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ABSTRACT. Explicit conditions are given for a cyclic quartic field to have a
relative integral basis over its unique quadratic subfield.

Throughout this paper, K denotes a cyclic quartic extension of the rational
number field Q. By Theorem 1 of [3] we know that K can be expressed uniquely
in the form

(1) K=Q(\/A(D+B\/_15)),

where A, B, C, D are integers such that

A is squarefree and odd,
D=B*+(C?is squarefree, B > 0, C > 0,
(A,D)=1.

K possesses a unique quadratic subfield k = Q(\/_lj) Although K possesses an
integral basis over @ (an explicit integral basis is given in [4]) it may or may not
have a relative integral basis (RIB) over k. In this paper we give a necessary and
sufficient condition for K to have a RIB over k. This is done by using the integral
basis for K over @ given in [4] to determine the relative discriminant d(K/k) (see

Lemma 2 below) and then appealing to the following theorem of Mann [6, Theorem
2].

THEOREM (MANN). Let F be an algebraic number field and E a quadratic
extension of F. Then E has a RIB over F if and only if E = F(V/A) for some
A€ F withd(E/F) = (A).

Our necessary and sufficient condition for K to have a RIB over k is given in

terms of the fundamental unit € (> 1) of k = Q(v/D). Two cases naturally arise
according as the norm Ny,q(€) = +1 or —1. First we prove

THEOREM 1. If Ni;g(e) = +1 then K does not have a RIB over k.

If Ni/g(€) = —1 we let (U, V) be the solution in positive integers of U2 — DV 2 =
—1 with V least. Setting ¢ = (z + yv/D)/2, where z and y are positive integers
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with 2 =y (mod 2), z2 — Dy? = —4, we have
g, ifz=y=0 (mod?2),
U+VVvD=
vD { g3, ifz=y=1(mod2).

We note that the case z = y = 1 (mod 2) can only occur when D =5 (mod 8). It is
a classical result (see for example [7, Theorem 5.9]) that if V > 1 there is a unique
pair of nonnegative coprime integers (S, T) such that

(2) V=S82+T?  T=SU (modV).

If V =1 wetake S = 1, T = 0 so that (2) is satisfied in this case too. A familiar
argument shows that S and T satisfy the congruence

(82 =T%)+28TU =0 (modV?),
so that we may define nonnegative integers M and N by

_|U(S? —T?) — 28T [(S% — T?) + (2ST)U|
M= 73 , N= e :

As M2+ N2 =D, and D (> 1) is squarefree, M and N must be positive integers.
Moreover we have

(3) (U+VVD)(X +YVD)? = (M) + VD,

where

X=(T-SU)/V, Yy==.
We prove
THEOREM 2. If Ny g(¢) = —1 then K has a RIB over k if and only if

(N,M), i D=1 (mod4), B=1 (mod?2),
(M,N), otherwise.

It follows from Theorems 1 and 2 that if A and D are given integers such that

.0)={

A is squarefree and odd,

D (> 1) is squarefree and representable as the sum of two squares,
GCD(A,D) =1,

then either there are no pairs of positive integers (B,C) with B2 + C? = D for

which K = Q(\/A(D + Bv/D)) has a RIB over k or there are one or two pairs
according as D = 2 (mod8) or D =1 (mod 4).

EXAMPLE 1. K = Q(v/5+2V5). Here A=1, B=2C =1,D =
k=Q(V5),e=(1+V5)/2, Ngsg(e) =-1,U=2,V=1,8S=1,T=0,M =
N =1, and so, by Theorem 2, K has a RIB over k.

EXAMPLE 2. K = Q(V10++10). Here A=1,B=1,C = 3, D = 10,
k=Q(V10), e =3+ V10, Ng/o(e) = -1, U=3,V=1,8S=1,T=0, M =3,
N =1, and so, by Theorem 2, K does not have a RIB over k.

In the case when K has a RIB over k we give an explicit relative integral basis
for K/k.

5,
2,
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THEOREM 3. If K has a RIB over k then a RIB over K/k is given by

{1,\/A\/B(U+V\/_D_)}, if D=2 (mod8) or D=1 (mod4),
B =0 (mod2), A+ B =3 (mod4);

{1, \/2A\/5(U+V\/B)}, if D=1 (mod4), B=1 (mod2);

{1, 1+ \/A\/B(U+V\/l_)))}, if D=1 (mod4),
B =0 (mod2), A+ B=1 (mod4).

EXAMPLE 1 (CONT). Set a = v/5+ 25, 8 =15 — 21/5, so that
Via=2a+8, V58=a-28.

By Theorem 3 a RIB for K = Q(v/5 + 2v/5) over k = Q(v/5) is given by {1,a}.
This is easily seen directly, as every integer of K is of the form (see [4])

x+y<l+2\/5> +z(a;ﬂ>+w<a;ﬂ>
_ (x+y(l+2‘/5)) 1+ ((2w—z)+(z—w) (1+2‘/5>>a,

where z,y, 2z, w are integers.
EXAMPLE 2 (CONT). We show directly that K = Q(1/10 + /10) does not
possess a RIB over k = Q(v/10). We set o = V10 + /10, 8 = v/ 10 — /10, so that

V10a = o + 38, V108 =3a - 3.

