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1. Introduction. Let m be a positive squarefree integer which is either of
the form

(1.1) m=pyp,...p,=1(mod4) (r=1)
or of the form
(1.2) m=2p p,...p,=2(mod8) (r=0),

where p,, ..., p, are primes congruent to ! modulo 4. Let (4, B, C) be a
triple of positive integers such that

(1.3) A% = m(B*+C?).

(The form of m guarantees that there are infinitely many such triples
(A, B, C).) From (1.3) we see that the greatest common divisor of B and C
must divide A and so can be divided out of the equation (1.3). Hence we may
assume that

(14) (4, B)=(4, C)=(B, () = 1.
Let p be an odd prime, not dividing ABC, which is such that
(ﬁ)=1 (i=1,..,r, if m=1(modd),
p

(1.5) )
(-)=<ﬁ>=1 (=1,...,r, if m=2(mod8),
14 14
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so that for both m = 1(mod4) and m = 2(mod 8) we have

(1.6) (T) =1.
P

Hence there exists an integer w such that w? = m(mod p). Further, by the law
of quadratic reciprocity (LQR), we have from (1.5)

(1.7) (-’3)=1 i=1,..,7.
D;

The Dirichlet symbols {2 ) (if m = 1(mod4)) and (2~ (f m = 2(mod 8))
m 4 m/2 4

of quartic residuacity are defined by

p (P
1.8 REEATYA
( ) (pl p,)4 il=_I1 (pi)4

and for i=1,...,r

(1.9) (3)
Di/a

_ % +1, if p is a quartic residue (mod p)),
T l—-1, ifpisa quadratic residue but a quartic nonresidue (mod p;).

The purpose of this paper is to determine the value of the Legendre
A+B A+B
symbol <—+pﬂ>, where ./m = +w(mod p). The value of <—ﬂ> is

p

independent of the choice of +w for ﬂ as
. 3 2 o2 5
<A+B\ﬁn)<A B\/;Z)=<A mB)=<mC)il’
p p p p
so that

(1.10) (A’Liﬂ):(”l_iﬁ).

A+B./m)\ . Co
The evaluation of <J) is carried out in a completely elementary
p .

way, requiring nothing more than the manipulation of Jacobi symbols by
means of Jacobi’s law of quadratic reciprocity, although the method of proof
is complicated by the necessity of keeping track of the exact powers of 2
dividing the integers involved. Our theorem provides a unifying result in the
theory of rational quartic reciprocity laws as a number of such laws are
either special cases of our theorem or can easily be deduced from it. In
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particular Scholz’s reciprocity law [10] is a special case of our theorem, as
are Emma Lehmer’s criterion for quartic residuacity ([7], p. 24) and Burde’s
biquadratic reciprocity law ([4], p. 183). Scholz proved his reciprocity law by
means of class field theory. Later authors have given more elementary proofs
of it ([5], [9], [12]). Emma Lehmer proved her criterion by studying the
rationality of the roots of the period equation of degree 4 considered as a
congruence modulo a prime. Burde proved his reciprocity law by means of a
study of lattice points. More elementary proofs have been given of Burde’s
law in [9], [13]. There are many other rational reciprocity results which are
also special cases or simple consequences of our theorem (see for example
(11, [2], [3] [6], [8] [11]).

After a number of lemmas we prove the following Theorem in Section 2.

THEOREM. Let m be a positive squarefree integer of the form (1.1) or (1.2).
Let A, B, C be positive integers satisfying (1.3) and (1.4), then if m = 1(mod 4)

we have
<A+B\/E) — (=~ 1)p= Dom=1/8 (E)B <£) ,
14 14 mj,

and if m = 2(mod 8) we have
| p
( )(p 1)/8(
m/2
)(p-+-m 1)/8(

| (ﬂ@)=

) if  p=1(mod8),
14 14
m/2

), if p=7(mod8).

We note that the identity

2(A+B . /m)(4+C /m) = (A+B./m+C /m)

gives

(SR

Hence, when m = 1(mod 4), in which case B and C are of opposite parity, we
may interchange B and C so that B is odd, and to prove the theorem in this
case it suffices to show that

(ﬂ\_@_) = (— 1= Dom= 18 (3) <£> :
P P/ s

Throughout the rest of the paper it will be assumed that B is odd when
m = 1(mod 4).

