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1. Introduction. Throughout this paper we write (4, b. ¢) for the binary
quadratic form ax?*+bxy+cy® It will always be understood that the form
(a, b, ¢) is integral (that is a, b, ¢ are integers), positive-definite (equivalently
a >0, h*—4ac < 0), and that its discriminant d = b>—4ac is a fundamental
discriminant meaning that d has one of the following forms:

(1.1)i) d= —p,ps ... p, = 1(mod4),
(1.1)(i) d= —4p, ... p,=12(mod 16),
(1.1)(iii) d=—8p,... p,=8(mod16),

where p,, ..., p, denote distinct odd primes and n is the total number of
distinct prime divisors of d. As d is fundamental, the form (a, b, c) is
primitive, that is GCD (a, b, ¢) = 1.

We say that the pair of forms ((a, b, ¢), (4, B, C)) is equivalent to the
pair of forms ((a,, b,, ¢;), (4,, By, C,)), written

((a, b, 0), (A, B, ) ~ (a1, by, ¢)). (4;. By, C))),
if there exist integers p,q,r,s with ps—gr = +1 such that
a(px+qy)* +b(px+qy)(rx+sy)+c(rx+sy)® = a; x> +b; xy+c, y*
and
A{,t:u:+q_'u}2+Eh‘(px+qry)(1".1r+.\'y,l+C{rx+xy)2 = A, x>+ B, xy+Cy~.

The discriminants d = b> —4ac and D = B2—4AC as well as the codiscrimi-
nant 4 = hbB—2aC —2cA remain invariant under ~. It is easy to verify that
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~ is an equivalence relation on the set of pairs of forms with prescribed
values of d, D and 4, and that the number h(d, D, 4) of equivalence classes
is finite [3]. The main result of this paper is an explicit formula for
h(d, D, 4). In Section 3 we prove the following theorem.

THEOREM. Let d (<0) and D (<0) be the discriminants (equal to
fundamental discriminants) and 4 (< 0) the codiscriminant of a pair of integral,
positive-definite binary quadratic forms. Assume that A% >dD and that
GCD (dD, 4) = 2%, for some integer a = 0. Set

1, if d =1(mod4),
(12) ¢, D, 4) =< 4% if d =8(mod 16),

or d =12(mod 16), D = 8,12(mod 16),
3—4* ifd =12(mod 16), D = 1(mod4),

where

. |2 if 4=0(mod4),
() 4 _{l, if 4 =2(mod4).

Then we have
d D
(14) hd,D,&)=cd.D,4) Y (—)=cw.d. D) (—)
el(42-dDya € el( 42 —dDy4

Before giving the proof of this theorem we make some remarks. We lirst
note that if d and D are the discriminants and 4 the codiscriminant of a pair
of positive-delinite forms then 4 < 0. This is clear as

A = bB—2aC—2cA < |bB|—2aC—2cA
< J(b*—d)(B*=D)—2(aC+cA) (as d <0, D <0)
=4 /acAC—2(aC+cA) = —2(,/aC— /cA)* <0.
Next we note that 4% > dD follows from the identity
(1.5) a*(4*—dD) = ((2ac—b?) A+ abB—2a* C)* —d (bA — aB)*.

It is easy to show from (1.5) that the possibility 4% = dD, which is excluded
from the theorem, occurs if and only if a = A, b = B, ¢ = C. Thus, in this case,
h(d, D, 4) is just the number h(d) of classes of forms of discriminant d.
Dirichlet gave a formula for h(d) in 1839, We also note that the identity

(1.6) A*—dD = 4((aC—cA)*—(aB—bA)(bC — cB))

show that (4>—dD)/4 is always an integer.

The condition GCD (dD, 4) = 2° for some integer a > 0, is imposed in
the theorem for two reasons. The first reason is so that appeal can be made
in the proof of the theorem to the following result of Dirichlet: Let d (< 0)
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be a fundamental discriminant and let m be a positive integer such that GCD
(m, d) = 2° for some integer a > 0. Then the number ¥, (m) of reprcseptations
of m by the forms of a representative system of positive-definite, integral,
binary quadratic forms of discriminant d is given by

d
(1.7) ¥, (m) =w(d)12 (E)
where ¢ runs through the positive divisors of m and
2, ifd - -4,
(1.8) wd =<4 ifd=—4
16, if d=—-3.