The integers of K are of the form (see [4]) z +y+/10 + za + w0, where z,y, z,w are
integers. Suppose that K has a relative integral basis over k. Such a basis may be
taken in the form {1,~}, where v = ta + uf with integers ¢ and u not both zero.
Thus there must be integers a, b,c,d, e, f, g, h such that

a = (a+ bv10)1 + (c + dV10)(ta + uf),
B = (e + fV10)1 + (g + hv/10)(ta + uB),

and so we have
a=a+bV10 + (tc + (t + 3u)d)a + (uc + (3t — u)d)83,
B=ce+ fVIO+ (tg+ (t + 3u)h)a + (ug + (3t — u)h)B.
Equating coefficients of 1,1/10, a, 3, we obtain a =b=e= f =0, and

te+ (t+3u)d =1 tg+(t+3u)h=0}
{uc+(3t—u)d=0}’ {ug+(3t—u)h=1 ‘

Solving for ¢,d and g, h, we obtain

o= 3t—u d= —u
T 3t2 — 2ty — 3u?’ T 3t2 — 2tu — 3u?’
—t—3 t

3t2 — 2tu — 3u?’ 3t2 — 2tu — 3u?’
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Note that 3t% — 2tu —3u? # 0 as ¢ and u are not both zero. As c,d, g, h are integers,
we must have
32 —2tu — 3u?|t,  3t? — 2tu — 3u?|u.
Thus there are integers r and s such that
t = (3% — 2tu — 3u?)r, u = (3t% — 2tu — 3u?)s,
and so
3t — 2tu — 3u? = (3% — 2tu — 3u®)?(3r? — 2rs — 3s2),
giving
(3t — 2tu — 3u?)(3r2 — 2rs — 3s?) = 1.
Hence we have
3t? — 2tu — 3u? = +1,

and so
(3t — u)? — 10u? = +3,

which is impossible as z2 = +3 (mod 5) is insolvable.
We now begin the proofs of Theorems 1 and 2. We first calculate the relative
different Z (K /k). We set

a=\/AD+BVD), p=1\/AD-BVD).

LEMMA 1.
2(aaﬂ)’ Z:f B=1 (mod2),

D(K/k) = (a+B,0—p), if B=0 (mod2), A+ B =23 (mod4),
(a—;—ﬂ’a;ﬂ)’ if B=0 (mod2), A+ B =1 (mod4).

PROOF. We just give the details in the case D = 2 (mod8) (so that B=C =1
(mod 2)) as the other cases can be treated similarly. We will obtain & (K/k) from
the relation

(4) D (K[k)Z (k|Q) = 2 (K/Q).

We first calculate Z(K/Q). An integral basis for K/Q in this case is given by (see
[4]) {1,V/D, a, B}. For convenience we set {1, = 1,Qy = v/D, Q3 =0,y = B, and
define ideals X, X2, X3 of the ring Ok of integers of K by

X;=(Q—607(Q1), Q2—07(Q2), Q3-6°(03), Qq—07()),

where Gal(K/Q) = (), so that Z(K/Q) = X1 X2X3. As 0(a) = B, 0(8) = —a,
8(v'D) = —/D, we have

X1=X;=02VD,a-B,a+p) and X,=2(a,p).
Next, making use of
o? = AD + ABVD, B*=AD- ABVD, af = ACVD,
we obtain
X1X3 = (4D, (a — B)%, (a + §)%,2vD(a - B8),2VD(a + f),0? — ?)
=2VDI,
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where
= (2V'D,AC + AVD,AC — AVD,a - 8,a + 3, AB).
Now 2D €I, ABel,soas (A,D)=1, (B,D) =1, A= B =1 (mod2), we have
(2D, AB) = (1), so that I = (1), and X; X3 = (2v/D). Hence we have
(5) 2 (K/Q) = (2)*(VD)(, ).

Next we calculate 2 (k/Q). An integral basis for k in this case is {1,/D} and, by
the definition of the different, we have

2 (k/Q) = (1-6(1),VD - (VD))
so that
(6) P (k/Q) = (2VD).
Thus, from (4), (5), (6), we obtain

_ @*WD)(@.h) _
G KK = ST = (e ).

This completes the proof of Lemma 1 in this case.
Next we determine the relative discriminant d(K/k).
LEMMA 2.
(22AvD), if D=1 (mod4), B=1 (mod?2),
(22Av/D), zf D =2 (mod8), or
1 (mod4), B=0 (mod2) A+ B =3 (mod4),
(AVD), z'f D=1 (mod4), B=0 (mod2), A+ B =1 (mod4).

PROOF. We just give the details when D = 2 (mod 8), as the other cases can
be treated similarly. We have (appealing to Lemma 1)

d(K/k) = Nk/x(Z (K/k)) = (2)(e, 8)(2)(B, —a) = (2)*(a, §)*
= (2)%(a?, a8, %) = (2)>(AD + ABVD, ACVD, AD — ABVD)
= (22AvVD)(VD + B,VD - B,C).
Now, as (2B, C) = 1, we see that (VD + B,v/D — B,C) = (1), and so
d(K/k) = (2°AVD)

d(K/k) =

as required.

