p=x+ ( 5 l ) b =2axr+ b (xs+yr) — 2c'ys,
a

( , (b'+|,D))
a=p|xa+y —

b+ D ( , (b’+1fD))
=plra+s|{———|} .
2 2

so that

and

Then we have

b+ D , b'+\|'D , b'+| D
a, =p|lxa+y|——|,ra"+s -
2 2 2
, b+ 1D
= a y, T
P 2
b+ | D] . . . o
so that |a, is an ideal equivalent to the primitive ideal

b+ | D
a’, T . Hence, by Corollary 3, |a,

b+| D

] is primitive.

LEMMA 3. Let C and C' be two classes of Cp. Then there exist

oo , B+|D B+|D ,
primitive ideals I = |a, eC and I'=|a, eC
with  GCD(a,a’) = 1. Moreover the ideal [II' s primitive and

B+ |D
Il = |aa’, -1 .
2 .
. R b+1D
Proof. By Lemma 2 there exist primitive ideals I = |a, eC

b +1D

and I' = [a’,
2

] e C" with GCD(a,a’) = 1. As b =D = b’ (mod 2)

b-b
and GCD(a, a’) = 1 there are integers k and k" such that &'a” — ka = —2— .

Set B=b + 2ka = b’ + 2k'a’ so that

B+|D B+|D
I = a,T and ' = |a’, — 5 .
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Now D — B? is divisible by both 4¢ and 4a’, and so, as GCD(a, a’) = 1,
D - B? B+|D
! 2

D — B?is a multiple of 4aa’, so that ¢’ =

e Z. Hence |aa’,
4aa

is an ideal of Op and we have

) ( (B+1D) ,(B+[D) (BHD)Z)
II'= |ad’,a , a s
2 2 2

, B+|D
= |aa’, -
2
, B+1'D
= jaa’, - .
2

Finally, any prime divisor of aa’, B, ¢” must divide GCD(a, B, a’c”) = |
or GCD(@’, B,ac’) = 1, as GCD(a, a’) = 1, which is impossible. Hence the
ideal 71’ is primitive.

We are now ready to prove Theorem 1.

Proof of Theorem 1. (i) By Lemma 2 the class C contains a primitive

b+ D’]

ideal I = |a,

with GCD(a, f) = 1. Let k be an integer such that

2ak = — b’ (mod f) , if  f=1(mod2),

.

akE—%Jng(modf), if f=0(mod2),

. As I is an ideal of

fb+| D’
and set b = (b'+2ak)/f, so that I = g, ————

Op+, (D’ — f?b?)/4a is an integer, and so, as GCD(a, f) = 1, ¢ = (D~ b?)/4a
b+ LD]

is also an integer, showing that J = [a, is an ideal of O,,. Further,

as [ is primitive, we have GCD(a, bf,cf? = 1, and so GCD(a, b, ¢) = 1,
showing that J is primitive.

(ii) If 1" = pl, by Proposition 3, there exist integers p, g, r, s with
ps — qr = + 1 such that
(3.3) Sb+1 D’

. b | t4 _
fb +1 D 2a fb—| D’
—_— = =yl [} p = i ,. - + S .
2a’ Sb+1'D 2a
rl— + s
2a
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Rearranging the first equation in (3.3), we obtain the following equality
among elements of Op

)57 o) = b (757 ).

from which we deduce that f| gaa’. As GCD(aa’, f) = 1 there exists an integer
g’ such that g = ¢'f, so (3.3) can be rewritten as

b+ /D ,
= p + q 7
b + /D 2a b-D .
—_— = = , = r s s
2q’ b+yD P 2a
rf
2a

which, by Proposition 3, shows that J' = pJ.

(iii) Let CeCp, and C' e Cp-. By Lemma 2 and (i), we can choose an

. b+yD\] . . .
ideal I = |a, f in C with GCD(a, f) =1 and then an ideal
¥ +D b+1D
I = [a’,f (Tb)] in ¢’ with GCD(a’,af) = 1. By (i) [a, 2L ]
b +1/D ,
and |a’, —— | are ideals of Op and so we have b = b’ (mod 2). We

’

choose integers K’ and K such that K'a’ — Ka = T ,and set B = b + 2Ka

B+ /D B+ VD
=b"+2K'a’, so that I = |a, f 5 and I' = |a, f 5 .

B+ /D

By Lemma 3 we see that 7T’ = [aa’, f( )] is a primitive ideal of the

, B+VB]
,J = 1d, ,
2

B+|/D

class CC’. But the primitive ideals J = [a,

B+1D

J = [aa’, ] belong respectively to the classes 6(C), 8(C"), 6(CC"),

and, as JJ' = J” by Lemma 3, we have 6(C) 6(C’) = 6(CC"), showing that 6
is a homomorphism: Cp. = Cp.

Finally we show that 8 is surjective. Let C be a class of Cp and let
[ b+1/D
J=la,

] be a primitive ideal of C with GCD(a, f) = 1 (Lemma 2).
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2

Then we have GCD(a, b, ¢) = 1, where

=¢, and so GCD(@a, bf,cf?) =1,

4q

b+1'DY] . o .
5 — is a primitive ideal of Op.. Hence C is

showing that [ = [a, f (

the image of the class of I under 6.

