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1. Introduction. Let p be a prime congruent to 1 modulo 8 so that
there are integers @, ¥, #s,¥s, With #, =2, =1 (mod 2) and ¥y, =¥,
= 0 (mod 2), such that

(1.1) P =x+yi = 23 +2y;5.
Clearly y, = 0 (mod 4) and we can choose the signs of #; and @, so that
(1.2) x, = ©; =1 (mod 4).
From (1.1) and (1.2) we see that
@, = 1—4(p—1)+2y, (mod 16),
@y = §(p +1) +2y, (mod 8).

Il

(1.3)

Criteria for 2 to be a quartic residue of p go back to Gauss [14] and Dirichlet
[127, [13], see also [1], [32]. Appealing to (1.3) these criteria can be given as

2 b e
(1.4) (;) =(—1p2"4 g L (_1)111/4 e (__1)(002—1)/4 2 (_1)(p—1)/8+u2!2.
4

From (1.4) we obtain the congruences

(1.5) @, — 225+ §(p +1) = 0 (mod 16),
and
(1.6) Y142y, —3(p—1) = 0 (mod 8),

relating the parameters in the two representations of p in (1.1).
In this paper we extend these ideas to obtain congruences involving
the parameters in two or more primitive representations of certain
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multiples of 2 prime p = 1 (inod 4) by positive binary quadratic forms. In
. .. m 2m
Theorem 1 in §2, we evaluate the Dirichlet symbols (—) and (—) y
D /s D /s

. e : m
where m is an odd positive squarefrce integer such that (—) = +1

2m
with p = 1 (mod 8) for the symbol (—) , in terms of the representation
D /s

of a multiple of p by the principal form of discriminant —4m or —S8m
respectively. This theorem includes and extends results of Brown ([5],
Theorem 2; [7], Theorem 3; [8], Theorem 1); Lehmer ([23], Theorem 1)
and Kaplan ([18], §13).

In §3, we apply (1.4) and Theorem 1 to the identity

(2) (m) _(2m)
pl\pls \p)S
m

where m is an odd positive squarefree integer such that (~ = +1
r
and p is a prime congruent to 1 modulo 8, to obtain congruences relating

the parameters in the representations of p given in Theorem 1, see The-
orem 2.
In §4, we apply Theorem 1 (a) to the identity

L),

where m and = are relatively prime odd positive squarefree integers such
m n
that (—) =(;) = +1 and p is a prime congruent to 1 modulo 4,
V4
to obtain congruences relating the parameters in primitive representa-
tions of certain multiples of p by the prineipal forms of discriminants
—4m, —4n and —4mn (see Theorem 3).
Results similar to those of Theorems 2 and 3 may be deduced by
applying Theorem 1 to the identities

FLE-G LB

Details are left to the reader.
Finally, in § 5 we apply the law of quartic reciprocity in conjunction
with Theorem 1, to obtain some further congruences (see Theorem 4).

m

P
paper p denotes a primie congruent to 1 modulo 4 and m denotes an odd

2
2. Evaluation of( ) and (_m) . Throughout the rest of this
4 P /s
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positive squarefree integer > 1, all of whose prime factors are quadratic
residues of p. Appealing to Legendre’s theorem ([26], p. 191), we deduce
that there exist non-zero integers k,, x, and v, such that

(2.1) kP = @, +my,,,

and, if p =1 (mod 8), there exist non-zero integers k,,,,, and y,,,
such that

(2.2) I‘/émp = wgm—l_zm’ygm'

Throughout the paper k, and k,, will be assumed positive. Without
loss of generality we may take

(2.3) (s Y = 1,
from which it follows that
(24) (@, D) = Wr P) = (Fpy ©) = By Yu) = (kpy m) = 1.
Similarly, we can assume that
(2.5) (Lyms Yom) = 1,
which guarantees that
(2.6)  (Boypy D) = Yom> P) = (Koms Tam) = (Ko Yom) = (Kopmy 2m) = 1.
We note that (2.1) gives:
2.7 k, =0(mod4)==x, =y, =1(mod2), m =17 (mod 8),
(2.8) k, =2 (mod4)=wx, =y, =1 (mod2), m =3 (mod 8),
k, =1 (mod2), p =1 (mod 8) =2, =1 (mod 2), ¥, = 0 (mod 4)
or
#,, = 0 (mod 2), y,, =1(mod 2),
m =1 (mod 4),
(2.9) Ek, =1(mod2), p =5 (mod 8)=>w, =1 (mod2), y, =2 (mod 4)
or
= 0 (mod 2), ¥,, =1 (mod 2),
m =1 (mod 4).

m

&

m

Moreover we have
k, =1(mod?2), , = 0(mod?2),

(2.10) "
p #=m (mod 8) =x, = 2 (mod 4).