PROOF OF THEOREM 1. Suppose Ni/o(¢e) = +1 and K has a RIB over k.
Then, by Lemma 2 and Mann’s theorem, there exists A € Oy such that K =
Q(VA), and (A) = (2/AVD), where
3, ifD=1(mod4), B=1 (mod2),

2, ifD=2(mod8), or

if D=1 (mod4), B=0 (mod2), A+ B =3 (mod4),
0, ifD=1(mod4), B=0 (mod2), A+ B =1 (mod4).
Hence there is a unit € O such that

A= 27A\/_13n.

Jj=
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By Dirichlet’s unit theorem we have
n ==+xe™, for some integer m,

Q(VA(D + BVD)) = Q(\/ +2/ AV De™).

Removing squares from under the radical sign on the right-hand side as appropriate
and recalling that Q(y/A(D + BvV/D)) is a cyclic field, we see that

and so

Q(\ A(D + BVD)) = Q(\/ +2' AV De),

where [ = 0,1. Moreover, as Q(y/A(D + Bv/D)) and Q(v/ £2!Av/De) must both
be totally real or both totally imaginary, we have

Q(\A(D + BVD)) = Q(\ 2'AVDg).

Hence there exist «, 8 € k such that

(7 2'AVDe = a + B\/ A(D + BVD).

From (7) we see that

\/21,4 e\/A(D + BVD 2‘A\/_e+ﬂ2 (D + BVD) - a?) € Q(VD).

Hence there exist rational numbers e and f such that

(8) \/2’A\/55\/A(D +BVD)=e+ fVD.
Squaring (8) and taking norms, we obtain
220 A2(—D)A?DC? = (2 — Df?)?,
which is impossible. This completes the pfoof of Theorem 1.
LEMMA 3. If Ny/q(€) = —1 then K has a RIB over k if and only if

B { Q(/24VD(U +VVD)), if D=1 (mod4), B=1 (mod2),
Q(\/A\/—E(U +VVD)), otherwise.

PROOF. We just treat the case D = 1 (mod4), B = 1 (mod2), as the other
cases can be treated similarly. By Lemma 2 and Mann’s theorem, K has a RIB
over k if and only if

9) K = Q(\234VD)),

for some positive unit A in Ok. The unit A must be positive for if A were negative
Q(\/A(D + BVD)) and Q(1/23AVD))) could not both be totally real or both
totally imaginary. By Dirichlet’s unit theorem, we have A = ™ for some integer

m. Recalling that U +V /D = ¢ or €% and removing squares from under the radical
sign in (9) we see that K has a RIB over k if and only if

K = Q(\/24VD(U +VVD)),

where 7 =0 or 1. As K is cyclic we must have j = 1. This completes the proof of
Lemma 3 in this case.
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LEMMA 4. If Ny/q(e) = —1, then we have

Q(\/24VD(U +VVD)) = Q(y/A(D + NVD)),
Q(/AVD(U +VVD)) = Q\ A(D + MVD)).

PROOF. This is clear from (3) and the fact

Q(\/24VD(M + VD)) = Q( AVD(N + VD).

PROOF OF THEOREM 2. Theorem 2 follows immediately from Lemmas 3 and
4 as the representation of K in the form (1) is unique.

PROOF OF THEOREM 3. In each case it is a simple matter to check that the
given set of elements has discriminant equal to d(K/k) (the value of which is given
in Lemma 2). Appealing to Theorem 2 and Lemma 4, it is easy to check that
in each case the elements lie in K. The only element which is not obviously an
algebraic integer is

v = 1(1+/AVD(U +VVD)).
Since ~ satisfies
-4+ 1(1-AVvD-AUVD)=0

it suffices to show that (1 — AVD — AU VD) is an integer of k. Since D =1
(mod 4) (in this case) and U2 — V2D = —1, we have U = 0 (mod2) and V =1
(mod 2). Moreover we have V =1 (mod4) as U? = —1 (mod V). Hence 1 — AVD
and AU are both even, and so, it suffices to show that

1-AVD=-AU (mod4),

or equivalently
A(VD-U)=1 (mod4).

We consider two cases according as U = 0 (mod4) or U = 2 (mod4). If U =0
(mod 4) then, from U? — V2D = —1, we deduce that V2D = 1 (mod8), so that
D =1 (mod8), and thus B = 0 (mod4). Hence, as A+ B =1 (mod4) (in this
case), we obtain A =1 (mod4), giving A(VD —U) =1 (mod4). If U =2 (mod 4)
then as above we conclude D = 5 (mod8),B = 2 (mod4), A = 3 (mod4) and
A(VD -U) =1 (mod4). This completes the proof of Theorem 3.

We conclude by remarking that Xianke [8] has given a less explicit form of The-
orems 1, 2, 3. Relative integral bases for bicyclic quartic fields over their quadratic
subfields are considered in [1, 2 and 5].
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