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Let m denote a positive nonsquare integer. It is shown that if Pell’s equation
X?—mY?= ~1 is solvable in integers X and Y then the equation X*—m¥Y?= ~4 is
solvable in coprime integers X and Y if and only if I(\/r;)sl(%(l + \/r;)) (mod 4),
where /(a) denotes the length of the period of the continued fraction expansion of
the quadratic irrational a.  © 1986 Academic Press, Inc.

1. INTRODUCTION

Let m denote a positive nonsquare integer. In the eighteenth century,
Lagrange used the continued fraction expansion of ./m to give the first
complete proof that Pell’s equation x>—my>=1 is always solvable in
integers x and y with y #0 (see, e.g., [1, p. 358]). Later for the equation

xX—my?=—1 (1.1)

the following necessary and sufficient condition for solvability was proved:

x?—my*= —1 is solvable in integers x and y if and only if

I(/m)=1 (mod 2), (1.2)
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where /(«) denotes the length of the period of the continued fraction expan-
sion of the quadratic irrational o (see, e.g., [3, Satz3.18]). (A real
irrational number is called a quadratic irrational if it is the root of a
quadratic equation with rational coefficients.)

In this paper we shall be concerned with the solvability of the equation

X —mY'= —4, (X, Y)=1 (L.3)
We note that if either (1.1) or (1.3} is solvable, m is not divisible by any
prime = —1 (mod 4).

Simple congruence arguments show that, if (1.3) is solvable, then either
m=4 or 8 {(mod 16) or m=S5 (mod 8), and that if (1.1} is solvable then
m=1 or 2 (mod4) Thus, when m is even, {(1.1) and (1.3) are never
simultaneously solvable. Furthermore a straightforward application of (1.2)
shows_that, if m=4 or 8 (mod 16), (1.3) is solvable if and only if
{/m/4)=1(mod 2). Thus we need consider only the case m =5 (mod 8).
The following lemma is easily proved.

LemMMa 1. Ler m=5 (mod 8) be such that (1.3) is solvable and let (U, V)
be the smallest positive solution. Then the relation

u+vy/m= MU+ V/m))’

defines integers u and v such that (u, v) is the smallest positive solution of
(1.1). The solutions (x, y) of (1.1} are given by

Xty /m=+U+V/m)y, r=3(mod6),
and the solutions X, Y of {1.3) by
X+ Y /m)=+ AU+ V. J/m), r==+1(mod6).

However, the solvability of (1.1) does not guarantee that (1.3) is solvable
as the example m = 37 shows.

Before stating the main result we recall that if m=1 (mod4) then
l(\/E) =[/(3(1+ \/n—fl)) (mod 2). This congruence can be proved as follows:

141+ /m)) =1 (mod 2)

< x?—xy—im—1)y*=—1  is solvable in integers x and y
(see, e.g., [3, Satz 3.35])

< {(2x—y)*—my*=—4  solvable in integers x and y

< NE@2x—-y+y \/;z_)) = —1 solvable in integers x and y

<> N (fund. unit of Q(\/m)) = —1

< xP-my*=-—1 solvable in integers x and y

o l(/m)=1(mod?2)
(see, e.g., [3, Satz 3.18]).
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In Section 3 we prove

THEOREM 1. Let m=1 (mod 4) be a positive nonsquare integer such that
(1.1) is solvable. Then (1.3) is solvable if and only ifl(ﬂ)zl(%(] +\/r;))
(mod 4).

As (1.3) is not solvable for m=1 (mod 8) we have

CorOLLARY. If m=1 (mod 8) is such that (1.1) is solvable then

I(y/m) =131 +/m)) + 2 (mod 4).

2. NOTATION AND TwO LEMMAS

Throughout the paper the following notation will be used. If m_is a
positive nonsquare integer for which l(\/;n_)z 1 (mod 2), say l(\/;)=
24+ 1, then the continued fraction expansion of ,/m takes the form (see,
e.g., [3, Satz39])

Sm=[Ag, A\,n A,y Az Ay, 2451 (2.1)

Moreover, if m =1 (mod 4) then I(3(1 +\/r;)) = 1 (mod 2), say
131 + \/;)) =2u+ 1, and the continued fraction expansion of (1 + \/Z)
takes the form (see, e.g., [3, Satz 3.30])

{(1+/m)=1[Bo, By, B,, B,,. B, 2B,—11. (2.2)

We now prove the following two lemmas which are needed for the proof
of Theorem 1.

