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DETERMINATION OF ALL IMAGINARY CYCLIC
QUARTIC FIELDS WITH CLASS NUMBER 2

KENNETH HARDY, RICHARD H. HUDSON, DAVID RICHMAN AND
KENNETH S. WILLIAMS

ABSTRACT. It is proved that there are exactly 8 imaginary cyclic quartic fields
with class number 2.

1. INTRODUCTION

Let K be an imaginary cyclic quartic extension of the rational field Q. K
has a unique quadratic subfield which we denote by k. The class number of
K (resp. k) is denoted by A(K) (resp. h(k)). The relative class number of
K over k is the positive integer 4" (K) = h(K)/h(k). The conductor of K is
denoted by f . In 1972 Uchida [17] proved that if K is a field with h*(K)=1
then f < 50,000. In 1980 Setzer [14] computed the values of h*(K) for all
fields K having A" (K) =1 (mod2) for which f < 50,000. He found that
h*(K) =1 for exactly 7 fields K. Since h(k) = 1.for these 7 fields, Setzer’s
work completed the proof of the following theorem.

Theorem 1 (Uchida-Setzer). If K is an zmagmary cyclic quartic field of class
number 1, then K is one of the 7 fields

o (V-6 +243) (=9,

Q(‘ —(13+2\/ﬁ)> (f =13),

Q<\/-(2+\/§)) (f =16),
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Q( —a9+mé%)
Q( —u7+6%ﬁ0
Q( —w3+2%§0
Q(-4m+6ﬁﬁo

(f =29),
(f =37),
(f =53),
(f =61).

In this paper we determine all the imaginary cyclic quartic fields of class

number 2. We prove the following theorem.’

Theorem 2. If K is an imaginary cyclic quartic field of class number 2, then K

is one of the 8 fields

Q(J—un+4Jﬁ0

(f =40),
(f =48),
(f =65),
(f =65),
(f =80),
(f =85),
(f =104),

(f = 119).

We now describe how this theorem is proved. In §2 we give a formula for
h*(K). In §3 we determine the form of the conductor f of those imaginary
cyclic quartic fields K having A*(K) =2 (mod4). We prove

Proposition 1. Let K be an imaginary cyclic quartic extension of the rational
field Q with conductor f. Then h™(K)=2 (mod4) if and only if

S =8p, where p=5(mod8),

or

f=16p, wherep=3or5 (mod38),
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or
f=pq.(p/q)=-1, where p=3 (mod4),q=1 (mod8);

p=1(mod8),qg =5 (mod8); or
p=g=5 (mod8).
[p and q denote distinct odd primes. |
This result overlaps with the work of Brown and Parry [4, 5] in certain cases.

In §4, by extending the arguments used by Uchida in [17], we prove the
following result.

Proposition 2. Let K be an imaginary cyclic quartic extension with conductor
S such that h*(K) =2 (mod4). Suppose that

(1.1) f>4,
where
(1.2) A > 64.
Set
1 loglog A y 3 3
1.3 B=—+ + + ,
(1.3) 2n  mlogA  mlogAd  nm(logd —1/VA) 2vVAlogA
(1:4) b=3(1+V2)=3621320343....
Let ¢ be a real number satisfying
(1.5) O<c<l.
Let a be a real number such that
2
(1.6) a > max (m,b) .
Set
c+2(c+1)l°gl°gA : 5 + v ifUu>o0,
log A a(log A) log A
(1.7) C= loglog A 1
c+2(c+1) + 5 ifu<o,
log4  g(log 4)
where
U =loga+2clogB — 2log(c\/1 - c2)
1 loglogA4 y 1 log V'
+log| 5+ - + ,
8 (2 logA " logd ' (V/Alogd—1)logA = logA4
y_ | N v2loglog A N 3
2 nlog A 2n((1/v/8)log(A4/8) — 1/V/A)
y 2
+

+ ’
mlogA  \/AlogA
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and y =0.5772156649 ... is Euler’s constant. Set

3 1 (9+6\/§)
(1.8) D—exp(loga+ 2logd +210g( 32 )

+ 4(log A)(aclog A +2)C

2
(aclog A - 2)2 +log(2n )) .

Then we have

(1.9) h*(K) > -—f——3

D(log f)
We remark that from (1.4) and (1.6) we have

(1.10) l<b<a.

Taking '

(1.11) A=416,000,

(1.12) c=0.9285,

(1.13) a =20.55,

we obtain

(1.14) B =0.3103355318,

(1.15) C =1.892633982,

(1.16) D =1242.298845,

so that, by Proposition 2, we have

(1.17) h*(K) > 2.000337977 > 2.

This proves the following result.

Proposition 3. Let K be an imaginary cyclic quartic extension of Q with relative
class number 2. Then the conductor f of K satisfies f< 416,000.

A computer program was written to calculate the relative class number 4" (K),
from the formula given in (3.13), for all imaginary cyclic quartic fields K hav-
ing conductor f < 416,000 of one of the forms given in Proposition 1. A
description of the computer program is given in §5. Exactly 10 fields K were
found to have A" (K) =2, namely

Q (\/—(5 + \/3)) (f = 40),

(\/ 2+\/§)) (f = 48),
(\/—13 5+2f) (f =65),
o

—5(13+2\/ﬁ)) (f = 65),
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o(V-se+vD) (=0,
Q( —(10+3\/ﬁ)) (f = 80),
o(V-115+2v%) =89,
o(V-65+68%)  (r=89.
Q( —(13+3\/E)) (f = 104),
Q( _7<17+4m)) (f = 119).
Since ’ ‘
h(Q(V2)) = h(Q(V5)) = h(Q(VT3)) = h(Q(VTT)) = 1
and :

h(Q(V10)) = h(Q(V85)) = 2,
Theorem 2 follows from Proposition 3 and Theorem 1.
2. FORMULA FOR h*(K)

We denote the multiplicative group of residues coprime with f by G. We
have

(2.1) G = Gal(Q(¢*™y/ Q).
Further we denote by H the subgroup of G such that
(2.2) H = Gal(Q(e”™)/K).

H is a subgroup of index 4 in G and the factor group G/H is cyclic of order
4. We let o be an element of G such that

(2.3) G/H = (aH),

and we define a character y on G by

(2.4) x(@) =i, x(h)y=1 forallheH.

There are just 4 characters defined on G which are trivial on H , namely,
(2.5) Yo X250 (=1

where x, is the principal character on G, that is,

(2.6) X&) =1 forall gegG.

X, x3 = X are quartic, primitive, odd characters of conductor f. xz is a
quadratic, even character (mod /). The primitive character ( xz)' induced by
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)(2 is given by
2

(2.7) ) (m)y=(m/m),  (n,m)=1,
where m is the discriminant of the unique quadratic subfield of X .

As is customary we write {(s) for Riemann’s zeta function, where s = o + it
is a complex variable. The function {(s) is meromorphic, its only pole being a
simple pole at s = 1 with residue 1. If 4 is a character (mod k) the Dirichlet
L-function corresponding to 4 is denoted as usual by L(s,4). If A # 4, (the
principal character (modk)), L(s,4) is an entire function. The only zeros of
L(s,4), apart from the trivial zeros )
{s=—2n(n=0,1,2,...), ifA(-1)=1,

s=-2n+1)(n=0,1,2,...), ifA(-1)=-1,
lie in the critical strip 0 < ¢ < 1. The function L(s,4,) is a meromorphic
function, its only pole being a simple pole at s = 1. It is well known that

(2.9) L(s,AO)=H(l—%) L) (a>1).

plk

The class number formula for abelian fields (see for example [7, §3]) applied to
the field K gives

(2.8)

' 3
(2.10) h*(K) = Jw(K)L(1 f)zt)L(l X)
v 4
where w(K) denotes the number of roots of unity in K, that is,
2, iff>5,
2.11 K) =
( ) wiK) {10, if f=5.

Since A*(K) =1, for f =5, we can exclude this case from this point on. Thus
we have

3
(2.12) gy = ELOLL L) s
2n
3. PROOF OF PROPOSITION 1

It is shown in [6, Theorem 1] (see also [20]) that the imaginary cyclic quartic
field K can be written uniquely in the form

(3.1) K=Q( A(D+B\/5)), ,
where A,B,C,D are integers such that
A is squarefree, odd and negative,
(3.2) D =B*+C? issquarefree, B>0,C>0,
Aand D are relatively prime.

It should be noted that the letters A, B, C, D used here have nothing to do with
the same letters used in Proposition 2. Moreover it is proved in [7, Theorem 5]
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that the conductor f of K is given by
(3.3) f=24D,

where
3, f D=2 (mod8)orD=1(mod4),B=1 (mod2),
(34) [=¢2, ifD=1(mod4),B=0(mod2),4+ B =3 (mod4),
0, if D=1 (mod4),B=0(mod2),4+ B =1 (mod4).

For each prime p, we let ep( f) denote the largest integer such that pe"(f )

divides f. It is clear from (3.3) and (3:4) that the following statements hold:

(3.5) if p is an odd prime,ep(f) =0,0r1;
(3.6) e,(f)=0,2,30r4;

(3.7) if e,(f) < 4 then f has a prime factor congruent to 1 (mod4);

(3.8) if f has only one prime factor then either f =16 or f is a prime =5
(mod 8);

(3.9)if f =8p (resp. 4p) for p an odd prime then p =1 (mod4) (resp.
p=1 (mod8));

(3.10) if f = pg for distinct odd primes p and ¢, then either p = q = 1
(mod 4) with at least one of p and g congruent to 5 (mod8) or one of p and
q is congruent to 1 (mod 8) and the other congruent to 3. (mod4);

(3.11) if f has more than one prime factor then ¢(f) =0 (mod16).
We also set

(3.12) C,;= Y I, Dj= ) 1 (j=0,1,2,3).
0<n<f/2 O<n<f/4
x(n)=i x(n)=i

It was shown in [7, Theorem 3] that

(3.13) h'(K) = p{(C, - C,)" +(C, - C))},
where

1/2, iff=5,

1/8, if f>5,f even,
(3.14) p=1{1/2, iff>5,fodd, x2) =1,

1/18, if f>5,f0dd,x(2)=-1,
1/10, if f>5,f odd, x(2) = +i.
It was also observed in [7, equation (6.8)] that
(3.15) Co+C,=C +Cy=9¢(f)/4.

Proposition 1 will be established after a succession of lemmas.
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Lemma 1. If f =0 (mod2) then for any integer n we have

(3.16) x(f/2=n)=x(n).

Proof. By (3.6) we have f = 0 (mod4). Thus we have (1 — f/2)2 =1
(mod f), so x(1 — f/2) = £1. Since x is a primitive character (mod f)
we must have

(3.17) x(1-f/2)=-1,
and, as y is odd, we deduce

(3.18) x(fl2-1)=1.
The assertion (3.16) follows eésily from (3.18).
Lemma 2. If f =0 (mod2) then

(3.19) C,=2D, (j=0,1,2,3).

Proof. As f is even, by Lemma 1, we have x(f/2—n)= x(n) for all integers
n, from which (3.19) follows.

Lemma 3. If f =0 (mod8) then for any integer n we have

(3.20) 2(f14=n) = (=" x(f14 = Dx(n).
Proof. We have (appealing to Lemma 1)

() x(-4C-4)

=—x((l—%>g—l) (as x(-1)=-1)
={+1, if f =8 (mod16),

-1, if f=0(modl16),
so that

£_1>={i1' if £ =8 (mod16),

(3.21) X( +i, if f=0(modl6).