COROLLARY 4. If the cluss C of Op contains the primitive ideal

b+ D’
I=|a - , where f2|la, then [f|b and the class 8(C)
b
~ 41D
. o a f :
contains the primitive ideal J = |—, - of Op.

Proof. As D' = Df?=b?+ 4ac, and f?

a, we see that f|b, and so
1,'D’—b)[ ~b+ | D
c, —

GCD(f,c) = 1. By Corollary 2 we have I = (

2a 2
b
- ? +]1 D
and so, by Theorem 1, we see that |c, — € 6(C). Finally,
b -b
b/ f+|D D+ I i bo
by Corollary 2, J = | =, e I, ¢ ,
f? 2 2¢ 2

showing that J e 68(C).

4. REDUCED IDEALS

From now on in this paper we suppose that D, > 0 so that we are only
considering ideals in orders of a real quadratic field. An ideal I of Op can be
+1 D
2a
if I=a'd[l,¢’] is another representation of I, then & = +a and
+ 1D D- b2
, where ¢ =
2a 4a
is an integer and GCD(a, b,¢) = 1 is called a quadratic irrationality of
discriminant D.

written in the form 7 = ad[1, ¢], where ¢ =

. By Proposition 1 (ii),

a b
¢’ =— ¢ (mod 1). A real number of the form
a
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b+|/D

2a

Definition 9. (Reduced number). The quadratic irrationality ¢ =

of discriminant D is said to be reduced if
4.1) db>1, —-1<¢<O0.
It is easy to check that (4.1) is equivalent to each of the inequalities in (4.2)
4.2) (i) 0<yD-b<2a<)|D+b,
(ii) 0<)yD-b<2c<}yD+b.

Moreover (4.2) implies

4.3) 0<a<|D, 0<b<|D, O<c<|D.

Definition 10. (Reduced ideal). The ideal 7 = ad[1, ¢] of Op, where
¢ = b ;‘i b , 1Is said to be reduced if, and only if, ¢ can be chosen to be
reduced.

From (4.3) we see that the number of reduced, primitive ideals of O, is
finite.
PROPOSITION 4. ([12]: Definition and Theorem 3.5). The ideal

b+ /D
I'=d)a —
2

of Op, where a>0 and d > 0, isreducedif, and only if, T does not
contain a nonzero element o satisfying |o|< da, |0 |< da.

Proof. Tt suffices to prove that 7 is reduced if, and only if, the Z-module
[1, ] does not contain a nonzero element A = x + v¢ such that

(4.4) <1, [X]<1.

If Iis reduced we can suppose that ¢ > 1, — 1 < (f) < 0. Let x and y be
integers such that 0 < A = x + yp < 1.

Clearly wehavey # 0. If y > 1, then we have y¢ > 1,s0x < — 1, showing
that X:x+y<f)< — 1. If y< — 1, then we have y¢ < — 1, so x = 2,
showing that A = x +y(f) > 2. This proves that [1, ¢] does not contain an
element A # O such that |A|< 1,|A|< 1.

Now suppose the Z-module [1, ¢] does not contain an element A # 0
satisfying (4.4). We can choose ¢ so that — 1 < &) < 0, in which case
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_ VD
O=0¢+ o > — 1. Hence, as ¢ cannot satisfy (4.4), we must have ¢ > 1,
a

so 7 is reduced.

b+|'D] . . .
Lemma 4. If T=4d]a, - is an ideal of Op with 0<a
/'D .
< 7 then I is reduced.

Proof. We can write I = da[l, ¢] with — 1 < (i>< 0. Then we have

- D
¢ =0+ l— > 1 so that 7 is reduced.
a

5. LAGRANGE’S REDUCTION PROCEDURE

In this section we describe Lagrange’s reduction procedure which was first
introduced in [2]. This procedure uses Lagrange neighbours and so is based
on the continued fraction algorithm. The procedure, when applied to a given
primitive ideal 7 of Op, gives all the reduced ideals of Op which are
equivalent to 1.

Let {a, b} be a representation of the primitive ideal I of Op. The
Lagrange neighbour of {a, b} is the representation {a’, &'} of the primitive ideal
I’ of Op given as follows:

0] b+ D o N 1
q = = s =4+,
2a ¢’
(5.1)
D-b? D-b?
b'= - b+ 2aq, a = = + bg — aqg? ,
4a 4a

(see (2.10) and (2.11)). We write {q, b} 5 {a’, b’}. The primitive ideal
I" = a’[l, ¢'] is also called the Lagrange neighbour of 1.
We note that

1
o'=——>10121,
b—q
as g = [¢]. We also remark that if a is kept fixed and ¢ is changed modulo 1

then ¢, b’ and @’ do not change. Hence the Lagrange neighbour of {a, b}
depends only upon the sign of a. If {q, b} 5 {a’, b’} then by Corollary 1 the
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ideals I =a[l,¢] and [I" = a’[l,¢’] are equivalent and [I" = pl with
a -1

p=—0 =—

a ¢

PROPOSITION 5. If {a, b} {a’,b’}, where a>0 and the ideal
1 =all,¢] is reduced, then the number &  is reduced and the ideal
1" =4da'[l, 9] s reduced.