LEMMA 2. Let m be a positive nonsquare integer such that [(\/E)E
1 (mod 2). Then there exists exactly one pair of positive integers (a, b) with
m=a’+b% (a,2b)=1, such that the binary quadratic form [a,2b, —a] =
ar® 4 2brs — as? lies in the principal class of the group under composition of
equivalence classes of primitive binary quadratic forms of discriminant 4m.
Moreover, we have

b+ /m
a\/_= (A A g A A, (23)

In addition, if m=1 (mod 4), we have

a+\/a=[3

b

o By 2Bg— 1, By,..., B, ]. (24)
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Proof. For k=0, 1, 2..., we set

P+ /m
[Aka Ak+ 1 a--'s} z—k__\'[:'ﬂ
QO

so that P, and Q, are integers with

Py=0, Go=1, P, >0k=1), O,>0k=1),
see, for example, [ 3, Sect. 20]. Next, we set
a=Q;.1 b=P;,,,
so that @ and b are positive integers such that
m=a*+b* (a,2b)=1,

see, e.g., [3, Satz 3.121). Thus we have

b+¢%$[A

a

A+1s ‘4).4—27'"7]7

and so as 4,=4,,,,._,; (1 <ig4) we obtain

b+ /m
;/_=[AA,AA__],...,AI,QA(),A!,...,AA].

Hence there exist integers 4, B, C, D with AD — BC = +1 such that

b+ m A m+ B
a C m+D’

If AD—BC= —1 we set
A=TA+UB, B =TB+mUA, C'=TC+ UD, D' =TD +mUC,

where T and U are integers such that T2 — mU? = — 1. (Such integers T and
U exist as l(\/;;)z—l {mod 2).) Then we have

AD' —BC =1
and

A Jm+B _AJm+B
CJm+D C/m+D
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Hence, without loss of generality, we may assume that AD—BC=1.
Equating coefficients in (b + ﬂ Ya=(AJ/m+ B)/C\/; + D), we obtain

aA=bC+ D, aB=mC+ bD,
so that (as m=a’+ b?)
{a=D2——mC2=mA2— B?
b=BD—-mAC,
giving
ar? 4 2brs — as® = (Dr + Bs)? — m(Cr + As)?

which shows that the form [a, 2b, —a] is equivalent to [1, 0, —m]. Hence
the form [a, 2b, —a] lies in the unit (principal) class of the group under
composition of equivalence classes of primitive binary quadratic forms of
discriminant 4m.

Now suppose there exists another pair of positive integers (a,, b,) with

m=a?+ b3, (a;,2b))=1,

such that [a,, 2b,, —a,] lies in the principal class of forms of discriminant
4m. Then [a,, 2b,, —a,] is equivalent to [1, 0, —m], and so there exist
integers A, B, C, D such that AD — BC =1 and

a;r’ +2b,rs—a,s* = (Ar + Bs)* — m(Cr + Ds)*.
Hence we have
a;=A*—mC?= — (B*—mD?),
b, = AB—mCD,
and so
by +/m_D/m+B
a; C/m+4

This shows that (b, + ﬁ)/al and ./m are equivalent. As (b, + \/;)/al is
reduced (see [3, p. 73]) we must have [3, Satz 2.24],

m+¢5=u p
a, !

i 1o ] for some i = 1,

that is,

a1=Qi, bl=Pi9
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for some i > 1. Since
P2+ Q=m  (0<i<2i+1)

if and only if i=A+1 (see [3, Satz 3.11]) we must have
a,=Q,,,=4, by=P, =5,

establishing the uniqueness of a and 5.

If m=1(mod4) then (a+\/t; )/b is a reduced quadratic irrationality
corresponding to the form [b/2, a, —b/2] of discriminant m. As [a, 2b,
—a] represents 1 so does the form [5/2, a, —b/27]. Hence the form [5/2, a,
—b/2] lies in the principal class of forms of discriminant »m and so we have

+
fb_\/az [Bi, Bi\ s ] forsome i1

Proceeding as in the argument given above, we deduce that /= u. This
completes the proof of (2.4).

LemMMA 3. Let m be a positive nonsquare integer such that l(\/r;)z
1 (mod 2), say l(\/;) =24+ 1. Let t, u be the smallest solution of t* — mu* =
—1 in positive integers. Let the integers a, b be as given in Lemma 2. Then
there exist integers a and y such that

t=2a0y + b(a> —y?), (2.5)
u=a’+49y2 (2.6)
(—1)* = a(a® —y?) — 2bay, (2.7)
and
(=Y a+thb=m(o>—y>). (2.8)

Ifm=1 (mod 4) we let T, U be the smallest solution of T* —mU?= —4 in
positive integers, so that either T=U=0 (mod2) or T=U=1 (mod 2).
Then there exist integers o' and y’ such that

T=a(a'?—y"?)+2ba’y, (2.9)
U=a2+772, (2.10)