We now show that Scholz’s reciprocity law is a- special case of our
theorem.
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CoroLrary 1 (Scholz, [10]). Let p= 1(mod4) and q =1(mod4) be

distinct primes such that <§> = <g> = 1. Let ¢, (resp. ¢,) denote the funda-

mental unit (> 1) of the quadratic field Q(\/;J) (resp. Q(\/;I)). Then we have

(L0.-6)-62)
qd/a\P/a P q

Proof. In view of the symmetry in p and g, it suffices to prove the first
equality. We set

; I, if g=1(mod8),
A=
3, if g=5(mod8).

Then there are positive integers T and U such that
e =T+U./q, T=0(mod2, U =1(mod),
and
T?—qU? = —1.
Taking m=¢q, A=qU, B=T, C =1 in the theorem, we obtain

(£74)-6)

p q
that is
()6

Next we show that Lehmer’s criterion is a special case of our theorem.

CoroLLARY 2 (Lehmer, [7]). Let r = a?+b% = dn+ 1 (a and b are posi-

tive integers with a odd and b even) be a prime, and let q be an odd prime not
q

dividing ab such that <~) = 1. Then we have
r

<£1) = ((_—1__)"2/&_1))’ where  r = A%a’(mod q).
rja q
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Proof. Taking p=¢q, m=r, A=r, B=a, C =b in the theorem we

obtain
<2r+2a \/;) = (—1)a-Dm2 <€) ,
q

/s

(ﬂ) _ <(— 1)"(222a2+2/1a2)) 3 (ﬂw)
F/a q q
as required.

We remark that Lehmer’s criterion ([7], p. 24) included the case g|ab.
This possibility is not covered by our theorem as we exclude p| ABC from
the outset, but is easily treated by the methods employed in this paper.

Finally we show that Burde’s reciprocity law also follows from our
theorem.

CoroLrary 3 (Burde, [4]). Let p = 1 (mod4) and q = 1(mod 4) be distinct

primes such that <B) = (ﬂ) = 1. Define positive integers a, b, ¢, d by
q p

so that

p=a*+b* a=1(mod2), b=0(mod?2),
q=c*+d* c¢=1(mod2), d=0(mod2).

(E) <g) =(_1)(p~1)/4(ad—bc).
4/4\P/a \ P

Proof. By the law of quadratic reciprocity we have

(-0)-22)-C)

Also from the congruence

Then

2a(ad—be)(d+/q) = (ad — be +a . /g)* (mod p)

we deduce that

(- (5

Applying the theorem with m=gq, A =¢q, B=d, C = ¢, we obtain

(594,
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(e) (¢ ) _ (M )
q9/4\P/a p
This completes the proof.

We close this section by noting that from (1.3) we have m| A2, and so, as
m is squarefree, we have m| 4, say,

that is

(1.12) A =ma.

Then, from (1.3) and (1.4), we obtain

(1.13) ma* = B>+ C?,

and

(1.14) (@, B)=(a,C)=(B,C)=(m,By=(m, C) = 1.

2. Proof of theorem. In this section we shall prove a number of technical
results leading to Lemmas 9 and 10 from which the theorem follows.

LeMMA 1. Let m be a positive squarefree integer of the form (1.1) or (1.2).
 Let p be an odd prime satisfying (1.5). Then there exist positive integers e, f k
such that

2.1 kip=e?—mf?
(2.2) .=, k=(k=(p=(p=(€m=km=1.

Proof. The condition (1.5) guarantees that m is a quadratic residue
(mod p) and that p is a quadratic residue (modm). Hence, by Legendre’s
theorem, the equation (2.1) is solvable in non-negative integers e, /. k, which
are not all zero. Clearly none of e, f, k can be zero so they are in fact all

positive. If r is a prime dividing both e and f then r?| k% p and so r|k. Thus r
~is a common factor of e, f and k which can be cancelled throughout the
equation (2.1). Hence we may assume without loss of generality that (e, f)
= 1. It is then easy to check that, as m is squarefree and p  m, we have (2.2).

LEMMA 2. With the notation of Lemma 1 we have the congruences for e,
S, k given in Table 1.

Proof. The congruences for ¢, f and k follow easily .by considering (2.1)
modulo 8.