Proof. As a > 0 and the ideal [/ is reduced, we may assume that ¢ is

- 1
reduced, so that — 1 < ¢ = —— < 0, where g = [¢], showing that ¢’ is
o—-q
reduced. The ideal /" is reduced as ¢ is reduced.

Remark. 1f {a, b} > {a’, b}, where a < 0 and the ideal / = a[l, ¢] is
reduced, it may happen that the Lagrange neighbour I' = a'[1, ¢'] of [ is
not reduced. For example the ideal I = [3,7+] 82] of O;y is reduced and
{—3,14} 5 {13,22}, but the Lagrange neighbour 7’ = [13,11+| 82] of [ is
not reduced.

The next proposition gives information about the ideals having a specified
Lagrange neighbour.

PROPOSITION 6. (i) If {al,b]}ﬁ{a’, b’y and {ay, b} 5 {a’, b’} then
the primitive ideals a,[1, ¢,], a:[1, d-]1 are equal.

(ii) If a’[l,¢’) is a primitive ideal with a >0 and ¢ reduced,
then there exists a unique reduced primitive ideal all,d) such that
{a, b} = {a’, b'}.

1
Proof. () Let g, = [¢1] and ¢, = [¢,]. Then we have ¢, = g, + (D— and

1 by+|' D s+ | D ]
¢, = g+ — , so that ——— = (¢, —q>) + ———— , showing that a, = a>
(D’ a, 203

and ¢, = ¢» (mod 1). Hence we have a[1, ¢] = a,[1, ¢:].
(ii) As ¢’ is reduced we have ¢’ > 1 and - 1 < (f)’ < 0. Hence there is a

1 -1 1
unique integer g(=1)suchthat — 1 - — < g < ?.Set(b = q+¢— > 1.1tis
P’ . ,

b+ D
easy to check that ¢ = .
a

-1 < (f) < 0. Thus ¢ is reduced and the ideal a[l, ¢] is both primitive and

- 1
, where ¢, be Z. Then ¢ = g + ? satisfies
(
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reduced. Clearly {a, b}i> {a’, b’} and the uniqueness of the ideal «[l1, ¢]
follows from (i).

Now that we have the notion of Lagrange neighbour and its basic
properties, we can define the Lagrange reduction process, which transforms
a given primitive ideal into a reduced ideal.

Definition 11. (Lagrange reduction process) We start a representation
{ay, by} with @, > 0 of a primitive ideal I of Op, and define the sequence of
representations {«,, b,} of the primitive ideals I, by

(52) {a,,,b,,}—L'{a,,H,b,,‘1}(n=0,],2,...).

In the Lagrange reduction process the integers g, and the quantities ¢, are
given by

b, +1 D
(53) qn = [q)n] ’ O, = s
2””
so that
_ b, +| D
(34) [Il = an[l’ (Dn] = a,, ?

By Corollary 1, we have

n -1 a,
(55) I, = pn[()’ Pn = H (—) = — H ;.

i=1 i

We remark that g, > 1 for n > 1.
The next lemma tells us that if ¢, is negative for some n > 1 then /, and
its successive Lagrange neighbours are all reduced.

LEMMA 5. If n>1 and ¢,<0
then

(i) a,>0, for mz2n-1,
and

(”) Im = am[la (1)/:;] is reduced jb" m 2 n.

Proof. (i) As g, > 1 and (B,, < 0, we see that ¢, = b
n qn
- bu+1| D
so ¢, <0 for m>=n For m>=n we have o, = 2—>1 and
a/!l

< 0, and
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~ bm - '//D Y

Om = ~2—l— <0, so that a,>0 and |b,|<|'D. By (5.1) we have
. .

D - bf,, = 4a,4a,_, > 0, so that a,_, > 0. This completes the proof that

adn>0form>=n-1.

(i) We have I, = anll,du] = @nll, ¥al, Where W, = ¢ + [|d]]. For
mznzl,as Yy, 20, >1and — 1 <y, = O, + [[0n]] <0, we see that
is a reduced number, and so the ideal I, (m>n) is reduced.

Next we define two sequences of integers {A4,} and {B,} for n > — 2 by

(56) {A72:07 A,]:l, A,,:q,,A,,,l‘f‘A,,,z,

B—2: 1’ 3,1:0, Bn:(ZnBﬂ—l+Bn—2

These sequences have the following basic properties:

B, _ —A,_
(5.7) by = — (—2%——2) , n>0,
Bn—l(bO_A -
AII— I1+A"7
(5.8) 0= Dt Az sy,
anl(bﬂ_”anZ
(59) A Bn I_ n- an:(_l)"71» I’l?—l,
1+L5)
, n20,
(5.10) 1+1/.»5 ,
if gy>=1thenA, 5 , nz20,
.11 A (=D >0
. - = = , h 2 s
Bn ‘ B%,¢n+l + Ban—l
(5.12) (— 1" (o — o) = :
. ’ ‘ —(Bi\lqi)n'{'anan—Z)
1
- ) ’ n203
(B, _ 10y + By,_1By_2)
(513) ¢l-~-¢n:Bn—l¢11+Bn—2y nzl.

