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Let m denote a positive nonsquare integer. It is shown that if Pell’s equation 
x2 -m Y* = - 1 is solvable in integers .%‘and Y then the equation x2 - mYr = -4 is 
solvable in coprime integers x and Y if and only if /(,/‘&) = /(j( 1 + &)) (mod 4), 
where l(x) denotes the length of the period of the continued fraction expansion of 
the quadratic irrational e. &? 1986 Academic Press, Inc. 

1. INTRODUCTION 

Let m denote a positive nonsquare integer. In th 
Lagrange used the continued fraction expansion of 
complete proof that Pell’s equation x2 -my* = 1 is always solvable in 
integers x and y with y # 0 (see, e.g., [l, p. 358]). Later for the equation 

the foflowing necessary and sufficient condition for solvability was proved: 

x2 -my2 = - 1 is solvable in integers x and y if and only if 
l(h) = 1 (mod 2), u-21 
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where QE) denotes the length of the period of the continued fraction expan- 
sion of the quadratic irrational CI (see, e.g., [3, Satz 3.181). (A real 
irrational number is called a quadratic irrational if it is the root of a 
quadratic equation with rational coefticients.) 

In this paper we shall be concerned with the solvability of the equation 
x=-my*= -4, (X, Y)= 1. (1.3) 

We note that if either (1.1) or (1.3) is solvable, m is not divisible by any 
prime E - 1 (mod 4). 

Simple congruence arguments show that, if (1.3) is solvable, then either 
m = 4 or 8 (mod $6) or ?n z 5 (mod 8) and that if (1.1) is solvable then 
m = 1 or 2 (mod 4). Thus, when m is even, ( 1 .l ) and ( 1.3) are never 
simultaneously solvable. Furthermore a straightforward application of ( 1.2) 
shows that, if m=4 or 8 (mod 16), (1.3) is solvable if and only if 
~(~) z 1 (mod 2). Thus we need consider only the case m E 5 (mod 8). 
The following lemma is easily proved. 

LEMMA 1. Lel m E 5 (mod 8) be SK/Z that ( 1.3) is solvabk and fei ( U, V) 
be the smallest p~sitiue s~lu~~~~. Then the relation 

defines integers a and v such thar (u, v) is the smallest pusitiue solMtjon of 
(1.1). The soZuMzs (x, y) of ( 1.1) are giuen by 

x+y&= *(g!‘+ vJ$y, r=3 (mod6), 

and the s~l~~j~ns X, Y uf ( 1.3) &V 

4(x+ Y&i)= *($(U+ V&)Y, r-s kl (mod6). 

However, the solvability of ( 1.1) does not guarantee that (1.3) is solvable 
as the example m = 37 shows. 

Before stating the main result we recall that if m = 1 (mod 4) then 
!(,/%) ZE Z(i( 1 + ,,I’%)) (mod 2). This congruence can be proved as follows: 

/(i(l + &)) = 1 (mod 2) 
e- xz-xwv--$(m- i)y’= -1 is solvable in integers x and y 

(see, e.g., [3, Sat2 3.351) 
e (2x-y)*-mSy2= -4 soIvable in integers .X and y 
-3 N(~(2X-y+j+L))= -1 solvable in integers .X and y 
e ZV (fund. unit of Q($)) = - 1 
-e x2-my2= -1 solvable in integers x and y 
e l(h) z I (mod 2) 

(see, e.g., [3, Sate 3.18-J). 
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In Section 3 we prove 

THEOREM 1. Let m E 1 (mod 4) be a positive nonsquare integer such that 
( 1.1) is solvable. Then (1.3) is solvable if and only if Z(A) E Z($( 1 + A)) 
(mod 4). 

As (1.3) is not solvable for m = 1 (mod 8) we have 

COROLLARY. Zf m E 1 (mod 8) is such that (1.1) is solvable then 

2. NOTATION AND Two LEMMAS 

Throughout the paper the following not+tion will be used. If m>s a 
positive nonsquare integer for which Z(Jm) E 1 (mod 2), say Z(Jm) = 
2,J + 1, then the continued fraction expansion of fi takes the form (see, 
e.g., [3, Satz 3.91) 

fi= [&,,A ,,..., AA, AA,..., Al, 2Aol. (2.1) 

Moreover, if m = I (mod 4) then 1($( 1 + &)) = 1 (mod 2), say 
/($( 1 + A)) = 2~ + 1, and the continued fraction expansion of i( 1 + ,/%) 
takes the form (see, e.g., [3, Satz 3.301) 

;(l +A)= [&, B ,,..., BP, BP ,..., B,, 2BO- 11. WI 

We now prove the following two lemmas which are needed for the proof 
of Theorem 1. 