Further (2.2) gives

(2.11) Kk, =1 (mod 2), @, =1 (mod 2);, " ¥, = 0 (mod 2).
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For particular values of m, the corresponding values of k,, and k,, can
be found by appealing to tables of the class structure of complex quadratic
fields as given, for example; in [9], pp. 262-270 and [31]. If %,, = 1 (resp.
ky,, = 1) the integers x,, and y,, (resp. x,,, and Y2m) are unique up to sign
(see for example [30], Theorem 101, p. 188). If k, >1 or k,, > 1, this
is not necessarily the case as the following examples show:

9-13 =102+17-12 = 7241722,
49-73 =572+ 82-22 = 25218262,

It should also be noted that for a given prime p there may be more than
one k, such that k), p is represented primitively by 22+ my?; for example,
8lp is represented by x2-+113y2 if and only if 169p is represented by
2*+113y2. It follows from a theorem of Holzer [16], see also Mordell [27],
that k,, and k,, can always be chosen to satisfy 0 < k, < Vm and 0 < ko
<V2m.

With the notation specified above, we prove

THEOREM 1. (a) Let p =1 (mod 4). If m = 1 (mod 4) then we have

(2.12) (ﬁ) -
N

If m = 3 (mod 4) we choose w,, so that(&)z +1. Then we have
m

T,

(;;), if  m =1 (mod8),

(_1):rm+1 (17'1) — (_1)Um (ﬁ) . @f m =5 (mOd 8)-

m m

(2.13) (ﬁ) _ [y, if  p=1(mods8),
: pls [(—1)Em=EEERY ey — 5 (mod 8).
(b) Let p = 1 (mod 8). Then we have
2 2
(2.14) (—m) =( - )
p 4 [xzml

If m =1 (mod 4) we have

2m\ (xém—l)/a(@)_ 1 (kgmp_l)/sﬂ,m/z(wz_m)

If m =3 (mod 4) we choose ,, so that (%) = +1 and we have

(2.16) — h
=1, if @, =5,7(mod8).

2’m) _I"|‘1a if @, =1,3 (mod 8),
D /s
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Proof. (a) We set

2.17) [mm = 2:w£,,, a=0, wfn = 1 (mod 2),
y’mz?‘ym’ ﬂ>0} ymzl(modZ).

Now from (2.1) we obtain
-5
P s p |
-1 2
so that (as (—) = (—) for p =1 (mod 4)) we have
P /s p

EL-G G

By the law of quadratic reciprocity we have

< £ 2 m— !z;" =i g
(51051 -2 -5) (- e
.p .p Iwm I ]wﬂl. I [$m I m
and
Cel=05") - () - () = Gam) =+
so that

9 \a+h+1 m—1 |:‘°;n|_l z
(2.18) (1"—) =(-) {—IF—% ('“"—"')
pl \p m

If m =1 (mod 8) we deduce from (2.7) and (2.8) that k,, = 1 (mod 2).
Thus, from (2.9) and (2.10), if p =5 (mod 8) we have a+p-+1 =2,
and (2.18) gives, for both »p = 1 (mod 8) and p = 5 (mod 8),

5).-6x)

If m = 5 (mod 8), again from (2.7) and (2.8), we have k,, = 1 (mod 2).
Thus, from (2.9) and (2.10), we have

2 at+f+1 L .
g —1)* = (—1)*m =(—1 m,
(p) (=1)"={=1) (-1)

and so (2.18) gives

s xmlﬁ = (— Vna$_m
(7).~ v () = ()
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@
If m = 3 (mod 4), choosing x,, so that (-ﬂ) = +1, we have
m

(_1)(lrml—1)/z (E;%L) - ( _1)(,1)”_1)/2’

go that (2.18) becomes

(ﬁ) _ (_2_>)u+ﬂ+1 ( _1)(1-,71—1)/2.
YN P

This completes the proof of (2.13) when p = 1(mod8). Suppose
p =5 (mod 8). If k, is even, by (2.7) and (2.8), we have a =f =0
proving (2.13) in this case. If k,, is odd, by (2.9) and (2.10), we have a = 0,
B =1, which completes the proof of (a).