The second reason for the inclusion of the condition GCD (dD, 4) =2¢
(a=0) is so that we have

GCD (el" d} EGCD{{’I, D) :GCD(E]. .d) = 1,
for any odd integer e, dividing (4>—dD)/4, and thus

@)= G-

which enables us to relate the sums

d D
o(z) e ¥ (7
el(.42-dD)/4 el( 12 -dD)/4
in a simple manner (see (1.9) below). Without the condition GCD (dD, 4)
=2 (@=0) our theorem is no longer valid. For example take d = —17,
D= -7 4= —21 so that GCD (dD, 4) = GCD (49, 21) = 7. In this case
every pair of forms withd = =7, D = —7, 4 = —21 is equivalent to one of

the four inequivalent pairs

(1, 1,2), (2, =5, 49),
(1, 1;2),2,9.11)),
((1,1,2),4, =3,1),
((1, 1, 2), 4, 11, 8)),
so that h(—7, =7, —21) =4. However we have

(=7, -7, =21)=1, (4*—dD)4 =98,

3 (- EE) @ E ) )

1+14+0+0+0+4+0 =2,

and
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Next we show that

d
(1.9) X (—)=k(d. D,4) (2).
e|(42-dDy/4 £ el(42-dD)/a e
where
a*, if d =1(mod4), D = 8(mod 16),
3—A4a% if d =1(mod4), D = 12(mod 16),

(1.10) k(d, D, 4) =4 1/4%, if d =8(mod 16), D = 1(mod 4),

1/(3—4%), if d =12(mod 16), D = 1(mod4),
1, otherwise.
Since
(D, d, 4)
1.11 k(d, D, =04, d)
HA9 €.D. 4 =20"D. 2

this establishes the right hand equality of (1.4). Thus to prove the theorem it
suffices to prove just the left hand equality of (1.4).
We deline the nonnegative integer m by

2" (42— dD)/4,
and, for e|(4?—dD)/4, we set

¢ = 2‘31,
where

0<e<s<m, e 21, e =1(mod2), e, |(42—dD)/4.
As GCD (dD, 4) = 2° (a = 0), we have

GCD(e,, d) = GCD(e,, D) = GCD (e,, 4) = 1,

(2)=(£)=1. (£)-(2)

s (5= 5 (2)

eql(42-dpya €1 eql12-dpya ‘€1

and

so that

Hence to complete the proof of (1.9) it suffices to prove
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This is clear as
D
) (3) =0, if d =8 or 12(mod16), D =8 or 12(mod 16),
D\ .
) (3); if d =D = 1(mod4), d = D(mod8),

(5)-
5 )=
5)-
2)
m=0, if d =D = 1(mod4), d # D(mod8),

d
m= 1,(§)= 1, if d=1(mod4), D =8(mod 16), 4 = 0(mod 4),

m=0, if d=1(mod4), D =8(mod16), 4 = 2(mod4),
m=0, if d =1(mod4), D = 12(mod 16), 4 = 0(mod 4),
m=1, if d =1(mod4), D =12(mod 16), D = 2(mod 4).

We conclude this section by giving a short table of values illustrating the
theorem (Table 1).

2. Preliminary lemmas and propositions. In this section, we recall and
prove some results about the equivalence of forms which we will need in the
proof of the theorem in Section 3. If the forms (a, b, ¢) and (a,, b,, c,) are
equivalent we write (a, b, ¢) ~ (a,, by, ¢,). Two equivalent forms possess the
same discriminant and ~ is an equivalence relation on the set of forms with
discriminant d. The equivalence class containing all forms equivalent to the
form (a, b, c) is denoted by [a, b, ¢]. The number of equivalence classes is
finite and is denoted by h(d). Next we recall how classes of forms of the same
discriminant d are multiplied together. The product of two classes
[a,, by, ¢;] and [a,, by, ¢;] is defined as follows: forms (a, b, a’c) and
(a', b, ac) with GCD (a, a’) =1 are chosen so that