Next we note that

f f [ x(18-f12=1), if f =8 (mod16),
X<7" )x(?“)"{x(f/ls-f-l), if £ =0 (mod16),
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so that by Lemma 1 we have

o2 (G- (Go)= {1 T mere,

Then, from (3.21) and (3.22), we obtain
(3.23) x(f/a+1)=x(f14-1).

If n=1 (mod4) then (f/4—1)n= f/4—n (modf), sothat x(f/4—n)=
x(f/[4=1)x(n). If n=3 (mod4) then —(f/4+ 1)n= f/4—n (modf), so
that by (3.23) we have :

2 (5=n) == (G )am = (5-1) .

This proves (3.20) when n is odd. When n is even (3.20) follows trivially as

x(f/4—n)=x(n)=0.

Lemma 4. If f = 16p, where p is an odd prime, then

(3.24) Dy+D,=D, +Dy=p—-1, -
0(mod2), ifp=1,7 (mod8),
1 (mod2), ifp=3,5(mod8),
0 (mod4), ifp=1,7 (mod8),
2 (mod4), ifp=3,5(mod8).

Proof. From Lemma 2 and (3.15) we obtain

Dy+D,=D, +D;=¢(f)/8=¢(16p)/8=p -1,
which is (3.24). Next we have

Dy+D= Y 1+ > 1,

(3.25) Dy+D, = {

(3.26) h*(K) = {

O<n<f/8 0<n<[f/8
x(n)=lori x(f/4—n)=1ori
that is,
(3.27) Dy+D;= > 1+ > 1
O<n<f/8 0<n<f/8
x(m=lori X(m)=(=D" M x(f/a=1)(1 or i)
by (3.21) and Lemma 3. Now, for r,s=0,1,2,3,set
(3.28) Sr.s)= Y, 1
O<n<f/8
n=r (mod 4)

x(m)=r*
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Then, from (3.27) and (3.28), we obtain
S(1,0)+85(1,1)+85(3,0)+S5(3.,1)
+S8(1,0)+S8(1,3)+83,1)+53,2), ifx(f/la-1)=i,

Dot D=1 501,00+ 51,1)+53,0)+53. 1)
+S(1,1)+8(1,2)+5(3,0)+S(3.,3), if x(f/4—1) = —i,
S(1, 1) +S(1,3)+5(3,0) + S(3,2) (mod2), if x(f/4—1) =1,
= {S(1,0)+S(1,2)+S(3,l)+S(3,3) (mod2), if x(f/4—1) = —i,
that is,
(3.29) Dy+D,=5(1,0)+S(1,2)+5(3,1)+S3,3) (mod2)

in both cases, as »
(S(1,0)+S(1,2)+(S(1,1)+8(1 ,3)) +(S(3,0)+S5(3,2))

+(8B,)+8(3.3)= > 1= > 1=¢@2p)=p-1=0 (mod2).
O<n<f/8 0<n<2p
(n.f)=1 (n.2p)=1

Next, we have

3
YSB.y= Y. 1= > 1
Jj=0

O<n<f/8 0<n<2p
(n.f)=1 (n,p)=1
n=3 (mod 4) n=3 (mod 4)

_ Z { {0, if p=1 (mod4),
0enzap 1, if p=3(mod4)
n=3 (mod 4)

1 . 0, if p=1(mod4),
=3P- )'{1, if p =3 (mod4)
so that
(3.30) S(3,1)+5(3,3)=53,0)+S5(3,2) (mod2).

Then (3.29) and (3.30) give
Dy+ D, =S5(1,0)+S5(1,2)+S(3,0)+S5(3,2) (mod2),

that is

(3.31) D,+D = Y 1 (mod2).
O<n<f/8
xm)=1

Now, for f = 16p, where p is an odd prime, we have from (3.3)
(3.32) 16p =2'|4|D .

As A is odd and negative, we have either 4 = —1 or A= —p. If 4 = -1
then D = 2%/ p,andsoas /[ =0,2 or 3 and D is squarefree, we must have
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/=3 and D =2p. Further,as D = B+ CZ, we must have p=1 (mod4).
If on the other hand we have 4 = —p then D = 24! ,andso,as / =0,2 or3
and D is squarefree, we must have / = 3, D = 2. Hence we have shown that
either

(333) K=0 (\/—(Zp +B\/ﬂ)) ,

where p=1 (mod4) is prime, 2p=BZ+C2, B>0, C>0,o0r

(3.34) K=0 (\/—p(Z + ﬁ)) ,

where p is an odd prime.

Set

(3.35) P = { p. incase (3.33),

1, incase (3.34).
Then the unique quadratic subfield of K is

(3.36) k=0(V2p")
of discriminant 8p" . Hence, appealing to [7, §3], we have
(3.37) x’(n)=(8p"/n), forn>O0and (n,8p")=1.
Thus (3.31) can be written
(3.38) Dy+D;= Y. 1= Y 1 (mod2).
’ O<n<2p O<n<2p
(n,16p)=1 (n,2p)=1
(8p*/n)=1 (2p*/n)=1
Next, by the law of quadratic reciprocity, we have for 0 < n < 2p and
(n,2p)=1
25) = (5=s) (5=5)
2p-n) \2p-n) \2p-n
-(3)3) (%)
p n p’
-(3)F) )
p n p’
-(w) (3) ()
“\np)\n)\p*
-(&) () (%)
“\np)\n n)’
that is,

(3.39) ( 2p” ):(‘—1) (2”‘>, O<n<2p, (n,2p)=1.
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Hence, using (3.39) in (3.38), we obtain
Dy+D,= Y. 1+ > 1 (mod2)

O<n<p O<n<p
(n.2p)=1 (n.2p)=1
(2p*/n)=1 (2p*/2p—n))=1

= Y 1+ > 1 (mod2)

0<n<p O<n<p
(n.2p)=1 (n.2p)=1
(2p*/n)=1 (2p* /n)=(=1/np)

= > 1 (mod2)
O<n<p :
(n.2p)=1

(=1/m)==(-1/p)

{ S oenc, 1 (mod2), if p=1(mod4),
= n=3 (mod4)

E -0<n<p 1 (mod2), if p=3 (mod4),
n=1 (mod4)
{ L(p—1)(mod2), ifp=1(mod4),

Lp+1) (mod2), if p=3(mod4),
_ { 0 (mod2), if p=1,7 (mod8),
1 (mod2), if p=3,5(mod8),
completing the proof of (3.25).
Finally, by (3.13), (3.14), (3.19), (3.24) and (3.25), we obtain
20" (K) = (D, — D,)* + (D, - D;)’
= (2D, - (p - 1))’ + (2D, - (p = D))’
— 4D+ DY) - 4(p - 1)(Dy+ D) +2(p — 1)’
=4(D,+D,) (mod8)
_ { 0 (mod8), if p=1,7 (mod8),
=\ 4 (mod8), if p=3,5 (mod8)

proving (3.26).

Lemma 5. If f = 8p, where p is an odd prime (necessarily p=1 (mod4) by
(3.9)) then we have

(3.40) Dy+D, =D, +Dy=3%(p-1),
(3.41) Dy+D,=4(p=1) (mod2),
and

. _ [0 (mod4), if p=1(mod8),
(342) h (k)= { 2 (mod4), ifp=S5 (mod8).

Proof. From Lemma 2 and (3.15) we obtain

¢(f) _¢(B8p) _p-1
D,+D,=D, +D, = 5 =8 - 3
which proves (3.40).
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Further we have
Dy+D, = Z 1

O<n<f/4
x(n)=lori
= > 1+ Y1,
0<n<f/8 0<n<f/8
x(n)=lori x(fl4—n)=1ori
that is,
(343)  Dy+D= Y 1+ 2 L
0<n<f/8 ’ 0<n<f/8
x(m=lori x(m)=(=1)""""x(f/4=1)(1 or i)

by (3.20) and (3.21). Then, from (3.43) and (3.28), we obtain
S(1,0)+S(1,1)+S5(3,0)+S53,1)
+8(1,0)+S(1,1)+S8(3,2)+5(3.,3), ifx(f/a-1)=1,

Dot D=1 501,00 45(1,1)+53,0)+53.1)
+S5(1,2)+8(1,3)+ 83,00+ 83,1), if x(fld—1)=—1
_ {S(3,0)+S(3, 1) +5(3,2) +5(3,3) (mod2), if x(f/4-1) =1,
=US(1,0)+ 81, 1)+ S(1,2) + 8(1,3) (mod 2), if x(f/4—1) = —1,
that is,
(3.44) Dy+D,=S(1,0)+S(1,1)+5(1,2)+S(1,3) (mod2)

in both cases, as
3

SN s(ro= Y 1= Y 1

r=1,35s=0 O<n<f/8 O<n<p
(n.f)=1 n=1 (mod2)
—1 -
= 5’2— =0 (mod2).

Hence we have

D, +D,

3
Y S(1,s) (mod?2)
=0

> 1 (mod2)
0<n<f/8
n=1 (mod 4)
(n.N)=1

> 1 (mod2)
O<n<p
n=1 (mod4)

1
== (mod 2),

completing the proof of (3.41).
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Finally, by (3.13), (3.14), (3.19), (3.40) and (3.41), we have
2h*(K) = (D, - D,)* + (D, - D,)’
= (2D, - }(p-1)*+ (2D, - }(p - 1))’
=4(D} +D}) - 2(p - 1)(D, + D,) + (p — 1)*/2
=4(Dy+D,) (mod8)
=p-1 (mod8)
proving (3.42).

Lemma 6. If f = 4p, where p is an odd prime (necessarily p =1 (mod8) by
(3.9)) then we have

(3.45) Dy+D,=D +Dy=4(p-1),
(3.46) D,+D,/=0 (mod2),
and

(3.47) h*(K)=0 (mod4).

Proof. From Lemma 2 and (3.15) we obtain

Dy+D,=D,+D,= 20D 1, )

~ which proves (3.45). Now let x, be the character (mod4) such that

(3.48) X4(1 4 pn) = x(1 + pn) foralln
and let x, be the character (mod p) such that

(3.49) xp(l +4n)=x(1+4n) foralln.
Clearly we have

(3.50) x(n) = x4(n)xp(n) forall n.

As x, is a nontrivial character (mod4) we have
(3.51) Xam)= (D" ifp =1 (mod?2).
Now, by (3.46), we have
Dy+D,i = %((1)0 D))+ (D, - Dy)i)
+ %((D0 + D,) + (D, + D,)i)
= 1((D0 —D,) + (D, — Dy)i) + pT_l(l +1)
((Dy = D,) + (D, — Dy)i) (mod(1 + i)Z[i])

1]
N = N = N

Y- x(n) (mod(l+i)Z[i]),

O<n<p
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that is, by (3.50) and (3.51),

(3.52) D0+D]E% oo x,m- Yo x,(n) (mod(1+i)Z[i]).