(b) From (2.2) we obtain

(-2m) ﬁ(wmym)
r I p |

By (2.11), k,, and @,, are odd and ¥,, is even. Setting ¥,, = 2*¥om,
B=>=1, y,, odd, we obtain (as p = 1 (mod 8))

(2’)’",) ’_(a’zm)('y;m)
P /s p/\p )

By the law of quadratic reciprocity, we have

(wﬂm) il ( [‘r:«lm, ) o ( p ) " ( 7"’37'1.1] ) _( 2m )
p ) p 2 !‘p;:m g ["Z’:!m' ]‘I’.ﬂm ‘
(?/zm):(k‘lzm):( ? )Z(L})Inp):(w.’;_m )= +1y
p p [yzm | Iy;:m! 1:’/2771]
(2971,) _( 2m )
p 4 [1?2,,,’] ’

which complete the proof of (2.14).
If m =1 (mod 4) we have

m =X [“"'2711 ! Lam
i "Cﬂ‘ln l m m

( 2 N (-«1)(z§m—l)/8 = (_1)(105"11)—1)/84—1/2,,1/2
ur'.!m|

and

8o that

and

b

which proves (2.15).
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@,
If m = 3 (mod 4) we choose (i”) = -1, and it follows that

2m B 2 25, N (!xgm|—1)/2__( 2 ) _1\(@gp—1)2
(lwgml)_(l%ml)( m )( ™ =\am )

+1, i @, =1,3(modS8),
B -1, it @, =25,7(mod3),

which proves (2.16).
We remark that if 2ll the prime factors of m are congruent to 1
modulo 4 then (2.12) and (2.15) can be expressed as follows:

(2.19) (m) ( p ) o i it m =1 (mod8),

. pli\m],  |(=1)%n-024m  if @ =5 (mod 8),
(2.20) (3@) (L) PR T —
P li\2m]/, ;

where (g) = (—1)2~Y" (see for example [18], p. 319).
- ‘1

The result (2.19) follows from (2.12) as

oo ()= 1 E5)-1E)-109)

g(prime)|m qlm
[0 )—(k"‘)(p)
=1—{-),
aim m m/,

and

299 km _ m __(’m'?/;ln _ _“Tgn _('—1
( . ) (W)_(km)_ i"'m )—( km )— I"m).

The result (2.20) follows from (2.15)
ﬁ
m

(2.23) (’") _(
(2 04) (k'lm o ( m ) . ( Qm’yém)( 2 i3 ( —'”gm ( 2 ) - ( _2)
- m B kzm B kz'm 7"2m " ]"’Zm kzm B kzm '

and
3. Congruences relating «,, ¥,, @,,, Yy Loy Yo » APplying Theorem 1

b y 2m .
and (1.4) to the identity(—) (ﬁ) =(i) , we obtain the following
Pla\DP /s P s

theorem.

THEOREM 2. Let p = 1 (mod 8) be prime and let m be an odd positive
squarefree integer, all of whose prime faciors are quadratic residues (mod p),
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so that there exist integers &y, Ysy Loy Yy Doms Yoms Fms Kom Such that
p = wg_l"zyg’ ;";lnp = mfn_l_my;zn’ k:.:)mp == mgm+2my§1n'
(a) If m =1 (mod 4) we have
5 ,
Yo = 4o+ 3 =19+ 1 K1) (mod 4= (P22 — 11,

(b) If m = 3 (mod 4), choose x,, and ,, to satisfy (m_;:) =(—wi"—)
1 m

= +1, then
Ty, =1, 3 (mod 8)<x, +22,, = 3 (mod 8).

We remark that if all the prime factors of m are congruent to 1

modulo 4, by (2.21), (2.22), (2.23) and (2.24), (%) in Theorem 2(a)

—1\/[ -2
can be replaced by( 7 )(Ic ) We note that when m = 5, Theorem
m 2m

2 is a special case of a theorem of Leonard and Williams [24], p. 102
or [25], Theorem 2, and that when m = 65, Theorem 2 gives a “pre-
dictive” criterion for determining whether p or 9p is represented by
@gs +6Dygs (compare [28], Theorem 1).