LemMA 3. With the notation of Lemma 1, the solution e, Sk of (2.1) and
(2.2) can be chosen to satisfy '
%f =0(mod2), k=1(mod2), if p= m(mod 4),
e=0(mod2), k=1(mod2), if p=3(modd), m= 1(mod 4).
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Table 1
p(mod 8) m(mod 8) congruences for e, f, k
1 1 e=1(mod2), f =0(mod4), k = 1(mod?2)

or
e=f=1(mod2), k =0(mod4)

1 2 e =1(mod?2), f =0(mod2), k =1(mod2)

1 . 5 e=1(mod2), f =0(mod4), k = 1(mod?2)
or
e=f=1(mod2), k =2(mod4)

3 1 e=f=1(mod2), k =0(mod4)
or
e =2(mod4d), f =k = 1(mod 2)

3 2 this case cannot occur

3 5 e=f= 1(mod2), k = 2(mod 4)
or
e =0(mod4), f = k = 1(mod 2)

5 1 e=f = 1(mod2), k =0(mod4)
or
e=1(mod?2), f =2(mod4), k = 1(mod 2)

5 2 this case cannot occur

5 5 e=f=1(mod?2), k =2(mod4)
or
e=1(mod?2), f = 2(mod4), k = 1(mod2)

7 1 e=f=1(mod2), k = 0(mod4)
: or
e =0(mod4), f =k = 1(mod 2y

7 2 e=f=k=1(mod?2)

7 5 e=f=1, k=2(mod4)
or
e=2(mod4), f =k = 1(mod?2)

Proof. If p=m(mod4) and e, f, k is a solution of (2.1) and (2.2)'withv
S =1(mod2) and k = 0(mod?2) then ¢, f', k' defined by
e,ze(p+m)’ f,z‘w~wﬁf_pk (p;m)

2 2

: k=’ k+W‘
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is a solution in positive integers of (2.1) with
S =0(mod2), Kk'=1(mod?2).

Dividing each of ¢, f’, k' by their G.C.D. we obtain the required solution.

If p=3(mod4), m = 1(mod4) let e, f, k be a solution in positive integers
of (2.1) and (2.2) with e = 1(mod2), k = 0(mod 2). Let X, Y be the smallest
solution in positive integers of X2—pY? = 1. Then it is well known and easily
verified that

X =0(mod2), Y=1(mod2).

Replacing e, f, k by ¢ =eX +pkY, f' =f, k' = kX +eY, we obtain a solution
in positive integers of (2.1) with ¢’ = 0(mod 2), k' = 1(mod 2). Dividing each
of €, f’, k' by their G.C.D. we obtain the required solution.

In view of Lemmas 2 and 3 and the choice B = 1(mod 2) it suffices to
consider the following cases.

Table 2
Case | p(mod 8) [m(mod 8)| congruences for A, B, C congruences for e, f, k
| 1 1 A=B=1(mod?2), e =1(mod?2), f =0(mod4),
C = 0(mod4) = 1(mod 2)
II 1 2 A = 2(mod 4), ¢ = 1(mod 2), f = 0(mod 2), )
B=C=1(mod?2) k =1(mod2)
It 1 5 A =B=1(mod2), e = 1(mod 2), f = O0(mod 4),
C = 2(mod 4) k = 1(mod 2)
v 3 1 A =B = 1(mod?2), e=2(mod4), f =k = 1(mod?2)
C = 0(mod4)
v 3 5 A =B =1(mod2), e=0(mod4), f =k = 1({mod 2)
C = 2(mod4)
VI 5 1 A=B=1(mod2), e = 1(mod 2), f = 2(mod 4),
C = 0(mod 4) k =1(mod2)
VII 5 5 A =B = 1(mod2), e =1(mod2), f = 2(mod4),
C = 2(mod4) k = 1(mod 2)
VI 7 1 A =B = 1(mod?2), e=0(mod4), f =k = 1(mod 2)
C =0(mod4)
IX 7 2 A = 2(mod 4), e=f=k=1(mod2)
B=C=1(mod?2)
X 7 5 A =B = 1(mod 2), e =2(mod4), f =k = 1(mod 2)
C =2(mod4)

The following simple observations will be important in what follows:

(2.3) a=B=k=1(mod2),
(2.9) Af+ Be = 1(mod 2),

_ {0(mod2), in case IX,
(25) ae+Bf = {l{mod 2), otherwise.
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It is convenient at this point to introduce the following notation: if n is a
positive integer the largest odd divisor of n is denoted by n*. In particular we
set

(2.6) e=2¢* £>0, e*=1(mod2),
2.7) f=2f* (20, f*=1(mod2),
(2.8) m=2m* u=0o0r1, m*=1(mod4).
We note that

(2.9) e=0, if p=1(mod4),

(2.10) (=0, if p=3(mod4),

0, if m=1(modd
2.11) u:%’ it m=l(mod4),

I, if m=2(modSy).