1ot b 12 t2
(—1)*= —aa'y +§(ac —1), (2.11)

and

Ta+2(—1D)*b=m(a'*—7y"?). (2.12)
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Proof. From (2.1) we have

1
see——— [Al,..., A;_, A;_,..., Al’ 2A0]
Jm—A4,
As 1/(ﬂ—AO) is a root of (m— A2) x> —2A4,x — 1 we have, appealing to
[2, Satz 114] and [3, Sect. 5],

(o) (7 o) o) (0 o) )

=<( t+Adou u ) (2.13)

m—A)u 11— Agu
Further, as (b + \/;)/a is a root of ax> — 2bx —a, we have by (2.3)
(A;. 1N (A, 1\(24, 1\/4, 1\ (4, 1
1 0 I o/\ 1 O/A\1l 0 1 0

=<I+bu au ) (2.14)

au t—bu

Setting

o B\ (A4, 1\ (A 1
( 5)-(i 0) (1 0)’ (1)
we obtain from (2.13), (2.14), and (2.15)

a y\[o B\(24¢ 1\ [ t+Aou u
<ﬁ 5)()’ 5)(1 0>_<(m—A(2))u t——A0u> (2.16)

A0 oG -(r ) e

Equating appropriate entries in (2.16) and (2.17), we obtain

and

u=a+7y> (2.18)
{4 bu=2A4,0% + 2ap, (2.19)
t—bu=244y*+ 273, (2.20)

au=2Aqay + ad + fy. (2.21)
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Equation (2.18) is the required equation (2.6). Setting
’ X=A0a+B, Y"—"A()'}""‘é, (222)
from (2.19), (2.20), and (2.21), we obtain

t=aX +7Y, (2.23)
au=yX+aY, bu=aX—yY. (2.24)

Solving the equations in (2.24) for X and Y, and making use of (2.18), we
obtain

X=ay+ba, Y=a0— by (2.25)
Substituting these values for X and Y in (2.23), we obtain
t = 2axy + b(o® —y?),

which is the required equation (2.5).
Further, taking determinants in (2.15), we have

ad— Py =(—1). (2.26)
Appealing to (2.22) we obtain
aY —yX=(-1), (2.27)
which becomes by (2.25) ‘
(= 1Y =a(o? —y%) —2bay,

which is the required equation (2.7).
Equation (2.8) follows easily from (2.5) and (2.7).
We now consider the case m=1 (mod 4). Similarly to above we have

B, 1\ (B, 1\/B, 1)___(31 1)(230»«1 1)

(10)(10)(10 oA 1 o
_(HT+ (2B~ 1) U) U ) -
(%(m—(230~1)2)U {T—(2B,—1) U) (228

and
B, 1\ (B 1\/2By—1 1\/B, 1 ,,,(Bu 1)
1 0 1 0 1 o/\1 O I 0

_(#{T+al) U ) (2.29)
‘( WU YT—al)) '
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« BN (B, 1 ”.<Bl 1)
Goo)=(r o7 o) (230)
we obtain, from (2.28), (2.29) and (2.30),
o Y\/o' B\/(2Bs—1 1
()G 2
_(%(T—k(ZBO—I)U) U >
" \i(m—(2By—1)’U §{T—-(2B,—1) V)

Setting

(2.31)

and

@ B\(2Bo—1 1\(« 3\ (HT+aU) U
(y' 5)( ! 0)<B’ 6')‘( WU %(T—aU))' (232)

Equating appropriate entries in (2.31) and (2.32) we obtain

U=a?+7? (2,33)
T+aU=20"(2By— 1)+ 4a'f’, (2.34)
T—aU=2y*(2B,— 1) +4y'5", (2.35)

bU =20y (2By— 1) + 24’8’ + 28'y". (2.36)

Equation (2.33) is the required equation (2.10). Setting
G=o'(2B,— 1)+ 20, H=9y'(2B,—1)+2J/, (2.37)

from (2.34), (2.35), (2.36) and (2.37), we obtain

T=o'G+y'H, (2.38)
aU=o'G—-vy'H, bU=y'G+a'H. (2.39)
Solving the equations in (2.39) for G and H, and making use of (2.33), we
obtain
G=aa +by', H=—ay + ba'. (2.40)
Substituting these values of G and H into (2.38), we obtain

T=a(a?—56%) +2ba'y,
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which is the required equation (2.9). Taking determinants in (2.30), we
have

a'd — By =(—1)" (2.41)
Appealing to (2.37) we obtain
A—1V=aH—y'G,
which becomes, by (2.40),
2—1)= —=2aa'y’ + b(a'? —y'?),

from which (2.11) follows. Equation (2.12) follows easily from (2.9) and
(2.11). This completes the proof of Lemma 3.