4. Congruences relating ,,,, ¥,., Z,s Yns Zyins Yun - APPlying Theorem 1

to the identity (ﬁ) (ﬁ) :(ﬁ) , we obtain the following theorem.
P/a\P/s P /s
THEOREM 3. Let p = 1 (mod 4) be prime and let m, n, mn be distinct
odd positive squarefree integers, all of whose prime factors are quadratic
residues (mod p), so that there exist iniegers ,,s Yums Tns Uns Luns Ymns Fms
k,, k., such that

.2 — 2 2 .2 - 3 2 2 R ]
]“-mp - mm +7nym7 I"np - 'pn+%yn7 kmnp . xn17t+mnymn'

Then we have:
(i) of m =n = 1 (mod 8)

o) () = ()

(ii) #f m = 1 (mod 8), » = 3 (mod 4)

Lo — L o
d

(kmn = kﬂ) =90 (mod 4)@ (%) = -|—1,

; @ x,
with x, and z,, chosen so that (—") = (——’ﬂ‘—)= +1;
n mn
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(ili) if m = 1 (mod 8), » = 5 (mod 8)

o = va(mod 2)= (22 () (Z22) — 1

n mn

(iv) if m = 3 (mod 4), n = 3 (mod 4), mn =1 (mod 8)

= +1,

p—1 .
o — prem— /. — 4
Xy, — X+ 2 (kp—k,) = 0 (mod 4)<> ( mn)

- wﬂl mn
with x, and =, chosen so that ( poul (—n—) = +1;

(v) If m =3 (mod 4), n = 3 (mod 4), mn =5 (mod 8)

p—1 Lpam
a;m—wn+2wmn—|——2— (k,,—k,) = 2 (mod 4)©(mn) = 41,

. T, x,
with x,, and x, chosen so that (——) — (~) = +41;
m n

(vi) 4f m = 3 (mod 4), n = 5 (mod 8)

—1 x,
m?nn_wm+2mn+ T (kmn_km) =2 (mOd 4)¢(Tﬁ") = +17

' , @
with ,, and &, chosen so that (,';:) =(—7::7f') = +1;

(vil) if m =n =5 (mod 8)

&, @, X
— 9 es [Zm) (Zn)(Tmn) _ 11,
Y = Yu(mod )a»(m)(n)(mn) 11

We remark that if all the prime factors of m and n are congruent
to 1 modulo 4, we have

G -(E2)E. (-0 G -E)E).

so that
EEERESS
m\n)\mn] \k,k,En, |
We remark that when m =5, n = 13, Theorem 3 gives another

“predictive” criterion for determining whether p or 9p is represented by
@3, 4 6592 (compare Kuroda [20], pp. 155-156).
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5. Theorem 1 and the law of quartic reciprocity. Theorem 1 can be
used in conjunction with the law of quartic reciprocity to obtain congru-

ences relating »,, y,, ,, 9, , where ¢ is an odd prime satisfying (i) = +1.

We use Gauss’ law of quartic reciprocity in the form given by Gosset [15],
namely,

—1)Ha-1  H(=D(@1)2g )
(5.1) (u) E{M} (mod g),
p 4 Ty —Yq?

where p =2 +y}, 2, =1 (mod 2), y, = 0 (mod 2). Appealing to The-
orem 1, we obtain

THEOREM 4. Let p = 1 (mod 4) be a prime, and let q be an odd prime
satisfying (%) = +1, so that there are integers ,,y,,k, such that k;p
= a3+ qy,. Then, if ¢ =1 (mod 8)

21 +411

r (-1
(5.2) (—q) = +1l< } =1 (mod gq);
q L1 — Y1t

if ¢ =5 (mod 8),

Il

, " 7 i(e—1)
Tq) _ 41, ,l"c‘—_’_ylz_} +1 (med gq);
(2 =¥y

q
(5.3) Yy, =0 (mod 2)= or
. 1 a1 '
(ﬂl_) = —1, {M! = —1 (mod q);
q T1—Y1t)

if ¢ =3 (mod 4), with @, chosen so that (—r"’—) = +1,
q

T+ ylirli(fﬁl)

-1 = +1 (mod q),
Ty —Yq17)

z, =1 (mod 4)9{

when p = 1 (mod 8),
) le+y1ili(q+l)
> —
1701_?/121

I

2, =1+ 2k, (mod 4 = +1 (mod q);

when p =5 (inod 8).

The special case of Theorem 4 when ¢ = 3 appears in [17], Theorem 2.

Variants of the special case of Theorem 4 when ¢ = 5 appear in
a number of papers, see for example [2], Corollary 3.35; [3], Corollary
4.25; [4], Theorem 4; [5], Theorem 3; [6], Lemma 6.3; [21], p.-24; [22],
Theorem 1; [23], p. 367; [24], p. 102; [25]; [28], § 3; [29], p. 198.
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