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RESOLUTION OF AMBIGUITIES IN THE EVALUATION
OF CUBIC AND QUARTIC JACOBSTHAL SUMS

RICHARD H. HUDSON AND KENNETH S. WILLIAMS

If p Ξ= 1 (mod 2k) is a prime, the Jacobsthal sum Φk(D)
is defined by

It is shown how to evaluate Φ2(D) and ΦZ{D) for any integer D.

l Introduction* The Jacobsthal sum Φh(D) is defined for primes
p = 1 (mod 2k) by

(1.1) Φk(D) = Σ (* ( a ? > + J ) ) , A; = 2, 8, . . ,
ίc=i \ p /

where ( p ) is the Legendre symbol, and D is an integer not divisible
by p. It is well-known (see for example [8: p. 104]) that

(1.2) Φk(Dmk) = (J^yΛpjXD) , m m 0 (mod p) .
V p I

In this paper, we show how to resolve the sign ambiguities in the
evaluations of Φ2{D) and Φ3(D). (For a discussion of Jacobsthal sums
see, for example, [7], [14], [1].)

2* k = 2. In this case p = 1 (mod 4) and there are integers a
and b such that

(2.1) p = α2 + δ2 , α Ξ 1 (mod 4) , 6 = 0 (mod 2) ,

with α and |6 | unique. Relation (1.2) gives in this case

(2.2) Φ2(Dm2) = (—)φ2(D) , m m 0 (mod p) ,
\ p /

so that it suffices to consider Φ2(D) for squarefree D. Choosing m
such that m2 Ξ — 1 (modp) in (2.2), we have

(2.3) Φ*(-D) = (-iy»~ι)/*Φ2(D) ,

so that we may take D positive. Jacobsthal [7: pp. 240-241] has
evaluated Φ2(l). He has shown that

(2.4) Φ8(l) = - 2 α ,

and thus, by (2.2), for any Z? with {Dip) = + 1 , say J9 = J^2 (modp),

379



380 RICHARD H. HUDSON AND KENNETH S. WILLIAMS

one has

(2.5) Φ2(D) = - ( — )

Thus it suffices to consider Φ2(D) for quadratic nonresidues D. Emma
Lehmer [8: p. 107] has shown that, if (2/p) = — 1,

(2.6) Φ2{2) = T2b according as b = ±2 (mod 8)

and it follows from the work of Brewer [2: p. 243] and (2.3), that,
if (8/p) - - 1 ,

(2.7) Φ2(3) = ±(-l)ip~1)/i2b according as a = ±b (mod3) .

Jacobsthal [7: p. 241] has shown, for an arbitrary D satisfying
{Dip) = - 1 , that

(2.8) Φ2(D) = ±26 ,

and we begin in Theorem 1 by showing how to determine the correct
sign in (2.8), when D is an odd prime q satisfying (q/p) = — 1.
Afterwards we illustrate how to prove the results for composite D.

Let q be an odd prime satasfying (q/p) = —I, so that ab φ. 0
(mode). If ? = 1 (mod4), there are unique positive integers r and
s such that

(2.9) q = r2 + s2 , r == 1 (mod 2) , s = 0 (mod 2) .

Clearly r and s are not divisible by q. We define a set ίΓ, depending
only on q, by

JBΓ - \k: -\(q - 1) ^ k £ \(q - 1) ,
(2.10) z Z

r) ( 9 ~ 1 ) / 4 - s(sA; - r) ( 9 ~ 1 ) / 4 = 0 (mod g)

Clearly 0 g J .̂ It is known that (see for example [4: p. 65])

(2.11) qf<p-u/4 = ±α/6 (mod^p) according as a=±kb (mod#)

for some
If ςr = 3 (mod 4), we define K by

if = \k: -hq - 1) ^ fc ^ i-(g - 1) ,
(2.12) ^ ^ Z

(A? + i)(9+1)/4 - i(Jfc - i)(g+1)/4 Ξ= 0 (mod 9)

Again we have 0 ί if. Further
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(2.13) ( — ΞΞΞ ±a/b (modp) according as a Ξ ±kb (mod q)

for some keK.
We prove the following theorem.

THEOREM 1. Let p be a prime congruent to 1 modulo 4 and
define a and b by (2.1). Let q be an odd prime satisfying (q/p) =
- 1 . Then, ifq = l (mod 4),

(2.14) Φ2(q) — ± 2 6 a c c o r d i n g a s a = ± k b ( m o d q) f o r s o m e k e K

if q = Z (mod 4),

(2.15) Φ2(q) = ±(-l) (*-1 ) / 42δ , if a = kb (mod q) for some keK .

Proof. Emma Lehmer [10: p. 65] has proved that for D & 0
(mod p),

(2.16) Ξ φ2(D)/Φ2(l) (mod p) .

Taking D = q = 1 (mod 4) in (2.16), and appealing to (2.4) and (2.11),
we obtain

(+26 (modp) , if a =kb (mod #) for some keK,

(—26 (modp), if a=—kb (moάq) for some keK.

Since Φ2(q) = ±26, by (2.8), and as 26 =έ 0 (modp), we obtain (2.14).
The case g = 3 (mod 4) is similar.

We illustrate Theorem 1 by giving Φ2(q) for odd primes q <; 19
satisfying (q/p) = — 1; α(p) = (p — l)/4 with the upper signs and
(p + 3)/4 with the lower signs.

