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CAUCHY-TYPE CONGRUENCES FOR BINOMIAL COEFFICIENTS

RICHARD H. HUDSON AND KENNETH S. WILLIAMS!

ABSTRACT. In 1840 Cauchy [2] showed that for a prime p =ef 41, e = 20,

()= £(%) (ot

and it was not until 1965 that Whiteman [6] succeeded in removing the sign
ambiguity in this congruence.

In this paper we show how the Davenport-Hasse relation [3] in the form
given by Yamamoto [8] can be used to resolve the sign ambiguity in other
Cauchy-type congruences. Details are given just for e = 8,12, and 20.

1. Introduction. Throughout this note e denotes a composite integer and p
denotes a prime congruent to 1 modulo e, say, p =ef -+ 1.
For p = 20f + 1 the congruence

(4)=4(3)

was established by L’Augustin Cauchy [2] in 1840. It was not until 125 years later
that Whiteman [6] succeeded in removing the ambiguity in the sign in (1.1) by
proving the following theorem.

THEOREM 1 (WHITEMAN). Letp = 20f +1 = a? +b?, a = 1(mod4). Then

12) (10 f) (/) (modp), f b= 0(mod5),
' (lof) (modp), if a=0(mod5).

The purpose of this note is to show how the Davenport-Hasse relation [3] in the
form given by Yamamoto [8] can be used to resolve the sign ambiguity in other
congruences similar to (1.1).

For e = 8,12, and 20 and p = ef + 1, we determine the sign ambiguity in all
congruences of the type

(13)() (,";) (mod p), 1<s<r<e—1 1<sd<r<e—1,

excluding only those which can be deduced directly from the elementary properties
of binomial coefficients.

Received by the editors December 4, 1980 and, in revised form, August 30, 1981.

1980 Mathematics Subject Classification. Primary 10A10; Secondary 10A99, 10C05.

Key words and phrases. Davenport-Hasse relation, sign ambiguities in Cauchy-type congruences,
binomial coefficients (mod p).

1Research supported by Natural Sciences and Engineering Research Council Canada Grant
A-T233.

® 1982 American Mathematical Society
0002-9939/82/0000-0035/$03.50

169



170 R. H. HUDSON AND K. S. WILLIAMS

2. Preliminaries. Let ¢, = €2™/™ and for z 3 0 (mod p) define the index of z
with respect to a primitive root g, written indy(z), to be the unique integer b such
that z = g® (modp), 0 < b < p — 2. It follows from the Davenport-Hasse relation
[3] that

n—1
Ge(n) II Ge(mj)

. J=1
(2.1) Eniv) =

n—1 ’

[ Getmi+1)

=0
where G¢(r) denotes the Gauss sum of order e defined for e { r and for a character
Xe (mod p) of order e by

p—1 —1
G =Y X2 =Y endetagz,
z=0 z==1
Applying the work of Yamamoto 8, pp. 488-489] to (2.1) we obtain
n—1
nft ] (mif)
(2.2) n(P—/m = n_1'1=1 (mod p).

II (ms + 11!
=0

In addition we require three elementary results. A simple modification of Wilson’s
theorem yields

(2.3) sfitfl = (—1)* 1 = (—1)*7! (modp),

where s and ¢ are positive integers with s 4+t = e. Making use of (2.3) and the
elementary fact that (§) = (,2;) it is straightforward to verify that for 1 < s <
r < e—1 we have

Cﬁ) =( Zgs) = (- Sg)

— (__1\(r+98)f (e_s)f — (__1\sf (e_r"‘l"s)f
24 =)= ()
= (_l)a.f((e - ;f+ s)f) (mod p).

Finally, (2.3) yields the following result. For integers g, h, and k satisfying 1 <
h<g<e—1,1<{h<k<e—1l,e—k>g—h, wehave

o ()R

3. Congruences analogous to that of Cauchy. The following lemmas are easy
consequences of (2.2).

LEMMA 3.1. Ifp=2mf + 1 1is prime then we have

2(p—1)m — (Z}f)

= ((m-}-l)f) (mod p).
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LEMMA 3.2. Ifp=3mf + 1 is prime then we have
( (m+2)f)

= ((m+2)f)

LEMMA 3.3. Ifp=5mf + 1 is prime then we have

oty ((m+2)f) ((3::_:31));)
5 ((m+4)f)(((3:i4l))ff (mod p).