0<n<p O<n<p
n=1 (mod2) n=3 (mod 4)
Note also that
(3.53) I+x,(=1) > x,m= > x,n)=0.
O<n<p 0<n<p
n=1(mod 2)

Since x,(-1)x,(-1) = x(=1) = -1, and since x,(—1)=—1, we have

(3.54) xp(—l) =1.
From (3.53) and (3.54) we deduce that
(3.55) > x,(m=0.
0<n<p
n=1 (mod2)
Then, from (3.52) and (3.55), we deduce
Dy+D=- )., x,(n) (mod(l+i)Z[i])
O<n<p
n=3 (mod4)
= ) 1 (mod(l+i)Z[i])
O<n<p
n=3 (mod 4)
= Z(p —1) (mod(l +i)Z[i]),
that is,
(3.56) Dy+ D, =0 (mod(1+i)Z[i]).

The congruence (3.56) and the fact that (1 + i)Z[i]NZ = 2Z imply that
(3.57) Dy+D, =0 (mod2),
as required.

Finally by (3.13), (3.14), (3.19), (3.45) and (3.46) we have
2h*(K) = (D, - D,)* + (D, - D,)’

= (@D, - (p - 1)) + @D, - i(p - 1))’
=4(D}+D}) = (p-1)(Dy+ D))+ (p-1)°/8
=4(D,+D,) (mod8)

=0 (mod38),

proving (3.47).
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Lemma 7. If f = pq, where p and q are distinct odd primes, then we have

(3.58) C,+C,=C +C;=0 (mod4),
_ (0 (mod2), if(p/q)=1,

(3.39) =g, (mod2), if(p/q) = -

and

(3.60) b (K) = { 0 (modd), if(p/9)=1.

2 (mod4), if(p/q)=-
Proof. We remark that by (3.10) and the law of quadratic reciprocity we have

(p/q9)=(a/p).
Appealing to (3.10) and (3.15), we obtain
Co+C,=C+Cy=(p-1)(g-1)/4=0 (mod4),

completing the proof of (3.58).
We now begin the proof of (3.59). Let x » (resp. x q) be the unique character
(mod p) (resp. (modgq) ) such that

x,(1+gn)=x(1+gqn), forallneZ,
(resp. x,(1 + pn) = x(1 + pn), foralln € Z).

We have L
(3.61) x(n) = xp(n)xq(n), forallne Z.
As
C0+Ci—§((C -C)+(C, -C )z)+2((C + G,) + (C, + Cy)i)
-2 (ZC' ) +—(p— (g - 1)(1+1)
=3 X xm+gp-Dig- D+
0<n< f/2 ‘
S, (mrg(m + %(p —D(g- D1 +i),
0<n< f/2
we have ‘ 4 )
(3.62)  Cy+Cii s% S x,(mx,(n) (mod2(l +)2ZL1).
0<n<f/2
Since y is odd, by (3.61), we have
(3.63) | Zp(=Dr,(-1) = -1.
Moreover, as xp(—l) xq( 1) = £1, one of X,,( 1) and xq(—l) is +1

and the otheris —1. We assume without loss of generality that
(3.64) Xp(—1)=—1, Xq(—1)=1-



IMAGINARY CYCLIC QUARTIC FIELDS 17
The strategy of the proof of (3.59) is to show that

(3.65) % ) xp(n)xj(n)z%(l—@)) (mod(1 + §)Z[i])

O<n< f/2
and
1 1 ey
(366) 5 Y 2mrm=5 X z,(mrg(n) (mod(1+iZ[iD.
0<n<f/2 O<n<f/2
Then, from (3.62), (3.65) and (3.66), we obtain
(3.67) Cy+C, =Cy+Ci= % (1 - (g)) (mod(1 + §)Z[i])

from which (3.59) follows.
First we prove (3.65). We have

Z X, (mxg(n) = Z x,(n) - 5 Yoz,

0<n<f/7 0<n<f/2 0<n< f/2
X (m=1 xgm=—1
giving
(3.68) Z LM =5 3 xm- 3 x,0n
0<n<l/2 0<n<f/2 O<n< f/2
(n.g)=1 x2(n)=—1

Since |x,| xj is a real character, either half the elements of the set {n: 0 <n <
f, (n,f)=1} satisfy X;(”) = —1 or none of them satisfy xs(n) = —1. This
remark and the fact that |y p| and x: are even imply that

1 1
(3.69) X lmi=5 3 Ix,(ml=z4(f)or0,
O<n<f/2 o<n<f )
xim=-1 xim=—1

and so we have

(3.70) Y. x,(n)=0 (mod(1+i)Z[i]).
0<n< f/2
X (m==1
From (3.68) and (3.70), we obtam
1 R
3 O (mxgn EE Y x,(n) (mod(l+i)Z[i])
O<n< f/2 O<n<f/2
(n .q)=1

=2 Y xm-3 Y xan) (mod(l+)Zlil.

0<n< f/2 0<n<p/2
that is,

B7) 3 ¥ 2,xln=50-2,@) X x,n) (mod(l+HZLil),

O<n< f/2 0<n<p/2
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as
(3.72) > x,(n)=0.
p/2<n<f]2

Since p is prime, (Z/pZ)" is cyclic, and so there is only one nontrivial
quadratic character (mod p). Thus, for all integers n, we have

. if x, is real,
(3.73) (ﬁ) _ { x,(n), if x, isrea

p x;(n), if X, is nonreal .

Suppose at first that X, is real. By (3.73) and assumption (3.64) that x (==
—1,we have (—1/p)=-1,andso p=3 (mod4). Hence we have

374) > x,m= > |Xp(n)|E%(p—l)El (mod(1 + i) Z[i]).
O<n<p/2 O<n<p/2 )

From (3.71) and (3.74) we obtain
l 2 = l —_ 2 1 1
3 0<§72x,,(n)xq(n) =5 (l (p)) (mod(1 + i) Z[i]).

This congruence and the fact that (p/q) = (¢/p) establish (3.65) when X, is
real.
Now suppose that X, is nonreal. By (3.73) we have

2 2
(=1/p) = 25(-D) = 2,(-1)) =2, (1) = 1,

so that p =1 (mod4). Since xp(—l) = —1 (by (3.64)) and X, is a quartic

character, —1 cannot be congruent (mod p) to a fourth power. Thus we have

(-)P % £ (mod p), (-1)»""* = _1 (mod p), andso p =5 (mod8).

Let £ ; (j=0,1,2,3) denote the number of integers n such that 0 < n < p/2

and xp(n) =i/ . Then we have

(Eg+Ey)—(E,+E)= Y x,(n)
O<n<p/2

=3 3 2 @sxl-n=1)

O<n<p
2. ..
=0 (as x, is nontrivial)

and so, as Ey+ E, +E, + E; = 1(p - 1), we have

(3.75) E+E,=E +E;=(p-1).
As p=S5 (mod8), from (3.75), we deduce

(3.76) E,+E,=E +E;=1 (mod2),
and so ‘

(3.77) > x,(n)=1+i (mod2Z[i]).

O<n<p/2
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By (3.73) we have
+1, if(g/p)=1,

379 50{ 41 it arm -

and so

1 .~ _ [ 0 (mod(1 +0)Z[i]), if(q/p)=1,
(379 U -x@+i= { 1 (mod(1+i)Z[i], if (q/p)=—
From (3.71), (3.77) and (3.79), we obtain

> i =g (1= (2))  modq +zim.

O<n< f/2

This congruence and the fact that (p/q) = (q/p) establish (3.65) when X, is

nonreal. This completes the proof of (3.65).
Now we prove (3.66). We first observe that

S %, (M) + 2,(n)

0<n<f/2

——Z Yo 1, (X (n) + x,(n)

Jj=00<n<f/2

Xq(m)=i'
1+ -1
= Y x,n + = — Cad ) > x,,(n)+( (n),
O<n< f/2 O<n< f/2 O<n< f/2
Xq(n)=1 Xq(n)=i Xe(m)=—1i
so that
2
o 2, (Mg (n) + x,(n)
O<n<f/2
(3.80) .
doox,(m+i Y x,(n)- (n).
O<n< f]2 O<n<f]2 0<n<f/2
xq(n)=1 Xy(m)=i x3(n)=—1

We next show that

(3.81) > x,(n)=0 (mod(1 +i)Z[i]).
O<n< f/2
Xq(n)=1
We have
Yo x,(m= Y x| (mod(l+i)Z[i])
Sl Sl
(3,82) Xy 1‘4
=5 Y Ix,(m| (mod(1 +i)Z[i])

O<n<f
Xu(")=l
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as x,(-1) =[x, (-1)| = 1. Since [x,|x, is a nontrivial quartic or quadratic
character, either a half or a quarter of the elements in the set {n|0 < n < f,
(n,f) =1} satisfy x,(n) =1, depending on whether or not x , 1s real. This
remark and (3.82) imply that
) { tp-1)(g-1) (mod(1 + )Z[i]), if X, real,
X,\n) = A .
(3.83) 0<?<)f/12 P §(p—1)(g — 1) (mod(1 +i)Z[i]), if x, nonreal,
Xq\n)=
=0 (mod(l+i)Z[i]),
proving (3.81). A similar argument shows that
(3.84) > x,(m)=0 (mod(1+4)Z[i]).

O<n< f/2
Xq(n)=i

Using (3.81) and (3.84) in (3.80), we obtain
(3.85) _
2 Y melm e =-S5 ) (med(1 + zi).

O<n< f[2 0<n< ff2
x3(my=—1

Our next goal is to show that

(3.86) > x,(n) €2z
O<n<f/2
x2(n)=—1

For all integers j and k, we let E ik denote the number of integers n such
that O0<n< f/2, xp(n) =i and x:(n) = (—l)k . Then we have

Z X,(n) = Ey — Ey +IE|| - iEy,,

O<n<f/2
x(n)=—1
so that
(3.87) Y. x,(n)=Ey +Ey +i(E, +E;) (mod2Z[i]).
O<n<f/2
X (m==1

The map n — (x;(n) ,xj(n)) is a homomorphism from (Z/pgZ)* to {£1} x
{£1}. Thus the number of elements which map to a point in the range R is
(p — 1)(g — 1)/card(R).
Note that
Ey +Ey =card{n|0<n < fj2, x)(n) =1, x2(n) = -1}

Yeard{nj0<n< f, x3(n)=1, x3(n)= -1}
0, if xj is trivial ,

(p—1)(g—1)/4, if x; is nontrivial and x_, is trivial,
(p—1)(g-1)/8, if xj and xf’ are both nontrivial ,
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so that

(3.88) E), +E, =0 (mod2).
Similarly we can show that

(3.89) E +E,=0 (mod2).

Assertion (3.86) now follows from (3.87), (3.88) and (3.89). Then, from (3.85)
and (3.86), we obtain (3.66). This completes the proof of (3.59).
Finally we prove (3.60). By (3.13) and (3.14) we have (as f = pq is odd)

2h*(K) = (Cy - C,)* +(C, - C,)* (mod 8).
Appealing to (3.58) and (3.59), we obtain
2h"(K) = 4(C; + C7) (mod 8)
=4(C,+ C,) (mod 8)
_ [ 0(mod8), if(p/q)=1,
- { 4 (mod8), if (p/q)=-1,
completing the proof of (3.60).

Lemma 8. If f has at least three prime factors then

(3.90) { Co+C,=C, +C;=0(mod4), iff odd,
Dy+ D, =D, + Dy = ¢(f)/8, if f even,
(3.91) { Co+ €, =0 (mod2), iff odd,
Dy+D, =0 (mod2), iff even,
and
(3.92) h*(K)=0 (mod 4).

Proof. We consider two cases according as f is odd or even.