[al ’ bl’ cl] = [a! b? G,C], [a2§ bZ’ CZ] — [a;’ b’ ac]a
and the product [a,, b, ¢;] [a3, b, ¢,] is defined by
(2.1) [a, b, a'c][a, b, ac] = [ad', b, c]

(see for example [1], Chapter XIII, § 1).
The set H(d) of classes of forms of discriminant d under multiplication
is a finite abelian group of order h(d). The identity class I is given by

01,0, —d/4], i d =0(mod4),
23 I'= {[1, 1, (1-d)/4], if d=1(modd),

The inverse of the class [a, b, c] is the class [a, b, c]™! =[a, —b, c]
= [¢, b, a]. The subgroup of squares in H(d) has traditionally been called
the principal genus.
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A class [a, b, c] is called ambiguous if [a, b, c]* = I. Gauss showed that
there are 2"~ ! ambiguous classes. These can be written in the form [A4;]
(i=1,2,...,2"""), where each A4; is a form of the type

(2.3) A; = (a;, by, ¢,
where . .

(24) a >0, b}-dac =d,
and

(2.5 b=0 or a.

Gauss also showed that the principal genus consists of h(@/Z“" classe§,
say [F;] (G =1,2,..., h(d)/2"~"). Replacing each F; by an equivalent form, if
necessary, we may suppose that

(26) Fi=(fFgph) (=12 ..., h@/2"""),
where

(2.7) f;>0, GCD(fj,2d) =1,

and

(2.8) g} —4fFhj=d.

For 1<i<2" ! and 1<j<h(d)/2""" we see from (24) and (2.8) that
‘g? = d = b} (mod 4),

so that g; = b;(mod 2), showing that $(g;—b;) is an integer. Further we note
that

GCD(a;, f)lald, GCD(a;, f)!f;,
so that, as GCD (f;» d =1, we must have
(29) GCD(a;, f) = 1.

Hence, for 1 <i<2" ' and 1 <j<h(d)/2""", we can define u; to be the
least non-negative solution ot

(2.10) a;u;; = §(g;—b;) (mod f)).
We set

(2.11) v = (@ u;—3(g;— b))V S
and

(2'12) ku = 2-0, u,-]+b; = 2ﬁv,-1+gj.
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Squaring (2.12), and appealing to (2.4) and (2.8), we obtain
a,-(a,-u,-zj+b‘uij+(',-} =j;(ijin+gfvu+thJ'
Since GCD(q;, f)) = 1 we can deline an integer I; by

2.13) = a;ufﬁ-+b.,vuu+c,- _ jjv,§+gjvu+fjhj.
Jj 4
We now define the join A;0F; of the forms A; and F; to be the form
(2.14) A;oF; = (a; f;, kij, 1;)).
Since ¢; f; >0 and
(2.15) kfa—“ﬂsf} j=d,

we see that A4;0F; is a positive-definite form of discriminant d.
Lemma 1. For i=1,2,...,2" Y and j=1,2,..., h(d)/2""' we have
[4ioF;] = [a;, b;, c1LS}» 95 fi by
Proof. We have
(ai, bi, 10 S5 95> fihi] = [, 2a;w;;+ by, a;udi+bu+ ¢
Uy» 2305+ G0 Sy 08+ 0505+ )

= La, kij, ;1] LS, kij» ai ;] = L f, ki, 1] = [AioF ).
LEMMA 2. For i,r=1,2,...,2" Yand j,s =1, 2, ..., h(d)/2"?, we have

[AEOFJ] = [A,OF,] i (l-, .D = (?', S).