LEMMA 2. Let m be a positive nonsquare integer such that I(&) = 
1 (mod 2). Then there exists exactly one pair of positive integers (a, b) with 
m = a2 + b2, (a, 2b) = 1, such that the binary quadratic form [a, 2b, -a] = 
ar2 + 2brs - as2 lies in the principal class of the group under composition of 
equivalence classes of primitive binary quadratic forms of discriminant 4m. 
Moreover, we have 

b+& 
~ = [AA ,..., A,, 2A,,, A, ,..., A>,]. a 

Zn addition, if m = 1 (mod 4), we have 

a+& ~ - [BP ,..., B,, 2B0 - 1, B, ,..., BJ. 
b 

(2.3) 

(2.4) 
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ProofI For k = 0, 1, 2+.“.* we set 

[Ak, Ak+ ,>...5 I= 
Pk+-& 

Q * 
k 

so that Pk and Qk are integers with 

see, for example, [3, Sect. 201. Next, we set 

a=Qi.+I, b=Pi+,, 

so that a and b are positive integers such that 

m = a2 + b2, (a, 2b) = 1, 

see, e.g., [3, Satz 3.12-J). Thus we have 

and SO as ~i=~~j,+,.-~ (1 <i<A) we obtain 

Hence there exist integers A, B, C, D with AD - BC = & 1 such that 

b+,/‘hi A,/%+B -ZZ 
a C%JGLD* 

If AD-K’= -1 we set 

A’=TA+UB,B’=TBi-mUA,C’=TC+UD,D’=TDi-mUC, 

where T and U are integers such that T2 - mU’ = - i. (Such integers T and 
E.7 exist as I{&) E 1 (mod 2}.) Then we have 

and 
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Hence, without loss of generality, we ma assume that &I - BC= 1. 
Equating coeficients in (b + ,,&)/a = (II $+B)/Cfi+D), we obtain 

aA=bC+D,aB=mC+bD, 

so that (as m = a2 + b2) 

1 

a=D2-mC2=mA2-B2, 

b=BD-mAC, 

giving 

ar2 + 2brs - as2 = (Dr + B,s)’ - m( Cr + As)’ 

which shows that the form [a, 2b, -a] is equivalent to [ 1, 0, -m]. Hence 
the form [a, 2b, -a] lies in the unit (principal) class of the group under 
composition of equivalence classes of primitive binary quadratic forms of 
discriminant 4m. 

Now suppose there exists another pair of positive integers (a,, b,) with 

m=ai+bT, (al, 2&j= 1, 

such that [aI, 2bl, -aI] lies in the principal class of forms of discriminant 
4m. Then [a,, 2bl, -al] is equivalent to [l, 0, -m], and so there exist 
integers A, B, C, D such that AD - BC = 1 and 

alr2+2b,rs-als2=(Ar+Bs)2-m(Cr+Ds)2. 

Hence we have 

and so 

aI = A2 - mC2 = - (B2 - mD2), 
b, = AB-mCD, 

b,+fi=Dfi+B 

aI CfiiA’ 

This shows that (bl + r)/ m aI and ,/& are equivalent. As (bl +&)/a, is 
reduced (see [3, p. 731) we must have [3, Satz 2.241, 

that is, 

al = Qiv b, = Pi, 
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for some i 2 1. Since 
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Pf+Qf=m (O<i<2i+ I) 

if and only if i = 2 + 1 (see [3, Satz 3.111) we must have 

Q~=Q~,+~=G b,=Pj.+l=b, 

establishing the uniqueness of u and b. 
If m= 1 (mod 4) then (u+J&)/b is a reduced quadratic irrationality 

corresponding to the form [b/2, u, -b/2] of discriminant m. As [u, 2b, 
-u] represents 1 so does the form [b/21 u, -b/2 J. Hence the form [b/2, a 
-b/2] lies in the principal class of forms of discriminant m and so we have 

] for some i> 1. 

Proceeding as in the argument given above, we deduce that i= p. This 
completes the proof of (2.4). 

LEMMA 3. Let m be u positive nonsquare integer such that l(,,/&) = 
1 (mod 2), say l(fi) = 22 + 1. Let t, u be the smullest solution oft* - mu2 = 
- I in positive integers. Let the integers u, b be us given in Lemmu 2. Then 
there exist integers a und y such thut 

und 

t = 2aay + b(c? - y*), 

u = a* + y*, 

( - 1)’ = u(c? - y*) - 2bay, 

( - 1)’ u-t tb = m(a* - y2). 