LEmMMa 4. With the notation of Lemma 1 and Table 2, we have

(2.12) Ao (Y2 Y (LAY (P
) p e* pm* | \ke* | \m* )/,
and
)0 6)
2.13 = -.
21 <p I p
€ *
5)-GG) Cr29

Proof. We have
—1\Pviz
(e—*) (e—) (by LQR)

)E (?) (by (22)
CIGER) e

( ) (by (2.2)
CIUCEE e
CIUEEIE

6 — Acta Arithmetica XLV.3
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(p+1)/2 ‘
CETRICNE) e
pm m
1 (p+1)/2 £ u 2
( ( ) < ) _e_*) (by (1.1), (1.2)
e* m* )/,
—1\(pt+1)2 ¢ u /12
(_1 ( *> <£*) <L*I‘)> (by (2.1)
pm m* /,
—1\+ 12 R 2 “/k »
(7*— (pm*) ?) (ﬁ) ﬁ)‘
NEHLZ /D e[\ :
<Pm*) \’5)
1 (P+ 1)/2 2 £ 2 \u
( ) (pm*> (k?)
1\e+vz/ 2 2 \k
(&) e )

()-(0)- (=)= ()=

This completes the proof of (2.12).
Next we have '

0-6)
GG ion
G e
(;—1) (R ) (by (2.)
G
G

which completes the proof of (2.13).

(by LQR)

m
)(«”—) (by (28)
m .

i
NN
m‘ |
* e,
v
N
=~ §
SN——
TN

AR
N———
»

as

TN
‘ult\)

\
*

/"\

=N

N

N
NN N
~—~
\—/\
*
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LEMMA 5. With the notation of Lemma 1 and Table 2, we have

‘ B 2
2.14) (ﬁ) _ (E
K\ /2
(2.15) (ﬁ) _ (E
e’ 2
(2.16) (m—) = (%

Proof. We have

(2

3
*

N—
PN
w| §,
= . S

N——

N
| o

TN

Wi ™
N——

N

N——

> 1)

This completes the proof of (2.14).
Next we have

_(3Y(£=Krp

N k) k
¢

=(%)-

-

)

(by LQR)
(by (2.8))
(by (1.14)

(by (1.13))

(by LQR)
(by (2.8))
(by (2.2)

(by (2.1)



266 K.S. Williams, X. Hardy and Ch. Friesen

Finally we have

2
= (k——’f) (by (2.1)
m= Jja

- (%)” (li;) (by (2.15)).
m=ja.

This completes the proof of (2.16).
LeMMA 6. With the notation of Lemma 1 and Table 2, we have

Af+Be\ i “{p
m* ) \Bk) \m*/,
Proof. This follows immediately from Lemma 5 as
Af+ Be maf + Be Be B e
m* ) m* U AR AT
Lemma 7. With the notation of Lemma 1 and Table 2, we have

(2.17) (Af+ Be, ae + Bf) = I2,

where | is an odd positive integer such that
(2.18) (I, maBefp) = 1.

Proof. We first recall from (2.4) that Af+ Be is odd. Therefore (Af+ Be,
ae+ Bf) is odd. Suppose ¢ is an odd prime such that

q*"* || (Af+ Be, ae+ Bf).

From
(2.19)  (Af+Be)*—m(ae+ Bf)? = (B> —ma®)(e*—mf?) = —C?k?p,

we have ¢*"*?|C?k?p, so ¢*"*'|Ck. Hence either ¢"*'|C or g¢"*!|k.