(a) f odd. First we note that (3.90) in this case follows at once from (3.11)
and (3.15). Next we prove (3.91). Since x is an odd character there must be a
prime factor ¢ of f such that x,(=1) = —1. Define f, = f/q. By (3.5) we
have (f;,q)=1 andso x = X,X s, - Working modulo (1 + i)Z[i] we have

G+ C =Cy+Ci
1 o .
= 5(C = G+ (€ = C)i) + 5((C+ G) +(C + Cy)i

2
E% ) x(n)+%f)(1+i),
O<n< f/2
that is,
(3.93) C0+C|E% > 2 (mxy(n) (mod(1+i)Z[i).

O<n<f/2
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Since y = XXy, and both y and x, are odd, we have Xf.(_l) =1 so that
x5 is even. Therefore xj Xy is an even character and we have

(3.94) > xima(n) = Z Xy (n) =

O<n<f/2 0<n<f
From (3.93) and (3.94), we obtain

1 . .
(395 C+Ci=5 X (x(m+xg(m)xs(m) (mod(l+i)Z[i).
O<n<f/2 ‘
As in the proof of Lemma 7, we have .

1Y () + 22 m)

O<n<f/2
(3.96) 1 )
= D xm+i D0 xpm-51+0) Y x.(n)
O<n< f/2 0<n<f/2 O<n< f/2
Xq(n)=1 Xq(n)=i x2(n)=—1
and
(3.97) Y. x;(m)=0 (mod2Z[i]),
0<n<f/2
x5 (m==1
so that
(3.98) Co+Ci= Y x,(n) (mod(l+i)Z[i)).
0<n<f/2
Xq(n)=lori

Since y (n) is a fourth root of unity whenever (n,f) =1,
X5(m)=1 (mod(1+)Z[i]),
whenever (n, f) = 1. Hence we have
(3.99) C,+C, =Gy + G, (mod(1+i)Z[i]),
where G; denotes the number of integers n suchthat 0<n < f/2, (n,f)=1

and xq(n) =i,
We want to show that

(3.100) G,=G, =G, =G; (mod2).
First we observe that
(3.101) Gy =G, +i(G -Gy = Y x,(n)
0<n<f/2
(n.fN)=1
Let ¢ =¢q,.9,, ... ,q, denote the prime factors of f. By assumption we know

that ¢ > 3. By the inclusion-exclusion principle we have

(3.102) Y7 (M= (1= 2 @)1= xy(@y) -+ (1= x,(q)) D x,(n).
?,f"f)ﬁ/,z 0<n<q/2 )
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Since xq(qz), ,xq(q,) are fourth roots of 1 and since ¢t > 3, we have
(1- xq(qz)) - (1= X, (q,)) € 2Z[i]. Furthermore, we have
(3.103) > x,m=5(g-1) (mod(l+i)Z[i)).

O0<n<q/2

Hence, when ¢ =1 (mod4), we have
(3104)  (1-2,(@)-(1-24,g)) Y x,(m=0 (mod2(l+1i)Z[i]).
0<n<q/2

When ¢ =3 (mod4), X, must be a quadratlc character since every quadratic
residue is congruent to a fourth power mod gq. Therefore, when ¢ = 3
(mod 4), we have

l—xq(qj)zo (mod 2), j=2,...,t,
S0

(1 =x,(4y)) - (1 = x,(¢,)) =0 (mod4),
and thus in this case as well (3.104) holds. From (3.101), (3.102) and (3.104),
we obtain

(3.105) G -G,=G, -G;=0 (mod2),
(3.106) 1(G, - G,) = 1(G, - G;) (mod2).
From (3.105) and (3.106) we see that
(3.107) G,-G,=G,-Gy;=00r2 (mod4).
Since xi(—l) =1 we have '
, o)
(3.108) > xq Z x =0or =
0<n< f]2 O<n<f
(n.N)=1 (n./)=1
Furthermore, we have
(3.109) > x (n) = (G, + G,) - (G, + Gy).
O<n<f/2 .
(n.f)=1
From (3.108) and (3.109) we see that either
(3.110)(1) Gy +G, =G, +G,=¢(f)/4
or
(3.110)(ii) G, +G,=¢(f)/2, G, +G;=0.
As ¢(f)=0 (mod16) we deduce from (3.110) that
(3.111) G,+G, =G, +G;=0 (mod 4).

Adding (3.107) and (3.111), we obtain
(3.112) G, =G, =(G,-G,)/2 (mod 2).
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Congruences (3.107) and (3.112) imply that
(3.113) G,=G, =G, =G, (mod2),
and, from (3.99) and (3.113), we have
C,+C, =0 (mod(l +i)Z[i]).
Since (1+i)Z[iINnZ =2Z, C,+ C, is even, completing the proof of (3.91) in
this case.
Finally we prove (3.92) in this case. By (3.13), (3.14), (3.90) and (3.91), we
have
‘ 2h*(K) = (G, — C,)*+ (C, — C;)* (mod 8)
= 4(C. + C}) (mod 8)
=4(C,+ C,) (mod 8)
=0 (mod 8),
completing the proof of (3.92) for f odd.
(b) f even. First we prove (3.90) in this case. By (3.11), (3.15) and Lemma
2 we have
Dy+D,=D, +Dy=¢(f)/8=0 (mod 2).
Next we prove (3.91). In order to do this we let L (F ) denote the number of
elements in the set
{n:1<n<F, (n,F)=1, n=j (mod4)},
where F denotes an odd number greater than 1. We begin by proving
t;(F) (mod2), if f =4 (mod8),
t_p(F)(mod2), iff=0 (mod8),
where F is the largest odd factor of f. Note that by our assumptions on f
we have F > 1. We begin with the case f = 4F. We have x = x,x, where
X, and x. are the characters (mod4) and (mod F) respectively defined by
{ X1+ Fn)=x(1+Fn), foralln,
Xp(1+4n) = x(1+4n), foralln.
As x, is a nontrivial character (mod4) we have

(3.114) D, +D, E{

(3.115)

(3.116) 2a(m)= (=" when n=1 (mod2).
Note that
D,—D,+iD, —iD;= Y x(n)
O<n<F
(3.117) "
= Y. xem=2 > xp(n
O<n<F O<n<F
n=1(mod 2) n=3 (mod 4)
and that
(3.118) A+ xp(=1) Y xp(m)= > xx(n)=0
.0<n<F O<n<F

n odd
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Since
(3.119) (D) =2(=D/x(-1)=-1/-1=1,
we see, from (3.118) and (3.119), that
(3.120) > xp(n)=0,

O<n<F

n odd
and so, from (3.117) and (3.120), we have

1 ,
(3.121) 3Dy =Dy +i(D = Dy)) == 3 xg(n).
0<n<F
n=3(mod 4)

Further, as

(3.122) %(D0 + D, +i(D, + D,)) = %(1 +i)=0 (mod(i + )Z[i]),
we obtain by adding (3.121) and (3.122)

(3.123) Dy+D =Dy,+iD;=- Y xg(n) (mod(1+i)Z[i]).
0<n<F
n=3(mod 4)
Since
(3.124) L(F) = Z 1=- E Xp(n) (mod(1+ i)Z[i])
O<n<F O<n<F
n=3(mod 4) n=3(mod 4)
(n,F)=1

we deduce that
Dy+ D, =t,(F) (mod(1+ i)Z[i]).

This congruence and the fact that (1+i)Z[i{]nZ = 2Z imply that (3.114) holds
in this case.

Next we treat the case f = 8F . We have x = x,x, where x; and x. are
the characters (mod 8) and (mod F) respectively defined by

{x8(1+Fn)=x(l+Fn), for all n,
Xp(1+8n)=x(1+8n), foralln.
As xg is primitive, we have x,4(5) = x4(—3) = —1. Hence we have

(3.125)

_ [ xg(n), if n=F (mod4),
(3.126) Xg(2F —n) = { — Xg(n), ifn=—F (mod4).
Note also that
(3.127) XpQF —n) = xp(—n) = xp(=D)xp(n).

Putting (3.126) and (3.127) together, we deduce
x-(=Dx(n),  ifn=F (mod4),

(3.128) X(Q2F —n) = { = xpe(=1)x(n), if n=—F (mod4).
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Using (3.128) we obtain

2 Y am=g Y (m)+xQF - m)
O<n<f/4 O<n<F
=30+ 2:-1) Y 2w
O0<n<F
n=F (mod 4)
F-2e-1) Y xm),
nagi'n(fnl:)dﬂ
that is,
(3129) 3 ¥ x=3(42:-1) ¥ xm-2p-1) X xlm).
O<n<f/4 O<n<F 0<n<F

n=—F (mod 4)
Since xp(—1)=1 or -1, 1(1+ xz(—1)) is an integer. Also we have
F A
Yooxm= Y xmi= Y 1=¥50 (mod(1 + §)Z[i]).
O<n<F O<n<F 0<n<F
(n.f)=1
Hence we have
1 A
5 2 Xm=-xe(=1) 3 x(n) (mod(1+i)Z[i])
0<n< f/4 O<n<F
n=—F (mod 4)
= Z [x(n)] (mod(1 + i)Z[i]),
O<n<F
n=—F (mod 4)
that is,
1 N
(3.130) 3 Y x(m)=t_p(F) (mod(1+i)Z[i]).
0<n<f/4 '
Now, modulo (1 + i)Z[i], we have

D,+ D, =D, + D,i

= 3((Dy = Dy) + (D, = Dy)i) + 5((Dy + Dy) + (D, + Dy)i)
E% > x(n)+#£)(1+i),
O<n< f/4
that is, as ¢(f) =0 (mod16),
(3.131) D, + D, E% > x(n) (mod(1+ i)Z[i).
O<n<f/4 '

From (3.130) and (3.131) we obtain (3.114).
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Suppose now that f = 16F. We have x = x,.x, , where X6 and x, are
the characters (mod 16) and (mod F) respectively defined by

X16(1+ Fn) = x(1+ Fn), foralln,

(3.132) Xp(1+16n) = x(1+16n), foralln.

Note that

(3.133) X16(4F — n) = { X'6(3))_('.6(n) ' ff "= F (modd),
X16(3) x16(n), if n=—F (mod4),

and that

(3.134) Xp(4F —n) = xp(=1)xp(n), foralln.

Putting (3.133) and (3.134) together, we obtain
-1 3)x(n), if n=F (mod4),
(3.135) x(4F —n) = { Xp(=1)1,6( ))_CE ) ' ( )
Xe(=D)x,6(3) x(n), if n=—F (mod4).
Hence we have

2 Y xm=3 X (xm) +x@4F - n)

0<n<4F 0<n<2F

1
= —(1 -1 3
(3.136) 2+ 2 COnC) 2,
n=F (mod 4)

1 -

+3+ x0T X ().
0<n<2F
n=—F (mod 4)

Since x,¢ is a primitive character (mod 16),x,,(9) = -1, x,,(3) = i, and
thus

(3.137) X637 = —x,6(3).
From (3.136) and (3.137) we obtain

2 Y xm = (42D X i)

(3 138) 0<n<4F 0<n<2F
' - Xp(_l)xlgs(?’) Z X(”)-
0<n<2F
n=—F (mod 4)
Next observe that
X16(n) if n=F (mod8),
= X16(n), if 5n=F (mod8),

(3.139) X6(2F —n) = X16(=3)x,(n),  if Tn=F (mod8),

116(—3)_1)(,6("), if 31 = F (mod8).
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From (3.139) we see that
_ ' _ [ x16(n) (mod2Z[i]), if n=F (mod4),
(3.140)  x6(2F =) = { iX,5(n) (mod2Z[i]), if n=—F (mod4).