Proof. It clearly suffices to prove that [4;0F;] =[4,0F,] = (i,}))
=(r, s). Suppose [4;0F;] = [A,0F,]. Then, by Lemma 1, we have

(2.16) Lai, bi, c LS, 950 0] = [y, by, €1 0fss Gss S B
Squaring (2.16), we obtain, as
[ai, bi, 1* = [a,, by, ¢,)* =1,
that
Uy 955 fi0% = [fss 9s £ B2
Hence we have
[sz, gdjs hj] = [f;z.g.n h],

and so j=s. Then, from (2.16), we obtain [a;, b;, ¢;] = [a,, b,, c,], so that
i =r. This completes the proof of Lemma 2.
From Lemma 2 we have immediately the following proposition.
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ProposiTion 1. The forms A;oF, (i=1,2,...,2""; j=1,2,..,
h(d)/2"~" form a set of h(d) inequivalent forms of discriminant d.
Lemma 3. For i=1,2,...,2"  and j=1,2,..., h(d)/2""'
(2.17) mi; = 20— hpfa;,  m; = kijla;,
are integers.

Proof. From (2.5) and (2.12) we have k;; = 2a;u;;+b; = 0(mod ;) so
that n;; is an integer. Then, by (2.12), we deduce that 2f;v;;+g; = 0(mod a)).
Hence we have

(mod ai}, if a; Ddd,

8B B
95 =4/, l}i“%(mod 2a;). if a; even.
Also, from (2.4) and (2.8), we have

(mod g;), if a; odd,

2 _ 2 2 _Aa. ¢ = 2
gj = 4" hy+bi —4a;¢c; = 4] hi%(mod 2a), if g; even.

Hence we have
0(mod a;), if a; odd,

2002 _ b)) =
45 i "’}‘{O(modza.-), if g, even.
Since GCD(a;, fj) = 1 we deduce that

v} —h; = 0(mod a;), if @; odd,
2(v3—h) =0(mod a), if a even.

This completes the proof that m;; is an integer.
LEMMA 4. For i=1,2,...,2" Y and j=1,2,..., h(d/2""", we have

(2.18) - S mi+2g;m;n;+4hynf = 41,
(2.19) U} mij o+ 1595 miyt+ 29, m; v+ 4f; hymy = 2k by,
(2.20) af;(fivi+gv;+fh) = ki—d,
(2.21) a;(fFm;+g;n,) =2a,fl;+4d.

Proof. Equations (2.18) and (2.19) follow using (2.12), (2.13) and (2.17);
equation (2.20) follows using (2.13) and (2.15); equation (2.21) follows using
(2.8), (2.12), (2.13) and (2.17).

ProposiTioN 2. For i=1,2,...,2" " and j=1,2,..., h(d)/2""' the
Jollowing is an identity in the variables A, B, C:

(222) (2l A—ki;B+2a,f;C)*—d(B2—4AC) = f} (m;; A—20;; B+ 2a; C)?
+g,;(my; A—2v,; B+2a; C) (2n; A—2f; B) + h; (2n;; A—2f; B)*.
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Proof. The coefficients of 4%, AB, B%, AC on both sides of (2.22) agree
in view of (2.18), (2.19), (2.20), (2.21) respectively. The coefficients of C? are
clearly both 4a? f2. Finally the coefficients of BC are the same by (2.12). This
completes the proof of Proposition 2.

LEMMA 5. For i=1,2,...,2" Y and j=1, 2, ..., h(d)/2"" " we have

d

- (2.23) gimy= o = 0(modf))
and
: d .
(2.24) gjlu-a—‘q,- = 0(modf).

Proof. By (2.17), (2.12), (28), we have

gy~ d/5¢= (g; kyy—d)/ay
: = ({2)5 g;jUij +9f )— (9} _41}2 ";)l/ai
=j}{2gjv,-1+4j}h,}/a;.

Since GCD(a;, f)) =1 and g;n;—d/a; is an integer, we see that (2g;v;;
+4f; h)/a; is an integer, and so g;n;—d/a; is a multiple of f;. This completes
the proof of (2.23). The proof of (2.24) is similar.

3. Proof of Theorem. Let (f, F) be a pair of forms with discriminants d
and D and codiscriminant 4. Then, by Proposition 1, we have
(f' F] s (AI OFJ, G)!

for a unique pair (i, j) of integers with 1 <i<2"! and 1 <j<h(d/2"},
and a form G = (A, B, C), satisfying

3.1 A>0, B*-4AC=D,
and '

Now (4;0F;, G) ~(4;0F;, G,) if and only'if an automorph of A4;0F;
transforms G,”infp G,. The form A4; 0F; possesses exactly w(d) automorphs
[4: Theorem 202]. However only half of these automorphs give rise to
different G’s. Hence we have

i =i May/ 2" 1

w(dy2 = .J‘fl (4,8,0)

where the dash (’)g,-“indicates that A, B, C must satisfy (3.1) and (3.2).