(2.5) 

(2.6 

(2.7 

(2.8 

If m = 1 (mod 4) we let T, U be the smallest solution of T* - mU2 = -4 in 
positive integers, so that either T= U z 0 (mod 2) or TE U E 1 (mod 2). 
Then there exist integers a’ und y’ such thut 

T= a(u’* - f*) + 2ba’y’, (2.9) 
U c a’* + y’*, (2.10) 

( -l)p= -aa’~‘+~(a’2-~‘2), (2.11) 

und 

Tu + 2( - 1 )p b = m(a12 - f2). (2.12) 
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Proof From (2.1) we have 

~’ = [Al ,..., A j., Aj.,..., A 1, 2~~1. 
m-A0 

.AS M&Aol is a root of (m - Ai) x’- 2A,,.x - 1 we have, appealing to 
[2, Sate 1141 and [3, Sect. 51, 

Further, as (b+J)/ m u is a root of ax’- 2b.x - a, we have by (2.3) 

(‘y ;)...(‘;l ;)(y ;)(;I (l).$j. A) 

Setting 

we obtain from (2.13), (2.14), and (2.15) 

(; :)(; !12fo A)=(i?Y& t-Y40u) 

and 

(; g2fo A)(; ;)=(tr tY5J 

Equating appropriate entries in (2.16) and (2.17), we obtain 

u=ct2+y2 

t+bu=2AO~2+2c& 

t - bu = 2Aoy2 + 2~4 

uu = 2Acpy + cd + by. 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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Equation (2.18) is the required equation (2.6). Setting 

~X=&a+/?, Y = .4oy + 6, (2.22) 

from (2.19), (2.20), and (2.21), we obtain 

f=cxX+yY, (2.23) 

au=yX+aY, bu=aX-yY. (2.24) 

Solving the equations in (2.24) for X and Y, and making use of (2.18), we 
obtain 

X=ay+ba, Y=ua-by, (2.25) 

Substituting these values for X and Y in (2.23), we obtain 

t = 2ac.xy -t b(cc2 - y2), 

which is the required equation (2.5). 
Further, taking determinants in (2.i5), we have 

a&--&=(-l)‘. 

Appealing to (2.22) we obtain 

aY--yX=(-l)‘% 

which becomes by (2.25) 
( - 1)’ = a(a2 - y’) - 2bay, 

(2.24) 

(2.27) 

which is the required equation (2.7). 
Equation (2.8) follows easily from (2.5) and (2.7). 
We now consider the case m = 1 (mod 4). Similarly to above we have 

and 
(I $(7-+(2B()- 1) U) u 

= $(m-(2&-l)*)U +(T-(2&-1)U) 
(2.28j 

(2.29) 
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Setting 

(2.30) 

we obtain, from (2.28), (2.29) and (2.30), 

= +(rr-(2Bo- 1)2 U $(T-(2Bo- 1) U) 
(2.31) 

and 

Equating appropriate entries in (2.31) and (2.32) we obtain 

u = cd2 + y’2, 

T+dJ=2d2(2Bo- 1)+4a’b’, 

T- aU= 2f2(2Bo- 1) + 4y’~?‘, 

bU = 2a’y’(2Bo - 1) + 2rx’X + 2fl’y’. 

Equation (2.33) is the required equation (2.10). Setting 

633) 

(2.34) 

(2.35) 

(2.36) 

G = a’(2Bo - 1) + 2/I’, H = y’(2Bo - 1) + 2X, (2.37) 

from (2.34) (2.35) (2.36) and (2.37), we obtain 

T = CX’G + y’H, 

aU = a’G - y’H, bU = y’G + dH. 

(2.38) 

(2.39) 

Solving the equations in (2.39) for G and H, and making use of (2.33), we 
obtain 

G = au’ + by’, H= -ay’+ ba’. 

Substituting these values of G and H into (2.38), we obtain 

T= LZ(LX’~ - ~3’~) + 2ba’y’, 

(2.40) 
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which is the required equation (2.9). Taking determinants in (2.30) we 
have 

cc’6 - p’y’ = ( - 1 )P. 

Appealing to (2.37) we obtain 

2( - 1 )@ = R’H - Y’G, 

(2.41 ) 

which becomes, by (2.40) 

2( - 1 )P = - 2ucC’$ + b(cP - y’z), 

from which (2.11) follows. Equation (2.12) follows easily from (2.9) and 
(2.11). This completes the proof of Lemma 3. 