We now briefly mention how these properties can be proved. The equalities

(5.8) and (5.13) follow by induction using ¢, = g, + . The assertion

n+1
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(5.7) is just a reformulation of (5.8). The assertions (5.9) and (5.10) follow
by induction using (5.6); (5.11) follows from (5.8) and (5.9); and (5.12) follows
from (5.11).

The next result shows that (i)" does eventually become negative.

LEMMA 6. (Compare [12]: Corollary 4.2.1) Let

1 Log(ay/)/D)

5
- 422
2 Tog((1+1/5)/2) 2

(5.14) M, = max (

For n > M, we have &),, < 0.

Proof. For n 2 M,, we have n > 2, and, appealing to (5.10) and (5.14),
we obtain

1+l§ 2n-5 aop 1
(5.15) B, \B, 22 2 —

2
If ¢, > 0, then, by (5.12), we have

_ 1 1
| &0 — o | < max — ,
’ 0| B;_1¢n+Bn71Bn—2 Bi71¢n+Bn—]Bn—2

1

<—,
ananfz

which contradicts (5.15). Hence we must have ¢, < 0, for n > M,.

The next proposition gives an upper bound for the number of steps needed
in the Lagrange reduction process to obtain a reduced ideal I from a given
primitive ideal I, of Op and at the same time gives upper and lower bounds
for & in the relation I = 81,.

PROPOSITION 7. (Compare [12]: Theorem 4.3) Let I, = ao[l,do] be a
primitive ideal of Op with ay,>0. Then the Lagrange reduction process
applied to I, yields a reduced, primitive ideal I equivalent to I, with

1
(5.16) I=8l,, —<8<2,
. @

in atmost M, steps. All the subsequent Lagrange neighbours of [ are also
reduced.
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Proof. Let n, be the least positive integer such that (Bn(,<0. By
Proposition 7 we have ny < M,. By Lemma 5 the ideal 7, is reduced, and
[/ > 0, Ay, > 0.

g

We set

an“—l s .

— O1... Oy, if T, - is reduced ,

a

(5.17) 5 = !

a e .

Oy Dy it 1,,_, is not reduced ,
46

1
so that by (5.3) I =08/, is reduced, and it remains to show that —

ay
£o<2.
For ny =2 2, by (5.13), we have
(5]8) (Dl---q)n() 1 :Bn(,f.’.q)n”fl +Bn()—} s
so that
(519) (i)l ---q)n“ = Bn()72q)uuf—l + Bnl)fl > B,,”,3,
N — - ~
by the definition of n,. As ¢,0, = ! , for n>=1, we have
a,

(5.20) ((DJ---(D/:“ 1) ((bl-"(bnofrl) = (=D~ »

an(lfl

which shows (as ¢, >0, a,,-1 >0, &;> 1= 1), §,>0(l <i<n— 1)) that
ny is odd. Hence ny 23 and we have B, _;>1. Then, from (5.19) and
(5.20), we obtain

dp 1
(5.2 1<, < .
an“—l Blu,—}
If 1,,-y is reduced then, by (5.17) and (5.21), we obtain
an” 1 6 <
ay ny—13

| D
If 1, is not reduced then, as a,,.; > 0, by Lemma 4 we have a,,_1 > 17 .

| D
Further, as «,,>0 and D = b,z,“ + 4a,,_,a,,, we see that 1<¢, <—
a’l()
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20,,{),1 . .
——— . Then, appealing to (5.20), we obtain
all()
2[1{]
1< Ppenn by, < ———
"nB"(ﬁ]
so that, by (5.17), we have
a"u
— <d<
ay Bn()—l

It remains to consider the case ny = 1. If I is reduced then & = 1. If Iy is

a 2a .
not reduced then & = — ¢; and, as above, we have 1 < ¢, < —“, giving
dy a
a
—<d<2.
ay

. 1 .
Hence in all cases we have — < & < 2. All subsequent Lagrange neigh-
do

bours of I are reduced by Lemma 5. This completes the proof of Propo-
sition 7.

6. PERIODS OF REDUCED CYCLES

We show that any two equivalent reduced, primitive ideals of the same
order O, can be obtained from one another by using the Lagrange reduction
process described in §5.

ProPOSITION 8. ([5]: §31, [12]: Theorem 4.5) Let I = a[l,¢](a>0)
and J = b[l,yl(b>0) be two equivalent, reduced, primitive ideals of
Op, so that [l,y] = p[l,0] for some p(>0)e K*. Interchanging 1
and J if necessarv we may suppose that p>=1. Set I,= 1. Then there
exisls a non negative integer n such that J=1, and p = ¢...d,, sO
that J=1,=p,1