(33) h(d, D, 4) = 1

Pairs of binary quadratic forms 113

Appealing to Proposition 2, we see that (3.1) and (3.2) are equivalent to

(3.4) A>0,

(3.5 2l;;A=kijB+2a, f;C = —A4,

(3.6) 4>—dD = f?(m;; A—2v;;B+2a;C)?
+g;(mUA—21:uB-I=2a,-C)(Zn,-JA—ijB)+hj(2nuA—ijB)z.

Changing the summation variables 4, B, C in (3.3) to 4, X, Y by means of

y 2 ; 20,
(3.7) X = (mﬂ-%)A + 2a; C+—fvf’ Y,
i i

we obtain
an= 1 Wd)/2"~ 1 ,
39 h(d, D, 4) = — 1,
G2 w(d) = j§1 tA.ZX.Y}
where the dash (') now indicates that the sum is restricted to those (4, X, Y)
satisfying

(3.10) A*—dD = f? X?+29, XY+4h, Y?,
(3.11) A>0,
d
(3.12) G A X g Y = =fi4,
(3.13) X = (@j-m)mﬂ Y (mod 2a),
Ji Ji
(3.14) Y = n;; A(mod f)).

Eliminating A from (3.11), (3.12), (3.13) and (3.14), we obtain
2 2" ' hay2n!

(3.15)  h@,D, 4)=—— Y ¥ i,

wd =y =1 xn

where 'thg dash () indicates that the sum is restricted to thos¢ pairs of
integers (X, Y) satisfying

(3.16) ' A*—dD = [ X*+2g; XY+4h; Y?,
(3.17) 7 X+g;Y+f;4 <0,
(3.18) f? X +g; Y+f;4 = 0(mod d/ay),

I(3.19) Jin; X+ (gj m;—%)l@j}nud = 0(mod f;d/a),
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g s & d

Next we observe that (3.17) is redundant as it follows from (3.16). We have
(FX+g;Y)? = fF(fFX*+29; XY)+g? Y?
= [ (4*—dD—4h; Y?)+ ¢} Y?
= f#(4*—dD)+dY?
< f?4* (asd <0,D <0),
so that (as 4 <0) we have
fid <[ X+g;Y < —f;4,
which implies (3.17).

Next we show that (3.19) is also redundant. As GCD(d, f)) = 1, we have
GCD(d/a;, f;) = 1, so that (3.19) is equivalent to

(3.21) (gjm;—d/a) Y = 0(mod f)),
and
(3.22) S n; X +g;n; Y+fin; 4 = 0(mod d/a;).

Clearly, by Lemma 5, (3.21) imposes no condition on Y, and (3.22) follows
trivially from (3.18).

Similarly, as GCD(2d, f;) = 1, (3.20) is equivalent to
d
i
and
d d

and (3.23) is redundant by Lemma 5. Further, as 4>—dD = 0(mod 4), from
(3.16), we see that X must be even, and we can replace X by 2X in (3.17),
(3.18), (3.24). Summarizing we have

2 hid)/2n 1 an=1

(3.25) hd, D, 4) = — "1,
w(d) ng f; (g.:h
where the dash () indicates that X and Y must satisfy
(3.26) (4°~dD)/4 = fZ X*+g; XY+ h; Y?,
(3.27) 2 X +g; Y+f, 4 = 0(mod d/a)),
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d d

It is now convenient to consider the three cases (1.1) (i) (ii) (iii)
separately. We just treat the case (1.1) (i), d = —p, p, ... p, = 1 (mod 4), as
the other two cases can be handled similarly. In this case the forms
Aii=1,2,...,2"") are given exactly twice each by (w, w, £ (w—d/w)). as w
runs through the positive divisors of d. Let u; = u;(w) be the least nonnega-
tive solution of

(3.29) wu; = %(g;—w)(mod f)),
and define v; = v;(w) by
(3.30) v; = (wu;—3(g;— w)/f;.