Hence we have

> xm)= Y (x(n)+x(2F —n)

0<n<2F O<n<F
= (1+x(-1)) Z x(n)
O<n<F
n=F (mod4)
+(+ixpe(-1) Y. x(n) (mod2Z[i)),
O<n<F
n=—F (mod 4)
that is,
(3.141) Yoo oxmy=(1+i) Y. x(n) (mod2Z[i]).
0<n<2F O<n<F
n=—F (mod 4)
Also we have
(3.142)
Yoo xm=(+ixe(-1) Y. x(n)=0 (mod(l+ i)Z[i]).
0<n<2F 0<n<F
n=—F (mod 4) n=—F (mod 4)

From (3.138), (3.141) and (3.142), we obtain modulo (1 + i)Z[{],

R (U EE (EP RGP (RN DO

0<n<4F 0<n<F
n=-—F (mod 4)

S x(n) (as x,4(3) = £i),

O<n<F
n=—F (mod 4)
that is,
1
(3.143) 3 > x(n)=t_g(F).
0<n<4F

From (3.143), as in the case f = 8F , we obtain
Dy+ D, =t_p(F) (mod(l+i)Z[i]),

from which (3.114) follows in this case. This completes the proof of (3.114).
Next we examine the value of tj(F ), j=0,1,2,3, where F is an odd
squarefree integer > 1. If F = p (an odd prime) it is easy to show that

to(p) =t,(p) = t(p) = t3(p) = 3(p—1), if p=1(mod4),
(3.144) t(p)=%(p-3), t,(p)=%p+1),
L(p)=4(p+1).4,(p)=4(p-3), if p=3(mod4).
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If F = pq, where p and g are distinct odd primes, it is also easy to show that
(3.145) '
to(pq) = t,(Pq) = t,(pq) = t;(pg) = (P —1)(g — 1), if porg =1 (mod4),
to(pg) =t (pg) = 3(p—1)(g-1)+1,
t)(pq) = ty(pg) = 3(p - 1)(g—1) -1, if p=g=3(mod4).

Equation (3.145) shows that
t(F)=0 (mod2), j=0,1,2,3,

when F is a product of two distinct odd primes.
Suppose now that F has more than two prime factors. We will prove that

(3.146) t(F)=0 (mod2), j=0,1,2,3,

by induction on the number of prime factors of F. Let p be a prime factor of
F and write F = pF,, where F , has at least two distinct odd prime factors.

We have
LE)= > 1= 3 1= 31
O<n<F O<n<F O<n<F
(n,F)=1 (n,F)=1 (n.F))=1
n=j (mod4) n=j(mod4) n=0(mod p)
n=j(mod 4)
p—1 (k+1)F,
=> X 1= > 1
k=0 n=kF,+1 0<m<F,
(n,F)=1 (m ,Fy)=1
n=j (mod4) pm=j(mod4)
p—1 F,
= X 1= X 1
k=0 =1 O<m<F,
(! ,Fy)=1 (m ,F))=1
I=j—kF, (mod 4) m=jp (mod 4)
that is,
p—1 p—1
LF)=1t,(F) Y. 1+t,(F) > 1
k 1-!( Tood4) k=jF, k;o( od 4)
=) m =jr—r); (m
(3.147) R et
+1,(F)) > 1+ 4,(F)) > 1—1t,(F)
k=0 k=0
k=jF,—2F, (mod4) k=jF,—3F, (mod4)

from which (3.146) follows by induction.
Next, from (3.114) and (3.146), we obtain D, + D, =0 (mod2), if f is
even, completing the proof of (3.91).
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Finally we prove (3.92) when f is even. From (3.11), (3.13), (3.14), (3.90)
and (3.91), we obtain

2h°(K) = (D, - D,)* + (D, — D;)*

(2D (f)) <2D ¢(f)>

2
= 40} + 01 - *D 0, + b + G
=4(D,+ D)) (mod 8)

=0 (mod 8),

completing the proof of (3.92) for f even.
The proof of Proposition 1 now follows from Lemmas 4, 5, 6, 7, 8 and the
fact that A*(K) =1 (mod2) if f has only one prime factor [14].

4. PROOF OF PROPOSITION 2

The proof of Proposition 2 depends upon a number of lemmas.

Lemma 9 (Landau [11, pp. 27-28]). For any real number s > 1 we have

(4.1) ;—1—1<C(s)<l+s_;1
and
(4.2) C(S) >—(s—1)- __1_

[{0) s—1

Lemma 10 (see for example [1, pp. 55-56]). For any positive integer N, we
have

N

Z%—logN—y

n=1

(4.3)

<L,
SN

where
y=0.5772156649...

is Euler’s constant.

Lemma 11 (Polya-Landau inequality [13, 9]; see also [1, pp. 299-300]). Let A
be a nonprincipal character mod k of conductor m. Then, for any positive
integer n, we have

(4.49)

Y Ar)

r=1

J

sd(k/m)—z—;l— (logm+210glogm+ +2y+

kS 6/mlogm )
vm ymlogm—-1/"~

where d(I) denotes the number of positive integers dividing the positive integer
l.
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Lemma 12 (Tatuzawa [15, Lemma 5], Uchida [17, Lemma 2(i)]). Let A be a
nonprincipal character (mod k). Suppose that N is an integer such that

Y Ar)
r=1

Jor all positive integers n. Then we have

(4.5) <N

|s] A
FE

n=1

(4.6) |L(s,A)| <

Jor s=a+it, >0.

Lemma 13 (Landau [10, 11]). Suppose that r > 0 and so>1,andlet f(z) be
analytic in the disk |z — sy| < r. Assume that f (89) # 0 and for some positive
constant M

(4.7)0) @/ f )l <e™, for|z—sy| <.
Assume also that there is a constant E such that
(4.7)(i1) E>2 on 0<sy—1<r/E.
Let s and r, be real numbers such that /
(4.8) 1<s<s,, f(s)#0 and r/Ef';<r|5r/2;
then

2E(r,E+r
@ a(H)ma(y) Bume

where p runs through all the zeros of f(z) (counted according to multiplicity)
such that |p —s,| <r, .

Proof. Set
(4.10) g(2)=r2)/[[(z-»).
p
where p runs through all the zeros of f(z) (counted according to multiplicity)

in |z —sy| <r . Then g(z) is analytic in |z — 5ol < r and has no zeros in
|z — 5ol < r,. For |z -5, =r we have (as rI <r/2)

g(z)| _|f(2) IS0 <|f(2) r
g(So) B f(so) H |Z_p| f(so) I;Ir_rl
< |2 _|f(2) M
=l = sl s

Then, by the Maximum Modulus Principle, we have

(4.11) 18(2)/&(sy)l < e™, for |z =55l <1,
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Now there exists an analytic function 4(z) in |z —sy| < r, such that

(4.12) "V =g(2)/8(s),  h(s) =0, Rh(z) <M
Set
(4.13) #(z) = h(z)/(2M — h(z)), for|z—s5|<r,.

The function ¢(z) is analytic in |z —sp| < r, and such that ¢(s)) = 0. Now
let

(4.14) u=R"n), v =Im(h),
sO '
. u+ v
(4.15) ¢(Z)—(—2—m, us<M,
giving
2, .2
2 u +v
)| =———<1,
1#(2) M —u)? +v*
as (2M - u)2 —u' = 4M (M — u) > 0. Hence we have
(4.16) |#(z)| <1, for|z—s)|<r,.
By Schwarz’s lemma [18, p. 189], we have
1 so— 1 1r
(4.17) |¢(S)|$Z|S—s0|$ 7, sz< 1.
Thus we have ,
2Mé(s) | . 2M|¢(s)|
h(s)| = ' <
PN = T35 | = T=166)]
<2M._l-£.._—1._-—= r/rl

- Er, 1-(1/E)(r/r) 2 E—(r/r)’
and so for |z —5)| < r, we have
R(h(z) — h(s)) = R(h(2)) — R(h(s)) < R(h(2)) + |h(s)]

r/r, _ E +r/r
S]M-'-ZME—r/rl - (E-—r/rI M

Now set

) (h(z) = h(s))
18 ) = A @ TE M =~ (@~ AG))

w(z) is analytic in |z —5)| < r, and

(4.19) [¥(z)| <1, ¥Y(s) =0.
Hence we have

(4.20) [¥(z)| <1, for|z—s|<r —e.

for [z —sp| <1,
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By Schwarz’s lemma [18, p. 189] we obtain
h'(s) 1 1

@2 YOI =|3ET rIE e VM| =71 ¢~ 7, —r/E’
so that
, 2E(rE +r)
(4.22) A ()] < CE—E M
Now
v &) _f(s) 1
(429 O =50 T T "2
SO .
fs) 1 £'(s) 1 2E(r,E +7)

m(f(s) ;s— ) f(s) Zs—p’ T (nE-r) M

giving
f(s) 1 2E(r E+r)

(429 m(fux) E:m(s—p)+<rﬁ—n

This completes the proof of Lemma 13.
Lemma 14 [12, Lemma 1]. Suppose that

(4.25) Y a,cosm$p>0 (n>1,a,>0)

for all real ¢. Then we have

al) L'(e,A™) L'(e,7")
(4.26) a, ° 22 m(L(aJ,,,)+L(. ))_0,

for o> 1 and any character A. (A, denotes the principal character.)

Lemma 15 [6, pp. 146-150; 12, Lemma 2). Let A be a nonprincipal character
(modk) andlet y =0 or 1 according as A is even or odd. Then for ¢ >1/2

L'(s,) L'(s,7)
m(uaa>+m(ﬂZ3)

(427) I'(i(s+)) R
ZIOgn—logk—m—HRZ( + ) ,
P

T(3(s +)) s—p s—1+p

where s = o + it and in the last sum p = B + iy runs through all the zeros of
L(s,A) inthestrip 0< B< 1.

From this point on in this section we will make use of 4,B,C,D ,a,b,c
as defined in (1.2)-(1.8). We assume that the conductor f satisfies (1.1) and
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we set
(4.28) s, =1+ L 1+ L

' 0™ " "alogf’ ! blogf’

b

. = _, <x<1,
(4.29) s 1+alogf 0<x<l
so that
(4.30) 1<s<sy<s,, s>1.
We also note that
(4.31) log f > log A
and

oglog A

(4.32) loglog f < ( log A ) log f-

Inequalities (4.31) and (4.32) will be used on many occasions without comment.
Set Ly(s) = L(s, x)L(s,x*), Ly(s) = L(s.x").

Lemma 16. log{(s,) +log L,(s,) + log L,(s,) > 0.
Proof. As s, > 1 we have

(4.33) log {(s,) = Zlos( ) Y

p n=1 np

and, for j=1,2,3,

(4.34) log L(s,. x') = - 3" log (1 ) Ei"( .
14

p n=1
where y is the character defined in §2 and p runs through all primes. Adding
(4.33) and (4.34) we obtain

3 :
log £(s,) +log L, (so) +log L,(s,) = log {(s,) + Y _log L(s,, X)
Jj=1

_y s ) 2o 20"

nso

P n=l np
as 1+ x(p)" +2(p)*" + x(p)*" = 0 or 4.
Lemma 17 [17, Equation (3)].
—logL (1) <loga + loglog f + 1 +log L,(s,) + N Lll(s) ds.
alog f 1 L(s)
Proof. We have
o Li(s)

ds.