Proof. Recalling that ¢, > 1(n = 1), we see from (5.10) and (5.13) that
the sequence {¢;...d,}._, is monotonically increasing and unbounded.
Hence there exists an integer n > 0 such that ¢...¢, < p < dr...dy, ). AS

aﬂ

1 1
L, = = ... 0.0y (by (5.5)), we have — J = LN I,. If p = ¢,...p, then
74 b (I)l'”q)n a,
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1 1
EJ = — ], and so, by Proposition 2 (iii), we have b =a, and J =1, as
ay

required. This we may suppose that p > ¢, ...¢,. Replacing I, by I,,, we obtain

1 1
6.1) —~J=p—1,, where 1<p<d¢.
b dyp

a - a _
From (6.1), we see that 2= bl,, and so, as JJ = (b), we have 2 IJ,
p p

1 1
showing that — € — I, . Next we observe that
20

1 1 1 1
— I = I =—1[L¢:] = [1,—] ,
ul ul

ay ¢1a

so there are integers x and y such that

y
—=x+ .
p o,
Thus, as 1 < p < ¢,, we have
1 y
6.2) —<x+=<1.
q)l (Dl
Appealing to (6.1), we obtain
bp bp bp
J=—lh=—15H=—1[Ld],
ao a o, ¢,

b b
so that —p eJ, and 0 < o < b. As J is reduced, by Proposition 4, we have

1

_b | pl 1 1 .
>b, sothat |=| <|—|, thatis
\d)l P
1
6.3) ‘ e
q)l ‘q)l'

From (6.2) we see that y # 0. Then (6.3) shows that x # 0, and that, as
(i)l < 0,xy> 0. This contradicts (6.2), and completes the proof of Propo-
sition 8.

Let [, be a reduced, primitive ideal of a class C of Op. By the Lagrange
reduction process described in §5, we obtain (by Proposition 5) an infinite
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sequence {1, },_, of reduced, primitive ideals with each ideal [, equivalent to
I,. By Proposition 8, this sequence contains all the reduced, primitive ideals
of the class C. As C contains only a finite number of reduced, primitive ideals
(§4), there exist integers r and [/ with 0 <r<r+/ such that I, =1,,,.
Applying Proposition 6 (i), we obtain successively I, =1,,.,.,1
b+i_2,..., and, after r steps, we have Iy = I,, which shows that the
sequence {I,},_, is purely periodic.

Definition 12. (Period) Let I, be a reduced, primitive ideal of a class C
of Op. Let [ be the least positive integer with Iy = I,. The set {I,...,I,_} is
called the period of the class C. The length of the period is the integer /.

The period of the class C of Op consists of all the reduced, primitive
ideals in C. It is easy to see that if I, = I, then / divides s — 1. As [, = I, we
see, from (5.5), that I, = nl,, where

(6.4) n=p =1 a,

and so, by Proposition 2 (ii), n is a unit (> 1) of Op.

ProprOSITION 9. () If I=1, and J are equivalent, reduced,
primitive ideals of Op with J = ol,, where a(21)e K*, then there
exist unique integers q and s such that

o =n9p, (ps is defined in (5.5), n in (6.4))
where
g=>0, 0<<s<g/-1.
(i) If J=1 then we have s=0 and o =Y.
Proof. (i) By Proposition 8 there exists a nonnegative integer »# such that
J=15=pdo, a=p,.
Let g(> 0) and s be the integers defined uniquely by
n=ql+s, 0<s</-1.
Then, by periodicity, we have

a = p,Ap)? =M9ps,
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where
n=p=ao,...0;.

This shows the existence of the integers ¢(>0) and s(O <s</—1).

We next show that g and s are unique. Suppose we have a = n?p,,
= n%p,, with s, <s,. If s, > s, then ¢, > ¢, and, appealing to (5.5) and
recalling that — 1 < ¢, < 0(/ > 1), we obtain

Sy 2 -1 ! -1
nenos= e (L) < ()

pxl i=sp+1 (T)i i=1 qa:

which is a contradiction. Hence we must have s; = s,. Then n% = n¢¥: and,
as n> 1, we must have ¢, = ¢g,. This completes the proof of (i).

(ii) From the proof of (i) we see that I, = J = I, so that [|n, and thus
g =n/land s = 0.

l

COROLLARY 5. n = H O; Isaunit (>1) of Op such that every unit ¢
i=1

of Op s given by € = x=n’, where r s an integer. m Is called the
Sfundamental unit of Oy.

Proof. Let € be a unit of Op and let

€, if e>1,

1/¢ , if O<e<l,
=% ik, if -1<e<0,

—-€, if e -1,

so that 8 is a unit of O satisfying 8 > 1. Applying Proposition 9 (ii) to [,
and J = 81/,, we see that § = n¢, and so € = +1n".

Corollary 5 was first proved by Lagrange in the case of the principal class
[3: p. 452] (see also [8]). We see that the theory of periods of reduced, primitive
ideals in Op not only gives the structure of the group of units of Op but also
provides the structure of each period (the ‘‘infrastructure’’ of Shanks [7]).

COROLLARY 6. With [, a reduced, primitive ideal of Op, we have
()n=8 10+ B,
(i)n=A4, 1 — B, 1¢o,

1+1]5 .
(iii) I log T <logn < /log| D



REAL QUADRATIC FIELD 347

Proof. Taking n = NI(N=1,2,...) in (5.13) we obtain, as ¢n; = ¢o,
(6.5) NN =By Qo+ By 2 -

The assertion (i) is the case N = 1.
From (5.7), (5.9) and (5.13), we obtain for n > 1

(-
Gy b, = B)—n, P .
Taking #n = NI(N=1,2,...) and recalling that nn = (— 1)/, we obtain
nt = - —& , so that taking conjugates we deduce
B/\'/, lq>(l - AN/ 1
(6.6) NN = Av | — By 1o -

The assertion (ii) is the case N = 1.
From (6.5) and (5.10) we have

) 1415 NE-2 1415 Ni-3 1+15' NI
N> Byt By 2z |- 5 + 5 =\ ,

so that

1+l S\ /-a/N
n>( ' ) N=1,2,3,..0.