(—3)P—1/m = (mod p).

Taking m = 4 in Lemma 3.3 and applying (2.3) and (2.4) we have for p =
20f +1,

so—ya — (D)Csf) _ _ oy OGS _ 1005 pu2 71457 1851
( (13f (17f)(15f = 571141171519 115 f!
(19, ) (F)
(mod p),
(17f) (10}‘

establishing Theorem 1 in view of the well-known criterion for 5 to be a fourth
power modulo p, see, e.g., [5].

The following two theorems, which do not appear in Whiteman’s papers [6, 7],
may be established by arguments analogous to those in the above proof of Theorem
1. They are, as we now show, also simple consequences of (2.4), (2.5), and Theorem
1.

THEOREM 2. Letp=20f +1=a?+b?, a =1(mod4). Then
T\ _ (% 9f
(7)=Gr) o« —(F) wotn
according as b = 0 (mod 5) or a = 0 (mod 5).
PROOF. Using (2.5) with ¢ = 11, h = 10, k = 13, we have
111\(9F _ (137\(7f
()0 =Cor(7) moam
Appealing to (2.4) gives
10£\(9) _ 10f)(7f)
(7)) =(7)(T) moen
from which Theorem 2 follows immediately in view of Theorem 1.
THEOREM 3. Letp =20f + 1 = a% 4 b?, a = 1(mod4). Then
(7)=(r) = () oo

according as b = 0 (mod 5) or a = 0 (mod 5).
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PROOF. Taking g = 17, h = 10, k = 11 in (2.5) we have

17f\/3f 111\/9 f)
= d p).
Gor)(7)=(or)Gr) moan
Appealing to (2.4) gives
o )(7)=(7)G0)
= mod p),
(3f f fJ\2f ( )
and again the theorem follows from Theorem 1.
The final two theorems illustrate the ideas used above in the cases e = 8 and

12. Using Lemma 3.1 with m = 4, (2.4), (2.5), and the well-known result of Gauss
that 2(P—1)/4 = (—1)%/4 (mod p) for primes p satisfying

(3.1) p=8f+1=0a?4b% a=1(mod4), b=0(mod4),
we obtain

THEOREM 4. Letp be a prime satisfying (3.1). Then

(32) (2;)5(_1),+b,4(4f) (mod ),
(33) ()= en(30) moan,
and

(3.4) (= (3) @oen.

Similarly, using Lemma 3.2 with m = 4 and the result for 3 to be a fourth power
(modp), see, e.g., [5], we have the following theorem.

THEOREM 5. Let p be a prime satisfying
p=12f+1=0a%+b? a =1(mod4), b= 0(mod2).

We have

@ (D) - () o
and

(=) ) e

according as b = 0 (mod 3) or a = 0 (mod 3).
Moreover, we have

w0 ()=o) wn ()

(7)
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Congruence (3.5) in Theorem 5 is an immediate consequence of Lemma 3.2 with
m = 4. Congruence (3.6) follows from (2.4), (2.5), and (3.5). To prove (3.7) we take
m = 3 in Lemma 3.1 so that, using (2.4), we have

4f 4f
(3.8) 2r—1/3 = L = 2L (modp).
2f (27)
Next, taking m = 6 in Lemma 3.1 and using (2.4) and (2.5) we get

2(p—1)/6 = @ = (—1)f L (Sf) =(—1 )f (Sf)

(3.9) 77 107 (mod p).
(%) (a7 2t
Multiplying (3.8) and (3.9) together we obtain
(1G]
(3.10) 2P—1/2 = (—1)f = (—l)f 57 (mod p).
(27)G]

Appealing to (2.5) with g = 4, h = 2, k = 6, we have

(s7)() = G)ar) ot
so that from (3.10),

(3.11) (5}' ) = (i;) (modp).

Finally, using (2.5) with g = 7, h = 3, k = 4, we have

(;::)(5;' ) = (_l)f (;; )(i; ) (mod p)

completing the proof of (3.7).
6f 6f 3f 5 4 7 5 8
feoa v (GGG G G
1 13 —3 2 6 7 3 10 4 9 5 5
37 1 6 2 2 10 10 35 2 11 11
61 5 6 10 10 14 14 10 51 60 60
73 —3 8 6 67 22 51 57 57 66 66
8 97 9 4 79 18 17 80 8 8§ 78 T8
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