Hence, in the notation of Section 2, we have

(3.31) {a; =w, b =w, ¢ =w-—dw),
wy=u;, v;=v;, bi=(fvi+g,0,+fih)w.
Hence in this case we have
| hay2nt ,
(3.32) hd,D, )=—- Y Y ¥'1,

wid) =i wadn
where the dash () indicates that X, Y must satisfy
(3.33) (42—dD)/4 = 2 X*+g; XY+ h; Y?,
(3.34) A? X+g;Y = —f;4(mod d/w),

(3.35) (S0} +4;0,+0;h) (2P X +g; Y+, A)+d(f; X —v; Y) = 0(mod dw).

Since w|d and d is squarefree, we have (w, d/w) = 1, and congruence (3.35) is
equivalent to -

(3.36)  (fjvf+g;0;+h) (22 X +g; Y+f;A)+d(f; X —v; Y) = 0(mod w?),
in view of (3.34). Now, appealing to (2.8), we see that (3.36) is equivalent to
(3.37) . (2f13 v} + @'ﬁ gjv;j— fo‘ h; +j}gf} X

+(f;9;07 +4fF hjv;+fig;h) Y+(f? v} +f;9;0,+ 17 h) 4 = 0(mod w?).
Next, as k;; = 0(mod w), we have
(3.38) 2fjv;+g; = 0(mod w),
$O

(3.39) (g;+2f;v)* = O(mod w?),
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giving

(3.40) g} = —4f;g;v;—4f7 v} (mod w?).
Also, as g7 —4fh; =d = 0(mod w), we have

(3.41) 4f?h; = g? = 4f7 v (mod w).
As (f;; w)=1 and w is odd, (3.41) gives

(3.42) h; = v?(mod w).

Then, from (3.38) and (3.42), we have

(9;+2f;v) (hj—v}) = 0(mod w?),

and so

(3.43) g;jhj = g;v}—2f;h;v;+2f;v] (mod w?).

Using (3.40) and (3.43) in (3.37), we see that (3.37) is equivalent to
(344) (f v}+g_,- vj+f; J‘tj](ij2 X +g; Y—f;4) = 0(mod w?).

We now show that 2f? X +g;Y—f;4 = 0(modw). This is trivial if w =1 so
we can exclude this possibility. We have already noted that f;v} +g;v,+f;h;
= 0(mod w). We show that f;v?+g;v,+f;h; # 0(mod w?). Suppose that f;v}
+g;v;+f;h; = 0(mod w?). Then [;; = 0(mod w), and so, as k;; = 0(mod w), we
have d = k}—4wf;l; = 0(modw?), which contradicts that d is squarefree.
Thus (3.44) is equivalent to

(3.45) 22X +g;Y =f;4(modw).

Hence we have shown that

hdy2n =1

(3.46) h(d.D,A)=-—lﬂ— ¥ Y¥L

wd = waxn

where the dash () indicates that X, Y must satisfy

(3.47) (4*—dD)/4 = 2 X*+g; XY+ h; Y?,
(3.48) 27 X+g;Y = —f;4(mod d/w),
(3.49) 2f# X+g;Y = f;4(mod w).

Any solution (X, Y) of (3.47) must satisfy

(2f? X +g;Y)* =f} 4*(mod d),
so that

2f* X +g;Y = +f;4(mod k),
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for every divisor k of d. Thus we have

| hay2r=l '
(3.50) hd, D, 4) = v j; :xz.n 1.

; 1.42—¢Du4=ffx3+gjxr+njr2
Since (4*>—dD)/4 can only be represented by forms of discriminant d whose
classes lie in the principal genus, and GCD ((4%—dD)/4, d) = 1, by Dirichlet’s
theorem [2: Theorem 64] [4: Theorem 204], we have

(3.51) hd,D, 4= Y (‘3)

e|(42 -dDy/4 €
as asserfed. This completes the proof.
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