2
S 1+1]5Y)/
n - b4
2
proving the first equality in (iii).
Finally, as ¢; < | D(i=0), we have
n=d..0,<( D,

proving the second assertion in (iii).

Letting N — oo, we obtain

Example 3. (D =1892) The period of the class containing the ideal
[1,21+] 473] is

{[1,21 4] 4731, [32,21 + ] 473], [11,11 +| 473], [32,11 +| 473]}.

Thus, by Corollary 5, the fundamental unit of O, 1s

21+ 473 11 +1473 11+ 473
(21+|473)( ! )( )( )

11 32
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1 _ .
= 21 +1/473)2 (11 + | '473)?
iy QLHLATHIALE 4T

1 ,,
= (704 + 32}°473)2
11.322

1 -
= @2+ a7y

=87 4+ 4]°473
= 87 + 2}1892.

The period of the class containing the ideal [7,16 + 1/473] is

{[7,16 +|/473], [16, 19 +| 473, [19, 13 + |/473], [23,6 + |/473],
[8,17 +1/473], [31, 15 + | '473]}

so, by Corollary 5, the fundamental unit of Og is also given by

( 16 + 1/473) (19 + V473) (13 + 1/473) (6 + 1/473) (17 + 1/473) (15+ 1’473 )

7 16 19 23 8 31
111+ 51/473\ (29 + | 473\ (91 + 4)/473
B ( 16 ) ( 23 ) ( 31 )
(349 + 16)/473) (91 + 4]-473)
- 23 31

= 87 + 41473 = 87 + 2)/1892,

We are now in a position to define the distance between two reduced, primitive
ideals in the same period.

Definition 13. (Distance between ideals) If 7 and J are equivalent,
reduced, primitive ideals of Op then we define the (mutiplicative) distance
d(l,J) from I to J by

d(l, J) = ps(mod* 1)

where p, is given as in Proposition 9 (i).

It is clear that d(/,1) = 1.
Example 4. (D =1892) The two reduced, primitive ideals
I=1[19,6+1473] and J = [31,16+|473]
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of O, are equivalent. Applying the Lagrange reduction process to
[19,6 + |473], we obtain

[19,6 + | 473] > [16,13 + |/473] = [7,19 + [/473] = [31,16 + | 473] ,

so that

31 (13+1]/473 19 + | 473 16 + |/473
o3 (25) () (45

16 7 31
(13 +|/473) (111 + 5)/473)
T 19% 16
238 + 11}/473
B 19

On the other hand, applying the Lagrange reduction process to
[31,16 +]-473], we obtain

31,16 + |/473] — [8, 15 + | 473] > [23,17 + [/473] > [19,6 +/473] ,

so that
19 (15+1/473) (17+1/473) (6+1, 473)
dJ, 1) = —
31 8 23 19
(91 +4/473) (6 +)473)
B 31 x 23
2438 + 115)/473
T 31x23
106 + 5|, 473
T

We note that

(238 + nyﬁ) ( 106 + 5)'473 )

19 31
51243 +2356]/473

- 589

= 87+4]/473 = q

1(mod*n) .
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PROPOSITION 10.  If I and J are equivalent, reduced, primitive ideals
()f OD then

d(J,I)=d{I,J)"' (mod~ n).

Proof. As I and J are in the same period we have J = p/(p € K*) and
I =0J(ceK*). As I =p~'J we have 6 = p~'(mod “n), which proves
Proposition 10.

7. COMPARISON OF DISTANCES BETWEEN CORRESPONDING [DEALS
IN DIFFERENT ORDERS

Let C be a primitive class of the order Op,2 and let 8(C) be the image of
C by the mapping 6 defined in § 3. As an application of the concept of distance
described in §6, we explain how to define a mapping of the period of C into
the period of 8(C), which approximately preserves distance.

THEOREM 2. For D' =Df? let Ce Cp and 9(C) itsimage by the
surjective homomorphism 6: Cp — Cp.

(i) There exists a mapping T from the period of C into the period of
0(C) such that for I and I' in the period of C we have, for a choice
of d modulo units,

aua,r

7.1
7.0 8f1DV?

<d(, () < 87DV AT .
(ii) When [ = p(prime) there exists a mapping ¢ from the period of

C into the period of 0(C) such that for I and I’ in the period of C
we have, for a choice d modulo units,

() )
(7.2) — < d(o(I),c(l")) < 2Dp2d({l,T') .
2Dp?
Proof. Letl =all,p](a>0)and !’ = a'[1,¢"]{(¢’ > 0) be two equivalent,
b+ D
reduced, primitive ideals of a class C of Op (D' =Df?) with ¢ = 21 —
a
b'+ | D B
and ¢ = B reduced. Let & e K* be such that ['=8/56>0.
a

i) If GCD(a, f) =1weset I, = I If GCD(a, f)> 1, from the proof of
Lemma 2, we see that there exists an ideal 7, = a;[1,¢,] = p/ in C with
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p=|x+¢y|, where x and y are integers such that a, =|ax?+ bxy

D' - b?
- ( 2 )yzl, GCD(ai, f) =1, GCD(x,») = 1,0<x< f, 0<y< f.
a

b+ /D .
As ¢ = —— is reduced, we have
2a
- — — D — b2
I<a<)' D, 1<b< D, 1<c<)D |c= ,
4q

sothat p <D, |pl=x+dy< fA+|/D)<2f)D,
and
(7.3) 1<a <2)D fr.
Also ¢ >1, - 1< <0, 50, as p|p| = a,/a, we have
(7.4) : <f

. — < .