3. PROOF OF THEOREM 1 

By Lemma 3 we have 

r~(-l)‘+‘~F’(rnodm),~~2(-1)~+‘~ ‘b(modm). (3.1) 

If (1.3) is insolvable we have T = 2t so that 

2(-l)A+’ ~F’=2(-l)~+‘u~‘~(rnodm), 

which gives, as (a&‘)* = - 1 (mod m), J. = p + 1 (mod 2), that is 

l(A) = l(+( 1 + fi)) + 2 (mod 4). 

If, on the other hand, 1.3) is solvable then T= U= 1 (mod 2) and by 
Lemma 1 we have t + u k m = ($ T+ U&))3 so that 

8t = T3 + 3mTU2 E T3 (mod m). 

Hence we have 

8(-l)‘+’ ~&‘=8(-l)~+‘u~~~~(rnodrn), 

which implies, as (&P’)4 = 1 (mod m), 1~ p (mod 2), that is, 

l(A) = l(+( 1 + &)) (mod 4). 

This completes the proof of Theorem 1. 
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4. CO~~R~~S MODULO 4 FOR l(fi) ANQ 

w + J&J WHEN rn=5 (mod8) 

In this section we prove congruences moduio 4 for Z(,,/&) and 
f($( 1 + ,,I%)) when m G 5 (mod 8). 

THEOREM 2. If m 5 5 (mod 8) and l(A) zz 1 (mod 2) then we haue 

Z(h) z $abt + m - 5) (mod 4), (4.1) 

and 

&abT-+- 2m + 6) (mod 4) 

@(1+&q)= 

I 

$ TE U=O (mod 2), 

+(ab( T3 + 3T) + 2m - 10) (mod 4) 
(4.2) 

$ T=U=l (mod2), 

where a, b are given by Lemma 2; and T, U, t, u ure as defined in Lemma 3. 

ProojI As m = 5 (mod 8) it is easy to see from t2 - mu2 = - 1 that 

t = 2 (mod 4), u = 1 (mod 4). (4.3) 

I-Ience we have 

t2 z 4 (mod l(j), u2 EE 2u - 1 (mod 16), rntizrn-u+9 (mod 16). 

Using these congruences in t2 - mu’ = - 1 we obtain 

m=2u+3 (mod 16) 

so that 

$(u - 1) = i(m - 5) (mod 4). (4.4) 

From (2.6), we see, as u is odd, that exactly one of a and of is odd and the 
other is even. As b = 2 (mod 4), (2.7) gives 

(- l)A = a(a’ - y2) (mod 8), 

that is, 

a’-y2z(-l)‘a (mod8). 

Further, appealing to (2.6), we have 
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so that (2.5) gives 

~~~(l-~)~~~(-l)~(mod8). 

Hence, we have by (4.4), 

giving 

that is, 

as required. This completes the proof of (4.1). 
In order to prove (4.2) we consider two cases. 

Casei. T=U=l (mod2). 
In this case, by Theorem 1, we have 

Z( $( I + &)) e Z(A) + 2 (mod 4). 

AppeaIing to (4.1) we obtain 

As T= 2f in this case, the first line of (4-2) follows. 

Case ii. T= WE 1 (mod 2). 
In this case, by Theorem 1, we have 

Appealing to (4.1) we obtain 

Z(i( 1 + ,/‘%)) SE i(abt + m - 5) (mod 4). 

As f = i( T3 + 3mTt.f’) = $(T3 + 3T) in this case, the second line of (4.2) 
foIlows. This completes the proof of Theorem 2. 
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5. Two EXAMPLES 

EXAMPLE 1. m=325=52x13, 

,,&= [18,%], +( 1 + Jz?) = [9, 1, 1, 171, 

Z($%) = 1, l(;(l++5))=3, t=l8, u=l, T=36, U=2 

a and b are given by 

b+m 
a 

=[%]=18+,/?% 

that is, 

a= 1, b= 18. 

Hence by Theorem 2 we have 

1(&%)=~(lxl8~18+325-5)~l (mod4), 

Z(+(l+&))=#lxl8x36+2x325+6)=3(mod4). 

EXAMPLE 2. m = 85 = 5 x 17, 

$= [9, 4, 1, 1, 4, 18-J #l +JE)= [5, !J], 

Z(JiG) = 5, /(i(l +fi))= 1, T=9, U= I, 

t=&(T3+3mTU2)=378, u=~(3T2U+d3)=41. 

a and b are given by 

b+,,h 
=[1,4, 18,4, 1]= 

2+fi 
a 

9 

or by 

so that 

a = 9, b = 2. 

Hence by Theorem 2 we have 

/($)=$(9x2x378+85-5)=1 (mod4), 

Z(&( 1 + a)) = i(9 x 2 x (93 + 3 x 9) + 2 x 85 - 10) E 1 (mod 4). 
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