Suppose first that ¢"*'|C. It is easy to check that (q, aBmp) = I.
Further as (e, f) = 1 and ¢*"*'|ae+ Bf we have (g, ¢f) = 1. Then eliminating
B from the congruences

Be = —maf (mod ¢***'), Bf = —ae(mod ¢***?)
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we obtain a(e’—mf?) = O(modg***?!), so that k?p = O(modg?**?), giving
h+1
q " |k
Suppose now that ¢"*!|k. It is easy to check that (g, efm) = 1. Further
as (a, B) =1 and ¢*"*'|ae+ Bf we have (g, aB) = 1. Then eliminating f from
the congruences

maf = —Be(mod ¢***'),  Bf = —ae(mod g*"* 1),

we obtain e(ma’—B?) = 0(mod ¢*"*'), so that C? =0(modg**!), giving

q""'|C, (g, p) = 1.
Hence in both cases we have ¢"*'|C, ¢"*! |k, and (g, aBmefp) = 1. Then

from ma®—B? = C? = 0(mod ¢***?2) and e?—mf? = k? p = O(mod g*"*2), we
obtain on eliminating m

a’e®*—B*f? = 0(mod g*"*?),
so that
(ae+ Bf)(ae— Bf) = 0(mod g**?).
Further we have |
a’m’f?—B*e* = mf?(B*+C?)— B? ¢*(mod g*"* ?)
= —B2)2 p(mod q2h+ 2)
= 0(mod g*"*?),
so that
(amf+ Be)(amf — Be) = 0(mod ¢2"*2).

As (g, aBmef) =1 g cannot divide both of ae+ Bf, ae— Bf nor both of
amf+ Be, amf— Be. Since q divides amf+ Be and ae+ Bf we must have

q*"*%lamf+ Be, q***¥ae+ Bf.

This contradicts the definition of h. Thus every odd prime divisor of
(Af+ Be, ae+ Bf) must divide (Af+ Be, ae+ Bf) to an even power, so that
as (Af+ Be, ae+ Bf) is odd we have

(Af+ Be, ae+ Bf) = 12,

where [ is an odd positive integer. It is easy to check that (I, maBefp) = 1. We
just show that (I, p) = 1. For suppose p|! then we have p|Af+ Be, giving

mC%f? = mC?f?— B?(e* — mf ?)(mod p)
= A2f? - B%¢?(mod p)
= 0(mod p),
which is impossible as ptm, p¥C, ptf.
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This completes the proof of Lemma 7. A
LEMMA 8. With ‘the notation of Lemmas 1, 7 and Table 2, we set

(2.20) Af+Be =1*t, ae+Bf =?u,
so that t and u are positive integers such that
(2.21) t,w=1

and ’

0 d2), i IX,
(2.22) t=1(mod2), u { (mod2), in case

1(mod2), otherwise.

Then there exists a positive integer v such that

(2.23) Ck =%y,

(2.24) 2—mu? = —pp2.

Moreover setting _

(2.25) u=2%* u*=1(mod2), 60,

so that 0 =0 except in case IX, we have

Af+Be\ [(—1\P"D27 2 \e/p
@0 () ) (),

and

ae+ — 1\t 2

Proof. Appealing to (2.19) and (2.20) we obfain
(2.28) ' P —mu?) = —C2k?p.

As p is an odd prime, which is coprime with [, we have I?| Ck, so that there
is a positive integer v such that Ck = 12, which is (2.23). Then from (2.29) we

obtain t>—mu® = — pv?, which is (2.24). As (¢, ) = 1 and m is squarefree, it is
easy to verify that '
(2.29) to)=@Ep=W0)=0tm=@v,m=@u,p=1.
Next we have ‘
Af+Be\ [Pt '
( / ) - (—) by (220)
14 P
t :
= (;) (by (2.18))

I

— 1\ 12 . ,
R
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1\ 112 2
Ut t
( 1>w /2 (gt t2>
t

I
TN
n!l

It
vA
'e
S
| 3
N—

TN =N =N =N -

1
N
H‘I

b
\/A
)

|
S

(p—
(p—1)/2 2 \# p
( ) @)(

This completes the proof of (2.26).
Also we have

=)-()

I
/\/—.\
\—/@
= | S

NI I

\/Q

1 (p—1)/2 p
u*

1 (p— 1)/2<

1 (p— 1)/2(

1 (pt+1)/2

—1\w+ 12
= F .

This completes the proof of (2.27).

N

\/@v@
P
L 3L S

CREVEGEES

I
TN N

NN

\-(0
/"\
:

-x-

A
N‘I
[
v
E
TN TN
~
\_<
/‘\
\
R
o]

269
(by (2.29))
(by (2.24))
(by (221)
(by (2.8)
(by LQR)
(by (2.18))
(by (2.20)

(by Lemma 6).