(4.35) ~logL, () =~logLy(s)+ | T 755
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By Lemma 16, we have

(4.36) log {(s,) +log L,(s,) +1og L,(s,) 20,
so that
0 L'(s)
(4.37) —log L (1) <log{(sy) +log L,(s,) + —L—=ds.
1 L](s)

Now, by Lemma 9 and (4.28), we have
(4.38) {(sp) <1+1/(sy—1)=1+alogf.
Hence we have

log {(s,) < log(1 +alog f)

= log (a log f (1 + 2'1—16%7))

1
= loga + loglog f + log (1 + m)

1
< loga +loglog f + alogf
This completes the proof of Lemma 17.

Lemma 18. For any positive integer n, we have

> ox(r)
r=1

where B is defined in (1.3).
Proof. By Lemma 11, as x is a primitive nonprincipal character mod f, we

(4.39) < [BVflog f].

have
<1+ X \/7 (logf+210glogf+\/6_7\/l;fgl—(}g?fi+2y+\/i7>
3\/_logf \/_logf 1 loglog 4
2\/_ logA 2n ' n logd V/logf
3 /flogf logf
+ElogA— 1/\/_ \/—108A
=BV logf,
O .
Y x| <BVSflogf —1<[BVSflogf],
r=1
as asserted.

Lemma 19 [17, Lemma 2(ii)]. For z a complex number satisfying
(4.40) |z—s0l <c,
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we have

(4.41) IL(z. )] < \/1—3 EANCTTO

Proof. By Lemmas 12 and 18, we have

(4.42) IL(z.2) I<| lZ '

lnl

where z =0, +it;, ¢, >0,and N =[B\/flogf]. Now for |z —sy| <c an
easy calculation shows that

(4.43) |_Z_| < ! .
g9, 1-c¢
Further we have
—_ S = —
n=1 ,,01 n=1 n n=2 nl ¢
N c c
-~ «f)_g=1+£_1<i,
1 x c c c
that is,
A l /2
. — < -B°f°
(4.44) Y- = < 2B /(0 S

Hence, for |z —s,| < ¢, we have

1 ¢ qC c
|L(z,x)| < Tl—_‘?B S Pogf)°,

as required.

Lemma 20 {17, Lemma 3(i)]. Let p be a zero of L(z,x). For 1 <s<s, we
have

1 1 1
4.45 m( ) < m( ) .
(449 s=7) S T=G =G =) \5, =7
Proof. Set p=0 +it. As p is a zero of L(z,y) we have ¢ < 1. We have

7(o25) = (5morm) (555

that is,

1 s—0
4.46 R ) = .
(4.46) (S—P (s—0)+1?
Now set

1 s -0
4.47 X = ZR( ) = 1 > 0.
(4.47) S =P (sl—a)2+t‘2
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Then we obtain

1 )_ s—0
(s—p S (5-0)=(s5,—0) + (s, —0)/X
_ s—a
T 2s-s)s—0)—(s—s)} + (s, — 0)/ X

that is,

1 B (s—a)X
(4.48) m<s_p) - 2(s_s|)(s—a')X—(S—Sl)ZX"'(Sl ~0)

Now clearly we have

’

—_— >
(s, —a)2+t‘2

) ,
T G MY
(s, —0) +t
giving
4.49) 1-(s,—0)X>0.
1

Multiplying (4.49) by (s, —s) > 0, we obtain
(s=5)(s,—0)X +(s, —5) >0,
giving
(s=5)(s—0)X — (s =)’ X + (s, —5) > 0,
and so
(4.50) 2(s—s)(s—0)X — (s — sl)zX +(5,—0)2(s=5)(s—0)X +(s—0).
Now s —0>0 and '
(s=s)X+1>(0-5)X+12>0,

so we have

(4.51) (s=s)s-0)X+(s—0)>0.
Thus we have, from (4.50) and (4.51),

(4.52) ! > 1

(s=5)s=0)X+(s=0) ™ 2(s—5,)(s — 0)X — (s — 5,)°X + (s, —0)
and so by (4.48) and (4.52) we obtain

1 (s—0)X X
m(s—p) S G-)6-0X TG0 Gos)X+1
as required.

Lemma 21 [17, Lemma 3(ii)]. Assume that
(4.53) IL,(2)/L(s))| < e, where M>0,
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Jor |z —s,| < c. Then, we have

Li(s) 1 4a(log A)(aclog A + 2)
(4.54) L, (s) S;m(S—P) + (aclog A — 2)? M

where p runs through all the zeros of L (z) (counted according to multiplicity)
in|p—sy<c/2.

Proof. In Lemma 13 we take
(4.55) f(z)=L,(2), r=c, r=c/2, E =aclogA.

It is easily verified that the hypotheses of Lemma 13 are satisfied and assertion
(4.54) of Lemma 21 follows as L'l (s)/L,(s) is real.

Lemma 22. If h*(K) =2 (mod4) then we have

1 loglogA y 1 log V'
(o) (2 logd " logA '~ (Vy/Alogd—1)logd log4 e/

where

1+\/§loglogA 3 L 2
V2 nlog A 21((1/v/8)log(4/8) — 1/v/A) mlogd = /AlogA’
Proof. For x > 5 set

V =

vxlogx +/xloglogx 3xlogx y 1
(4.56) M(x)= TR = Z(/xTogx 1) +;\/)?+ 3
It is easy to check that M(x) is an increasing function of x for x > 5.
By Proposition 1, as A*(K) = 2 (mod4), we have f = 16p (p = 3,5
(mod8));8p (p=5 (mod8));or pg ((p/q)=-1), where p and g denote
distinct odd primes. Now xz is a nonprincipal character mod f of conductor
m , wher m is given by (see [6, (3.4) and Theorem 5])

8or8p, if f=16p,
m=<p, if f=38p,
p.q,orpg, iff=pq.

Thus d(f/m) = 1,2 and 4 and so, by Lemma 11, we have for any positive
integer n (noting that 8 < f/8 so that M (8) < M(f/8))

32

r=1

(4.57) < max(M(f),2M(f/2),4M(f/8)).

Observe that the function (y/xlogx)/(v/xlogx — 1) is decreasing when x >e.
Therefore

(//8)log(f/8) (/log(f/2)  flogf
4.58 4 2 R .
38) 4 7 Bog(78) - 1 >max( V/20g(f/2) - 1 \/Tlogf—l>




IMAGINARY CYCLIC QUARTIC FIELDS 39
Set g(x) = (v/xlogx)/2n + y/x/m . Observe that

Vilogf 7 _VSflogf 1
AT s =Y R (1- ) >0,

\/_\l/o_gf y\/— Zg( ):L\/fz(log2+\/§y—2y)>0,
and \/_ f \/7
flog Y ,
. \/_ 4g< ) nﬁ(log8+\/§y—2y)>0.

These inequalities and statement (4.58) imply that

Vilegf ¥ V2 31 log(f/8)
i RV VTRl T

s man (), 20 (5) 1 (£))

Combining this with (4.57) yields

n
2 1 v2loglog A 3
r| < +
3 O T TE="

?_ 2 )\/710gf,

+
nlogd  \/AlogA

so that (as xz(r) =0,+£1)

n
32k
r=1
where V' is defined in the statement of Lemma 22.

Then, by the definition of L,(s), Lemma 10, and Lemma 12 with A = xz R
k=f,N=[V\flogf], we obtain

<[VVflogfl,

N

2 1
le(so)l = IL(So X)L Z 7%

1
< —_—
<logN +7y+ N
1 1

<logV + zlog f +loglog f + y + —————

gV +5log f +loglog f + v/ loaf — 1

1 loglogA y 1 log V »
<|z + + lo
= (2+ log4 " logd '~ (VV/AlogAd—1l)logd log4 e/

as required.
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Lemma 23. For |z —s,| < ¢ we have -
(4.59) log|L,(2)/L,(s,)| < Clog ,

where C is defined in (1.7). This result shows that the assumed inequality in
Lemma 21 holds with
(4.60) M=Clogf.
Proof. Appealing to Lemmas 9, 16, 19, 22, with
T = 1 loglogA y - 1 logV

==+ + + + )
2 log A logd (VA -1)logd log4

we obtain

log L(z)

L (sp)

=log|L(z, )| +10g|L(z, 1) - log|L,(s,)|
<log|L(z,x)| +1log|L(z, x°)| +log {(s,) + log L(s,)

<2 (clogB+ (c/2)log f + cloglog f — log(cy/ 1 —c2)>
+ log (l + ;—!——1—) +loglog f +log T
o —
=clogf + (2c + 1)loglog f + 2c log B

—21log(c\/1—c?) +1log(1 +alogf)+1logT.
Now, as

1
1 1
og(1 + alog f) = log(a ng)"‘log(l"'alogf)

1
< -
< loga+loglogf:+ alog s’
we have
log’ Ll(z) :

L,(s,)

<clogf +2(c+1)loglog f +loga

1 2
+W+2CIOQB 2log(cy1 —c“)+1logT

<clogf+2(c+1)1°g1°gA !

gf +—-—log f
a(log 4)*
+ (loga + 2clog B — 2log(c\/1 — ¢?) + log T)
<Clogf,

as required.
Lemma 24. For x the complex odd quartic primitive character (mod f) defined
in §2 and 1 < o< 2, we have

L'e.x) 1
4.61 —_— > ——logf +0.78.
(4.61) Lo 1) 5 logf
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Proof. Taking A = )(2 in Lemma 15 we obtain, as y = 0 and I=72 = 12,
for ¢ >4
(4.62)
L(a P%) I'(g/2) ( 1 1 )
2——== >logn —log f — +R + .
IRy D I ey A e
L(p x*)=0
0<Rp<1
Now, for 0 > 1 and 0 <Rp < 1, we have
(4.63) m( ! )="‘m’;>o
=P/ ‘lo-pl
and
(4.64) m( I )="‘1+9";>o,
o-1+p lo — 1+ p
so that
L'(a, %) 1T(a/2)
4.65 ——==>—Zlogf+ slogn — s —=—==.
(4.65) L.~ 2 &/ + 718" ~ 36/

Now it is known [2, p. 17, equation (2.10)] that for real x > 0

I'(x) 1 i 1
(466) m<—0.57—;+xgn—(;—+—x).
Hence, for } <x <1, we have

I'(x) 201

T < 057—l+—+x§—2

2
X T
——157+T+X(6 1)

7t2
<-1L574+05+—-1

< -2.07 + 1.65 =6—o.42,
that is, ‘
(4.67) I’ (6/2)/T(0/2) < -0.42, forl<o<?2.
Thus We obtain

' 2
LACEY N —%logf+0.57+0-21 ,

L(o,x%)
that is,
[ 2
(4.68) L@x), liogr+0s, fori<o<a.
Lo,x") 2
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Lemma 25 (see [17, p. 494]). For any real numbers s, and s, such that