2fD’ P
. . : b+ /D’

By the way in which we have defined [, = }a, —2— , we have
GCD(a,, /) = 1. Appealing to the proof of Theorem 1 (i), we see that there

. , by+ /D
exists an integer b, such that I, = |a,, f — |-

- . . , , +(bi+1'D o
Similarly there exists an ideal I/ = |a/, f such that I/ = p’I

: o b,+)'D
with p’ satisfying (7.4). Now, by Theorem 1, J, = |a,, 5 and

a,

, b+ D : , ,
J = are ideals of 6(C) such that J = p’dp~'J,. Applying

the Lagrange reduction process to J; and J|, we obtain reduced ideals J and
J’, and, by Proposition 7, we have J = aJ,, and J = «’J, with (by (7.3))

1 1
,*<—<(1<2,——ﬁ<—<(1’<2.
2D a 20D al

Thus we have J' = &'J, where & = a'p’dp ~'a! satisfies

W <& < 8f4D325 .

Setting J = t(J) gives the required mapping and proves (7.1).
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(ii) When f = p (prime) and p does not divide a, we set [, =1 If p
divides @, we take for 7 the ideal a,[1, ¢,] following 7 in its period. In this
case, as pla, from pD = bf + 4aa,, we see that p|b, and so, as
GCD(a,,b,,a) = 1 we see that p does not divide a;. Then, by (2.12), we have

I, = pI with p = % ¢,. Now, by Proposition 5, ¢, = b,%a]D’ is reduced,
so that 1 < b, < | D', and 1

(1.5) l<a<| D,

giving

(7.6) 1<p<| D .

The rest of the proof follows exactly as in the proof of (i) using (7.5)
(resp. (7.6)) in place of (7.3) (resp. (7.4)).

8. GAUSS’S REDUCTION PROCESS

Definition 14. (Half-reduced) A representation {a, b} of an ideal 7 is said

to be half-reduced if
-b+1D
8.1 0<——— <1,
2| c]

where ¢ = (D - b?) | 4a.

An ideal 7is called half-reduced if there exists a half-reduced representation
of I.

Clearly, if {a, b} is half-reduced, then b < | D and { — a, b} is half-reduced.

LEMMA 7. Let I be a primitive ideal of Op. To each representation
{a, b} of I corresponds a unique integer q such that the q-neighbour
representation {a’,b’} is half-reduced. The integer b’ and the ideal

b'+| D . .
I' = |, 5 are determined by I. The value of q is
a [ b+1'D
(8.2) g=—|——
lall 2|a|
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The representation {a’,b’} and the ideal I' are the Gauss neighbour
of the representation {a, b} and of the ideal I respectively, so that

{a, b} 5 {a’,b'} .

D—-b"?
Proof. Asc = (44) = a (by (2.10)), the g-neighbour representation

’

a
{a’, b’} of {a, b} is half-reduced if
-b'+| D

0<— <1,
2|al

b+ | D a <1 eivi a [b+] D
- — 4q » BIVINE ¢ = —

2|al la| la|l 2]al
which shows that ¢ and {a’,b’} are determined by {a, b}. Let

{+a b+2K|al} ={a,, b} be another representation of / giving rise to a

that is, by (2.10), if 0 <

s

half-reduced representation, say {a/,5/}. As b= — by = — b= b"(mod2 |a|)
and | a;| = |a|, we see from the inequalities
| Db | D— b
0<— <1 and 0< <1
2]al 2]a

that b/ =b'. Hence, as |a|=]a| and b =b/, from D =b'?+ dada’
= b2+ 4a,a/, we see that |&'|=]|a/|. This shows that I/ =17, which
completes the proof of Lemma 7.

PROPOSITION L1. Let {a, b} be a half-reduced representation of a half-

b+ | D

reduced ideal 1. Let {a,b} 5 {a’,b'} and set I' = [a , 5 We

have
(i) if b< —| D then b'>b+2, D,
(i) if b> —1 D then I' is reduced.

(iii) if I is reduced, then I' is reduced, and moreover if {a,b} is the
b+1D

2a

representation of I such that a>0 and ¢ = is reduced, then
the Lagrange neighbour and the Gauss neighbour are the same.

Proof. For any representation {a, b} of any primitive ideal, we have

1’Db‘1D+b
(8.3)

o
2c 2a
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Now take {a, b} to be a half-reduced representation of the half-reduced
. -b+)/D
ideal I so that 0 < T < 1, where ¢ = (D— b?)/4a.
c
(i) Suppose that b < —|/D. Then we have b2 — D = 4|a||c| so that (8.3)
VD-bY (-b-\|/D -b+|/D
becomes =1. As 0<— <1, we see that
2(c| 2]al 2c|
—b—yD , b +D
— > 1. But, as {a’, b’} is also half-reduced, we have ———— < 1
2al 2|al
so that — b’ +)/D<2|a| < —b-1/'D, proving that b’ > b + 2|/D.