(by (2.20)

(by (2.18), (2.25)) -

(by LQR)

(by (2.29))

(by (2.24)
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Lemma 9. With the notation of Lemmas 1, 7, 8 and Table 2, we have

o ()-GO e ),

and

e () e (e ()
] p u*e* pm* ) \ke* | \m* /,.

Proof. Equation (2.30) follows from the equation

G- (45

by appealing to (2.13) and (2.26).
Equation (2.31) follows from the equation

e A+B\/r; _ {ae+B
GIE)-(4)
by appealing to (2.12) and (2.27).
LemMma 10. With the notation of Lemmas 1, 7, 8 and Table 2, in case 11 we

have
2 (p~1)/8
ZY=(=1
(Bkt) -y

2
= _1(p+m—1)/8_
(&)=

Proof. In case II we have

2N\ (2 2 3 2 B 2 _(—yn
Bet)_ Bel’t)  \Be(Af+Be)) \ABef+B?¢?) \ABef+1) ’

and
2 2\"?/2 P 2
== - =(_1)(—(k —1)p+(es—1))/8
)-() C)

=(= 1)mf2/8 P18 (_()I2+ (18,

2 2\/2 -
()N

and in case IX we have

SO

as required.



On the evaluation of the Legendre symbol 271

In case IX, similarly to above, we have

<_2_) =(=1)P - trm 38 — (_q)prm-1y8
ke

as required.

Proof of theorem. The theorem now follows by a case by case
examination from (2.30) of Lemma 9 when p = 1(mod4) and from (2.31) of
Lemma 9 when p = 3(mod4) together with Lemma 10 in Cases II and IX.

3. Tables. A DEC Professional 350 minicomputer was programmed to

A+B ‘ .

calculate A, B, C, e, f, k, <—\/j>, <_p;) , etc. for a variety of values of
p m

m (< 200) and primes p (< 150). Tables of these values were used effectively

in checking results and in formulating the correct form of the theorem. For

the convenience of the reader a short list of these values is given below.

Table 3

m 4 B c (A+B\/m> (- 1)(p—1)(m~1)/8 (:?')B (ﬂ)
P p P/a

5 25 2 11 19 1 -1 I —1

5 65 2 29 11 -1 ~1 1 1

13 65 1 18 17 —1 1 1 -1
13 65 6 17 23 1 -1 1 -1
17 17 1 4 13 -1 1 -1 1
17 17 4 1 13 1 1 1 1
29 29 2 5 7 —1 -1 1 1
29 29 S 2 7 -1 —1 1 1
37 37 1 6 7 -1 -1 1 1
37 37 6 1 7 —1 -1 1 1
41 41 4 5 23 1 1 1 1
41 41 5 4 23 1 1 1 1
53 53 2 7 11 1 —1 1 -1
53 53 7 2 11 -1 —1 -1 —1
61 61 5 6 13 —1 1 -1 |
61 61 6 5 13 1 1 1 1
65 65 1 8 29 1 1 -1 -1
65 65 4 7 29 —1 1 1 -1
73 73 3 8 19 1 1 -1 -1
73 73 8 3 19 -1 1 1 -1
85 85 2 9 19 -1 —1 1 1
85 85 6 7 19 —1 —1 1 1
89 89 5 8 11 -1 1 —1 1
89 89 8 5 11 1 1 1 1
97 97 4 9 11 -1 1 1 -1
97 97 9 4 11 1 1 -1 —1
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10
10
26
26
34
34
58
58
74
74
82
82

(11
2]

(3]
(4]

[5]
(61
(71
(81
(9]
[10]
(1]
[12]
[13]

K.S. Williams, K. Hardy and Ch. Friesen

4 B c , (A+B\/E> (—P=D8 i p=1(8) (L)

p (=1erm= B 5f p=17(8) m2/,
50 9 13 31 -1 -1 1
50 13 9 31 -1 -1 N |
130 11 23 17 -1 1 -1
130 17 19 23 -1 1 —1
34 3 5 47 1 1 1
170 3 29 47 1 1 1
58 3 7 23 1 1 1
58 7 3 23 1 1 1
74 5 7 41 1 -1 —1
74 7 5 41 1 -1 -1
82 1 9 23 -1 -1 1
82 9 1 23 -1 -1 1
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