(4.69) 1<s,, l<s, <2,

we have

(4.70) Zm( ! >< ! +§1of
' > \s;-p) “5-1 72 &

where p runs through all the zeros of L (z) counted according to multiplicity
in|p—sy| <c/2.
Proof. Since )
2+3cos¢+2cos2¢p +cos3p = 4cos2¢(l +cos¢) >0,
for all real ¢, we may take
a,=12, a, =3, a2='2, a; =1, n=3,
and A=y, in Lemma 14 to obtain, for 6> 1,
L'o.x) 3, (L'@.0), L'(@.7)
L(o.x,) 2 \L(e.x) L(0.%)
L/ , 2 L, ’—2 1 Ll ) 3 ' ,—3
m( (0.1) Lo | 1y (Lle.2) L. D))
L(o,x") L(o.X°) L(g,x’) L(o.X)

2 +

-_— ’

2
thatis, as x> =%, X’ =2, 1=7%,

L'o,x,) L'e,x)  L'(a.7) L'a. 2%
*To .19 *”‘(L(a,x) ¥ L(a,z)) ”“_“(L(a,xz)) =0

equivalently
L'o.x) L@ L'(a.x) _
L(g.xy) Ly(0)  L(g,x® ~
Then, appealing to Lemma 9, Lemma 24 and (4.71), we obtain, for 1 <0< 2,
Li(o) . _L'o.2) _L(o.x")
Li(o) = L(g.%) L(o,x?
{'(o) 1

(4.71)

< ~ o) +§logf—0.78
1 1
<m+(0’—1)+§10gf—0.78
1 1
<m+l+§10gf—078,
that is,
Li(0) 1 1
(4.72) Lo <o tples+022.
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Next, appealing to Lemma 15 and noting that y =1 as A=y (# x,) is odd,
we have for ¢ > 1

(4.73)
Li(o) _ IACICERY) 1 1
L@ > %" %% " T+ ) *mL;) 0 (5 +o=m=n)-
(p.2)=
0<Rp<1

Putting (4.72) and (4.73) together, we obtain for 1 <o <2

~ ; (aip+a—~(:—p))

L(p.x)=0
(4.74) oL

1 3 . (Lo +1))
< ——=+3l 0.22-1 —
g—1+ 318/ T ORI R )
Set x =4(0+1). As 1< g <2 wehave 1 <x<3/2. Then, for 1 < x< 3/2,
we have

[e o} [e o} 1

X
Z n+x) l+x Z (n+x)

=1 2

l+x+ Zn(n+1)

and so, by (4.66), we obtain
I"(%(a +1)) <
I'(3(o +1))
Using the estimate (4.75) in (4.74), we obtain

1
® D (aip‘+ 1 >< +%logf+0.22—l.l4+0.12

(4.75) —0.57 — 0.66 + 1.35 = 0.12.

c—(1-p) c—1
L(p.x)=0
0<Rp<1
1 3
—a—_—1'+§10gf—0.8,
that is,
1 1 1 3
(4.76) R ; (a_p+a_(l_p)><a_l+§10gf.
L(p.x)=0
0<Rp<1

The functional equation for Dirichlet L-functions [1, p. 263] implies that
if z € C and z is not an integer, then

(4.77) L(l-z,7)=0«L(z,x)=0
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Note that Rp > s, — [Rp — 59| > 5, — |p — 54| for all p € C. Therefore, if
|p—$o| <¢/2, then Rp > 5, —c/2 > 1/2. This shows that

(4.78) {pilp—spl<c/2} C{p:Rp>1/2}.
Observe that

p> (+o=a=n)

L(p .x)=0
0<Rp<1

x| ¥ aip+ S aip (by 4.77)

( 1
=R Z p—

p
L(p)=0
0<Rp<1

Note also that, by (4.63) and (4.78),

’ A
L(p.x)=0 L(p .x)=0
0<Rp<1 0<Rp<1

1 1 1

p P

Ly(p)=0 L,(p)=0 Li(p)=0

0<Rp<1 |p—=s0|<c/2 lp—s0l<c/2
Rp<1

since L (z) has no zeros with Rz > 1. Thus

1 1 1
n + ) >R
2,,: (a—p o—(1-p) 2,,: c—p
L(p.x)=0 Li(p)=0
0<Rp<1 |p—s0|<c/2

This inequality and (4.76) establish (4.70).
Lemma 26 (see [17, p. 494]).
Li(s) < (b+3/2)alog f 4a(log A)(aclog A + 2)
L(s) = a(1/2-3/4b) + x(b/2 + 3/4) (aclog A — 2)?
Proof. For s, = 1+ 1/(blog f), where b is defined in (1.4), we have s, > 1.

Also, as blog f > log f > log64 > 4.1 > 1, we have s, < 2. Then, appealing
to Lemma 25, we have

1 1 3 3
Z m(sl_p)<sl_l+§logf—blogf+§10gf,

Clogf.

Li(p)=0
|p—s0l<c/2
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that is,
1 3
4.79 R <(b+—)lo .
(479 2 #(5mp) < (6+3) w0
Li(p)=0
lp—s0|<c/2

If pisazeroof L (z) in |z -5, <c/2,s0is P, and thus, from (4.79), we
deduce

(4.80) R (sl l_ p) < (% + %) log f.

Next we note that

1 1 X
= —_— > =5>
51 1-'-blogf>l+alogf‘ alog f sz 1,

so that 1 <s<s,, and hence, by Lemma 20, we obtain

9:‘(s—lp> = 1—(s,—ls)£R( L )m(sll—/’>

Si—p

1+

1 1
ST=(, =) /27 3/Mlog T (s, - p) '

so that
1 1 1
2 % (725) <= ORIy (sl =
Li(p)=0 Li(p)=0
|p—s0l<c/2 lp—s0l<c/2
(b +3/2)log f
T—(1/b = x/a)(b/2+ 3/4)
_ (b+3/2)log f
(1= (1/b)(b/2 + 3/4)) + (x/a)(b/2 + 3/4)
_ (b+3/2)alog f
= a(1=1/2=3/4b) +x(b/2+ 3/4) '
that is,
1 (b+3/2)alog f
(4.81) 2 m(s—p) < 2(0/2=3/a) + x(bj2 + 3]4)
Li(p)=0
lp—sol<c/2
Hence, by Lemmas 21 and 23, and (4.81), we have
Li(s) (b+3/2)alog f 4a(log A)(aclog A + 2)
L) = /2= 3/0) + x6/2+ 38 T (actoga—27 < &/

which is the required inequality.
Lemma 27 (see [17, p. 494]).

s L'\(s) (9 +6v2) (aclogA +2)C
' d T4 2log [ 1 + ——= | +4(log4)—=""/—
(4.82) . L,6) ds < 2log ( + >a + 4(log A) (aclogA—2)?
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Proof. By Lemma 26 we obtain
% L' (s) ! (b +3/2)alog
, Li(s) ds /0 (a(l/2 —3/4b) + x(b/2 + 3/4)
4a(log A)(aclog A +2)Clog f dx
(aclog A4 — 2)* alog f
2/ (b/2+3/4)dx 4(log A)(aclogA + 2)C

a(1/2 - 3/4b) + x(b/2 + 3/4) (aclog A —2)
1

1 3 b 3
=2[oe (s (3-35) +(3+3))],
4(log A)(aclog 4 + 2)C
(aclogd —2)*
_ (b/2+3/4) 4(log A)(aclogA + 2)C
= 210g (1+ 7752 = (aclog A~ 2)?

=2log (1 + o+ 6\/2)) + 4(log A)(aclog A +2)C

2a (aclog A — 2)*
completing the proof of (4.82).

Lemma 28 (see [17, p. 495]). —log L (1) < 2loglog f +logD — 10g(27t2).
Proof. By Lemmas 10, 17 and 27, we obtain

1 1
_1ong(1)<loga+log108f+;m"‘long(So)"' . L) d

< loga +loglog f + lg +loglog f

+2log L0+ 6\/_) 4(log 4)(aclog 4 +2)C
2a (aclog 4 — 2)*

= 2loglog f +log D — log(27%) (by (1.8))
completing the proof of Lemma 28.

Proposition 2. /" (K) > f/D(log f)*.
Proof. From (2.14) and Lemma 28, we have

logh*(K) = log f +log L (1) — log(2")
> log f — 2loglog f — log D

B s
= log (D(logf)z) ’

so that 4*(K) > f/D(log f)*, as required.
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TABLE 1. Types of field K

defining relation for

47

number of

Type f D 4 B C B (>0)and C (> 0) fields
8p
I p =5 (mod8) p 1 1(mod2) 2(mod4) p=B2+C? 1
16p
I p =3 (mod8) 2 p1 1 1
II1, 16p 2 1 1 1
p =5 (mod8)
111, 2p 1 1(mod2) I'(mod2) 2p=B2+C? 2
pq
IV  p=3(mod4) g p 0(modd) 1(mod2) ¢q=B?+C? 1
g =1 (mod8) :
(p/q) = -1
pq
V, p=1(mod8) g p 2(mod4) 1(mod2) q=B?2+C? 1
=5 (mod 8)
(p/g) =-1
V, pg 1 2(mod4) 1 (mod2) pg=B2+C? 2
pq
VI, p=g=5(mod8) p g¢q 2(mod4) 1(mod2) p=B?+(C? 1
(p/q) = -1
VI, g p 2(modd) 1(mod2) ¢q=B?+C? 1
TABLE 2. Generators of G
ly = -1 (mod 8) l, =5 (mod 8) I3 =1 (mod4) Iy =1 (mod 8)
I /=1 (modp) l =1 (mod p) Iy = g?=V/% (mod p) I4 = g* (mod p)
0I'd(;l| =2 Ol'd(;lz =2 Ol'd(;l3 =4 Ol‘d(;14 = (p - l)/4
l} = —1 (mod 16) I, =5 (mod 16) I3 =1 (mod6) Iy =1 (mod 16)
I /, =1 (modp) l, = 1 (mod p) I3 = —1 (mod p) Iy = g2 (mod p)
Ol'd(;1| =2 Ol'dglz =4 0I'd(;13 =2 0I'd(;[4 =(p— l)/2
Iy = -1 (mod 16) I, =5 (mod16) I3 =1 (mod6) Iy =1 (mod 16)
HI /; =1 (mod p) l, =1 (mod p) Iy = gP=D/% (mod p) Iy = g* (mod p)
Ol'd(;1| =2 Ol'dglz =4 Ol'dgl3 =4 Ol'dgl4 = (p - |)/4
Iy = —1 (mod p) I = 1 (mod p) I3 = g? (mod p) ly =1 (mod p)
IV [, =1 (modg) L =h9=1/% (modq) /5 =1 (modgq) Iy = h¥ (modq)
0I'd(,‘1| =2 Ol‘dglz =2 Ol'dgl3 = (p - |)/2 Ol'd(;l4 = (q - 1)/25
I =g~ (mod p) &, =1 (mod p) I3 = g¥ (mod p) Iy = 1 (mod p)
V ;=1 (modgq) I, =h-Y/4 (modq) I3=1 (modgq) Iy = h* (mod q)
ordgl/, =2 ordgl, = 4 ordgls = (p—1)/2" ordgly = (¢ — 1)/4
L, =gP~"4%(modp) hLh=1(modp) . [3=g*(modp) I3 = 1 (mod p)
VI /; =1 (modgq) L =h9=D/4 (modq) I3=1 (modgq) Iy = h* (mod q)
Ol'd(,‘[] =4 Ol'dglz =4 Ol'dgl3 = (p - |)/4 0I'd(;l4 = (q - l)/4
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5. METHOD OF CALCULATION OF h*(K)

We now describe how the computation of the relative class number 4*(K)
was carried out for all imaginary cyclic quartic fields K with conductor f <
416,000. First, a data file was created containing all those integers f in the
range 1 < f < 416,000, which are of one the forms specified in Propo-
sition 1, together with the values of D, A4,B,C for which the field K =

Q(/A(D + BVD)) has conductor f. Table 1 indicates the possibilities that
can occur (p and g denote distinct odd primes).