3. PROOF OF THEOREM 1
By Lemma 3 we have
r=(=1)**'ab " (modm), T=2(-1)**"a 'b(modm). (3.1)
If (1.3) is insolvable we have T =2f so that
20—1)Y*tab '=2(—1)** " a'b (mod m),
which gives, as (ab~")?= —1 (mod m), A=p+ 1 (mod 2), that is

I(/m)= 31+ /m)) + 2 (mod 4).

If, on the other hand, (1.3) is solvable then 7= U=1 (mod 2) and by
Lemma | we have t+u/m= 3T+ U\/E))3 so that

8¢t =T+ 3mTU? = T° (mod m).
Hence we have
8(—1)Y+*1ab '=8(—1)**"a b (mod m),
which implies, as (@b~ ')*=1 (mod m), A= p (mod 2), that is,
I(\/m) = I(3(1 + /m)) (mod 4).

This completes the proof of Theorem 1.



PELL’S EQUATION 179

4. CONGRUENCES MODULO 4 FOR i(\/z; )} AND
I(3(1 + /m)) WHEN m=5 (mod 8)

In this_section we prove congruences modulo4 for 1(\/1—?.';) and
I(4(1 + \/m)) when m=5 (mod 8).

THEOREM 2. If m=35 (mod 8) and 1(\/1;)5 1 (mod 2) then we have

I(/m)= Yabt +m—5) (mod 4), (4.1)
and
HabT+2m+ 6) (mod 4),
if T=U=0(mod?2),
31+ /m)) = (42)

Hab(T* + 3T) + 2m — 10) (mod 4)
if T=U=1(mod?2),

where a, b are given by Lemma 2; and T, U, t, u are as defined in Lemma 3.

Proof. As m=35 (mod 8) it is easy to see from > —mu®= —1 that
t=2(mod4), wu=1(mod4) (43)
Hence we have
’=4(mod 16), w*=2u—1(mod16), mu=m—u+9 (mod 16).
Using these congruences in t> — mu® = — 1 we obtain

m=2u+3 (mod 16)
so that
Hu—1y=Lm—5) (mod 4). 4.4)

From (2.6), we see, as u is odd, that exactly one of « and y is odd and the
other is even. As =2 (mod 4), (2.7) gives

(=1) =a(e®—7%) (mod 8),
that is,

a’—y?=(—1)"a (mod 8).

Further, appealing to (2.6), we have

2ay = (a+7)* — (a* +y?) =1 —u (mod 8),

641/23/2.3
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so that (2.5) gives
t=a(l —u)+ab(—1)* (mod 8).

Hence, we have by (4.4),

t 1 b 5
giving

¥, m=5\b

( 1)_<2+ 2 >2(mod4),
that is,

I(/m)=24+1=(—1)*=}abt + m—5) (mod 4)

as required. This completes the proof of (4.1).
In order to prove (4.2) we consider two cases.

Caset. T=U=1 (mod2).
In this case, by Theorem 1, we have

131 + /m))y = I(/m) + 2 (mod 4).
Appealing to (4.1) we obtain
I((1 + /m)) = Y(abt + m +3) (mod 4).

As T=2t in this case, the first line of (4.2) follows.

Caseii. T=U=1(mod?2).
In this case, by Theorem 1, we have

I4(1 + /m)) = I(/m) (mod 4).
Appealing to (4.1) we obtain

141+ /m))

As t=YT*+3mTU?)=4T>+3T) in this case, the second line of (42)
follows. This completes the proof of Theorem 2.

i

Yabt +m—5) (mod 4).
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5. Two EXAMPLES

EXaMPLE 1. m=325=52x13,

J/325=[18,36], 1+./325)=[9,1,1,17],
I(\/325)=1, 131+ /325))=3, t=18,u=1,T=36U=2

a and b are given by

b+3B _ 3gyo184 /325

that is,

Hence by Theorem 2 we have

(. /325)=4(1x 18 x 18 +325—5)=1 (mod 4),
)= 4

JA(1 +/325)) = 4(1 x 18 x 36 + 2 x 325 + 6) = 3 (mod 4).
EXAMPLE 2. m=85=5x17,
J85=19,%1,1,4 18], 41 +./85)=[5, 91,
l(,/85)=5 I(1+./85)=1, T=9,U=1,
= Y(T%+ 3mTU?) =378, u=133T2U +mU?)=41.

a and b are given by

b+;/§=[_.___1,4’ T 1]=2+9,/85

or by

a+\/g _ 9+\/g
— TOImT

>
so that

a=9, b=2.
Hence by Theorem 2 we have

I(/85)=1(9x2x378+85—5)=1 (mod 4),
114+./85)=49x2x(9°+3x9)+2x85—10)=1 (mod 4).
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