(ii) Suppose that b > — | D. Then, we have |b| < |/D, and (8.3) can be

written
(l/D—b VD+b\ |
2]c]| 2|al

‘D+b
showing that L2| | > 1. Or the other hand, as {a’,b’} is half-reduced,
a
|' Db’ , VD+b a
we have 0 < <1, that is 0 < — — g <1, so that
2)a| 2lal  al
a D+ b
— q = =
lal 2]al

Hence we obtain

aq

l/’”D+b’=l/@—b+Zaq=(lD—b)+2|a(l |) >2|al,
a

’

; —

2]a]
reduced if ¢ >0 and — ¢’ is reduced if ¢ <0, proving that I' is reduced.

which, together with the inequalities 0<l

< 1, shows that ¢' is

(iii) We suppose that [ is reduced and choose the representation {a, b} of I with
+1'D

d

b _
a>0and ¢ = reduced. As ¢ is half-reduced and b > — |/ D from (ii)

we see that I’ is reduced. Moreover, the integer g used to obtain both the
Lagrange neighbour and the Gauss neighbour of {a, b} is [¢]. This shows that
the two neighbours of {a, b} are the same and concludes the proof of
Proposition 11.

Definition 15. (Gauss’s reduction process ([1]: §§183-185)) We start with
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a primitive ideal I, of Op and a representation {a, b} of I, and define the
sequence of representations {a,,b,} of the primitive ideals 7, by

{an7bn}g{an+l’bn+l} (":0’1’2"")~

We now show that Gauss’s reduction process leads to a reduced ideal
equivalent to /,. In addition we give an upper bound for the number of steps
required to obtain a reduced ideal 7, as well as bounds for a quantity p in the
relation I, = pl,.

PROPOSITION 12. (i) The ideal I, is reduced for
| o ‘
n>max | —— + 1,2 .
VD

(ii) Let 1" be the first reduced ideal obtained by applying Gauss’s

1 _
reduction to 1,. Then I = pl, with |—‘ <p<|/D.
ag

a
Proof. We suppose that n > max (|—°| + 1,2) so that n > 3.

If b, > —)'D, by Proposition 11 (ii), I, is reduced and so, by Pro-
position 11 (iii), 7, is reduced.

Suppose on the other hand that b, < ~ | D and that I, is not
reduced. Then, by Proposition 11 (ii), we see that b < — /D for
{=1,2,...,n—1. Then, by Proposition 11 (i), we have

b,_1>b +2(n=2)/D .

Hence we obtain

b1 > — by + 20, (“o L3 w]) .+ (léol_l) /5

laol llag|  2a /D
b U -
> = bo+2]a| (M —1) +2 (”il—l) I'D
2 ay| VD

which is a contradiction. This completes the proof that 7, is reduced for
| ao

n>max |— + 1,2 .
/' D

(i) Let I, be the first reduced ideal obtained from I, by Gauss’s reduction
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1 .
process. If n =0 then p =1, so that (—( <p<]D.If n>1 we have
ay

I, = ply with (by (2.12))

a a,
— ¢y o

ay a, -

a

p:

b1+1,'D‘ ‘b,,+[ D \
ay 2al 2017 '

As the representations {ay, b} are half-reduced for £> 1, we see, by (8.3),

bk+l D a, 1
that | ——— | > 1(k>1) so that p>|—| > — . On the other hand

2a, a lay |

we have
rbl+1’D' (b,,ﬂ'D(
p = .
20() 201171

As {ay,by} is a half-reduced representation for k& = 1,2,...,n, we have
0<|D-by<2]a; .y|. Furthermore, for k=1,2,....,n~1, we have
| D+b.<2|a_;|, as otherwise 0<|D-b,<2|a; | <| D+ by,

which is equivalent to 0<|'D—-b,<2|a,| <| D+ b, so that by (4.2)
the primitive ideal 7, would be reduced. Therefore, for k = 1,2,...,n — 1, we
have

D+b<2|a, |, if b =0,
Dbl <y Dorfb|= | B o<2lad i b
[ D—~be<2]a.|, if b,<0,
so that, as {a,, b,} is reduced,
b, +1D
p< ——— < | D
2‘(1,1,1|

which completes the proof of Proposition 12.

We remark that Proposition 7 and 12 suggest that Lagrange’s
reduction process may lead to a reduced ideal much faster than Gauss’s
reduction process, as the number M, of Lemma 6 is much smaller than

‘ao‘
max |— + 1,21 .
1 D

Example 5. We apply both Lagrange reduction and Gauss reduction to
the representation {3655,7068} of the primitive ideal [3655,3534 + | 21] of
034. We obtain




and
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L
(3655,7068} — { — 3417, — 7068} — {4,234} — {3,6] (3 steps)

(3655,7068) = { — 3417, — 7068} — {3187, — 6600} — { — 2965, — 6148} — ...

G G
S{-1,-12}>{-5,8} (30 steps) .

|00|

We remark that M, is approximately 8.72 and —— + 1 is approxi-

| D

mately 399.8.

(7]

(8]
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