In all there are 28,186 such 5-triples (f,D, —4,B,C) with f< 416,000 :
1338 of type I, 718 of type II, 2166 of type III, 10948 of type IV, 7764 of type
V, and 5252 of type VL

The generators of the group G = Gal(Q(ez"i/ s )/Q) are the integers [, ,/,,[;,
I, (mod f) defined as in Table 2 (see for example [3, Chapter 4]). We note that
g (resp. h) denotes a primitive root (mod p) (resp. (modgq)) and 2" (resp.
2°) is the highest power of 2 dividing p — 1 (resp. ¢g—1). For k=1,2,3,4
we let j, =0,1,2,3 denote the integer such that

(5.1) I, €edH.

In Table 3 we give the values of the j, ’s corresponding to generators /, of
the 2-part of G. These values will help us in determining the generators of the
2-part of H .

TABLE 3. Values of j,

Jjy=0o0r2
I j,=00r2 IV j =2
' Jy=1lor3 J,=1or3
Jy=0or2
nm j,=lor3 VvV, j =2
Jy=0o0r2 Jp=1lor3
V, jy=1lor3
J,=1or3
Jy=0o0r2 Jy=1lor3
m, j,=1lor3 VI, j,=
j3=2
Jy=0o0r2
I, j,=1lor3 VL, j =
Jy=1lor3 Jp=1lor3

Proof of values given in Table 3. We first note that / € o’H and

ord,/=2=1€a”H =2j=0(mod4) = j=0or2.
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This establishes that j, =0 or2and j,=0or2inl; j, =0 or2and j; =0
or 2inII; and j, =0 or 2 in III. We treat the remaining values case by case.
L. Let r be a prime =/; (mod f) so that (from Table 2) ’

r=1 (mod8),
r=g%""* (modp).

Then, appealing to Table 1 and the law of quadratic reciprocity we have,

<g> "6 (%); (g‘”;"“) = (%)(MW Sy |

and so /; € aH or o’H , thatis jh=1 or 3.
IL. Let r be a prime =/, (mod f) so that (from Table 2)
r =15 (mod 16)
{ r=1 (fnod D).
Then, appealing to Table 1, we have (D/r) (2/r) —1 ,and so /, € aH or

a H that is 12—1 or 3.
III, . Let r be a prime =/, (mod f) so that (from Table 2)

r =95 (mod 16),
{r=l(modp) L
Then, appealing to Table 1, we have (D/r) (2/r)=-1,and so [, € aH or
aH that is, 12—10r3 ' :
Now let r be a prime =/; (mod f) so that (from Table 2)

{rz 1 (mod 16),
T

Then, from Table 1, we have (D/r) =(2/r)=1,andso /; € H or o’H , that
is, j; =0 or 2. Now, by [19, Theorem, p. 257], we have

(A(D+B>\/5)) _ (—p(2+ﬁ)) - (B) (enye
r r r

. >\ (P—1)/4
(5)-(5)-(5)"

so that /; € o’H , that is J3=2.

11, . Slmllar to III, .
IV Let r bea prlme =/, (mod f) so that (from Table 2)

{ r=-1(modp),
r=1 (modgqg).
Then,as D =¢ from Table 1, we have

2)-0-()-O)-

mod p).



50 KENNETH HARDY, R. H. HUDSON, DAVID RICHMAN AND K. S. WILLIAMS

and so j, = 0 or 2. Further, appealing to [19, Theorem p. 257], we have

(12242 - (s 2em) - () () ),
G-
and so j, = 2.
Now let r be a prime =/, (mod f) so that (from Table 2)
{ r=1 (modp),

r=h"""7" (modgq).
Then, as D = ¢q from Table 1, we have

(7)-0-@)-@" -~

and so j, =1 or 3.
V,. Let r be aprime =/, (mod f) so that (from Table 2)

r=g?""" (modp),
r=1(modg).
Then, as D = g from Table 1, we have
D\ (q\ _ ry _
(2)-(-()-+

and so j, =0 or 2. Now by [19, Theorem, p. 257], we have

(A(D +rB\/5)) _ (—p(Q-:B\/E)) _ (—Tp) (= 1)~ D=8 (%)B (%)4

= () o (B) = (L) = -1,
so that j, = 2. ( r > ' (1’)

Now let r be a prime =/, (mod f) so that (from Table 2)
r=1 (modp),
{ r=h"""* (modq).
Then, as D = g from Table 1, we have

(3)-0-()-6)""-

andso j, =1 or3.
V,. Similar to V.
VI, . Let r be a prime =/, (mod f) so (from Table 2)
r=g? " (modp),
r=1 (modgq).
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Then, as D = p from Table 1, we have

(7)-0-()-()"" -~

so that j, =1 or 3.
Now let r be a prime =/; (mod f) so (from Table 2)

r=1 (modp),
r=h%"Y* (modg).

Then, as D = p from Table 1, we have

(3)-4-()-+

and so j, =0 or 2. Appealing to [19,';Theorem, p. 257] we have

(A(D+B\/5)) _ (—q(p+3ﬁ)> _ (—_q_) (1)P-Do=Dr8 (E)B (L)
r 4

r r r )/}

-4 (r-1/2 _ (4 r AN
= (_r_) (-1) = (7) = (E) = (3) =-1,
so that j, =2.

VI, . Similar to VI, .

Next we show that the generators of H can be taken as listed in Table 4
below. We remark that as the odd part of G is the same as the odd part of
H , it suffices to prove that the 2-part of H is generated by the elements of
even order listed in Table 4. The order of each generator in the table is given
in parentheses.

TABLE 4. Generators of H
I lg' [2]. 121;2[2] AI(p-1)/4]
U L0520 021 (e - 1)/4]
I 121, 5721141, LI(p - 1)/4]
IV L6127, 4l = 1)/2], (g - 1)/2]
N
v| lll%['zA]:l3[(p,_ 1)/2 ]’14[(q_ l)/4]
v, 11212"“[2'] l(p—1)/2"1,11(g - 1)/4]
VI, | 15[4] l(p—1)/41,1[(g - 1)/4]
V12 1112 [4] ’ 13[(1) - l)/4] ’ 14[(q - l)/4]
Proof that the values given in Table 4 are generators of H .
I. A typical element of the 2-part of G is of the form

(5.2) KL (u=0,1v=0,1;w=0,1,2,3).
This element belongs to the 2-part of H if and only if
(5.3) Ju+j,v+j;w=0 (mod4).
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As j, and j, are even and j, is odd (Table 3), (5.3) is equivalent to w =
—J,u — j,v (mod4). Hence (5.2) becomes
DL R = @Y LI = @ T

showing that the 2-part of H is generated by /| l:{' and lzl:{2 .

II. A typical element of the 2-part of G is of the form
(5.4) KL (u=0,1;0=0,1,2,3;w=0,1).
This element belongs to the 2-part of H if and only if
(5.5) Jiu+j,v+j;w=0 (mod4).

As j, and j, are even and j, is odd (Table 3), (5.5) is equivalent to v =
—J,v — j;w (mod4). Hence (5.4) becomes

B0 = (LY )Y = () T )T
showing that the 2-part of H is generated by /| lg‘ and l{’l3 .
III. A typical element of the 2-part of G is of the form
(5.6) oL (u=0,1v=0,1,2,3;w=0,1,2,3).
This element belongs to the 2-part of H if and only if
(5.7 Jiu+Jj,v+jw=0 (mod 4).

As j, iseven and j, is odd (Table 3), (5.7) is equivalent to v = —j,u — j,j,w
(mod 4). Hence (5.6) becomes

1:412—1'114—!2/371’1;1’ — (ll 12—1'!)“(12-1'21'313)“’ — (11 lgn)—u(lgjzjsls)w

showing that the 2-part of H is generated by /| lé" and 123/ 2 .
IV. A typical element of the 2-part of G is of the form

(5.8) L (u=0,1v=0,1,...,2° = 1).
This element belongs to the 2-part of H if and only if
(5.9 Jiu+Jj,v=0 (mod4).

As j, =2 and j, is odd, (5.9) is equivalent to v = 2u (mod4) or
v=0 (mod?2), u=v/2 (mod 2).
Hence (5.8) becomes
1',"/212’ (v=0,1,...,2' = 1;v even)
=(,B)"  (w=0,1,...,27" 1),

showing that the 2-part of H is generated by /, 122 .
V. A typical element of the 2-part of G is of the form

(5.10) 'y (w=0,1,...,2'-1;v=0,1,2,3).
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This element belongs to the 2-part of H if and only if
(5.11) Jiu+Jj,y=0 (mod4).

V,. As j, =2 and j, is odd (Table 3), (5.11) is equivalent to v = 2u
(mod4) . Hence (5.10) becomes /“L2* = (1,2)", showing that the 2-part of H
is generated by /| 122 .

V,. As j, and j, are both odd (Table 3), (5.11) is equivalent to v = 3 J Jot
(mod 4). Hence (5.10) becomes

lul3j|jzu = 12311}2)14
142 =\ '

showing that the 2-part of H is generated by [ l;j 1z
VI. A typical element of the 2-part of G is of the form

(5.12) 'L (u=0,1,2,3;v=0,1,2,3).
This element belongs to the 2-part of H if and only if
(5.13) Jiu+j,v=0 (mod4).

VI,. As j, is odd and j, = 2 (Table 3), (5.13) is equivalent to u = 2v
(mod 4). Hence (5.12) becomes

112'ul; _ (11212)1; ,

showing that the 2-part of H is generated by 11212 .
VI,. As j, = 2 and j, odd (Table 3), (5.13) is equivalent to v = 2u
(mod 4). Hence (5.12) becomes

NG = b,

showing that the 2-part of H is generated by [ 122 .

Finally the elements of H ,aH , o*H ,o*H were computed using the genera-
tors of H given in Table 4, and a count kept of those in each coset whose least
positive residue (mod f) was less than f/2. The relative class number A" (K)
was then calculated from the formula (see (3.13))

(5.14) h(K) = ((C, - C,)* +(C, - C)/E,
where
(5.15) Ci= ) 1 (j=0,1,2,3)
0<n< f/2
new’H
and

8, if f=0(mod2),

2, iff=1(mod2)and2€ H,

18, if f=1(mod2)and 2 € ’H,

10, if f=1(mod2)and 2 € aH oro’H.

(5.16) E=
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The identities

(5.17) Co+C,=0(f)/4, C,+Cy=9¢(f)/4,
and the congruence
(5.18) (C,— G +(C,-Cy)'=0 (mod E),

served as checks on the calculation in order to reduce the chances of a computer
error. Only the 10 fields K listed in §1 were found to have 4*(K) =2 [8].

The program to compute the table of values of A*(K) was run at various
times over a two-month period and the authors would like to express their
appreciation to David Hutchinson, Associate Director (Services and Facilities),
Computing and Communication Services, Carleton University, for allocating
resources on Carleton University’s Honeywell CP-6 systems in order to carry
out these computations. '
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