3

5

7

11

13

17

19

Φ2(ςf)

(-l)«cjO2&

±26

(-l)«c«2δ

(-1)«W2&

±26

±26

(-l)α(^26

fc satisfying a = kb (mod Q)

±1

+ 1

T2, =F3

+ 1, =F3, T4

±1, ±2, +6

±2, 3=3, ±6, ±8

±1, =F3, ±6, =F7, ±8

The case q — 3 constitutes the result of Brewer (2.7).
We remark that these results can be combined to determine

Φ2(D) when D is composite and (D/p) = — 1. We treat the case D =
6 - 2 x 3 . If (6/p) = - 1 , we have (2/p) = + 1 , (8/p) - - 1 , or (2/p) =
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— 1, (3/p) = + 1 . In the former case, we have

(2.17) Φ2(2) = -(A) 2α = - ( - l ) & / 4 2 α ,
\ p U

and

(2.18) Φ2(3) = ±26 according as a = ±b (mod 3) .

From (2.16) we obtain

(2.19) Φ2(6) = Φ*®?J® ( m o d P) >

and so

_ | ( —1)6/426 (mod p) , if a = b (mod 3) ,

Φ2(6) = j(_i)V4-M26 ( m o d p ) , if a = -b (mod 3 ) .

Hence, by (2.8), we have

Γ(—l)δ/426 , if α = l (mod 3 ) ,
(2.20) Φi(6) =

. f ^ ^

The case when (2/p) = — 1 , (3/p) = + 1 can be treated similarly.

3 & = 3. In this case p = l (mod6) and there are integers L
and M such that

(3.1) Ap = V + 27ikΓ , L = 1 (mod 3) ,

with L and \M\ unique. Clearly we have L = M (mod2). Relation
(1.2) gives in this case

(3.2) Φz(Dmz) = Φ,(D) , m m 0 (mod p) ,

so that it suffices to consider ΦZ{D) for cubefree JD. Clearly
Φz(—D) = ΦZ(JD), so that we may take D positive. It follows from
the work of von Schrutka [13: p. 258] (see also Chowla [3: p. 246],
Whiteman [14: p. 96]) that

(3.3) 3 ( l ) - <

L - l , i f L = Jk£=O (mod 2 ) ,

i ( - L + 9ΛΓ — 2) , if L ΞΞ jkf Ξ= 1 (mod2)

and L = M (mod 4) ,

i ( - L - 9Λf - 2) , if L Ξ Λf = 1 (mod2)

and L = — M (mod 4) .

From (3.2), Φ3(k) = Φ8(l) for any cubic residue k modulo p, so that
(3.3) gives unambiguously the value of Φ8(fc) for any cubic residue
k (mod p). Now 2 is a cubic residue (mod p) if and only if L = M = 0
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(mod 2) [6: p. 68]. Thus we have

(3.4) Φ3(l) = Φ8(2) - Φ8(4) = I, - 1 ,

if 2 is a cubic residue (modp) .

When 2 is not a cubic residue (mod p), so that L == M == 1 (mod 2),
Emma Lehmer [8: p. 112] has proved that

( 3 . 5 ) • t f O - p * * * * > ' ί f L"M ( m ) 'k s W ( i ( L + 9 i k f 2 ) , if L=-M (mod 4 ) ,

and

(3.6) φ,(4) = L - 1 .

For an arbitrary cubic nonresidue D, it is known that

i
(4(-L - 9Af - 2), if L Ξ M Ξ O (mod 2) ,

or

(3.8)

and

(3.9)

ΦZ{D) = •

ΦJLD) = •

(L-1

or

M-L -

L-1

or

U-L +

9 M -

9 M -

2 ) ,

2 ) ,

if L

L

if I

L

r Ξ= Λf Ξ 1 (mod 2)

Ξ= Λί (mod 4) ,

Ξ M = 1 (mod 2)

=Ξ — M (mod 4) .

and

and

It is our purpose in Theorem 2 to show how to eliminate the ambi-
guities in (3.7), (3.8), and (3.9) when D is an odd prime q, which is
a cubic nonresidue (moάp). (As q is a cubic nonresidue (modp) we
have LM =έ 0 (mod q) [9: p. 26].)

Our starting point is the congruence

(3.10) <^-1)/3 = {ΦM + 1)/(Φ8(1) + 1) (mod p) ,

which is given in [10: p. 66]. From (3.10) we obtain

(3.11) Φz(q) Ξ= - 1 + 9

('-1>/8(Φ8(l) + 1)

For q ^ 5, one of us [15: p. 282] has shown that there exists a set
of integers £έ* (depending only on q) such that

(3.12)

'(L + 9M)/(L - 9ΛΓ) (modp) , if L Ξ M f (mod q)

for some ke£?>

(modp), if L=~kM (mod?)

for some ke£f.
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It is shown in [15] that, if q = 1 (mod 3),

(3.13) J2f = {-4(9 ~ 1) ̂  k ^ 4(β - 1):

(&2 + 27)2(9~1)/3(& + 3 + 6w)2{q-1)/d Ξ w (mod g)} ,

and, if g = 2 (mod 3),

(3.14) = {-4(g - 1) ̂  ft ^ 4(β - 1):

(k2 + 27)(9"2)/3(& + 3 + = w (mod g)} ,

where w = exp(27ri/3) = 4( —1 + l/"^3). In particular, we have (see
[15: p. 283])

^ = { + 1, -2} , if g = 5 ,

Sf - { + 2, -3} , if q = 7 ,

J2f = {-1, - 2 , - 8 , + 5 } , if β = l l .

Appealing to (3.3), (3.7), (3.8), (3.9), (3.11), and (3.12), we obtain

THEOREM 2. Let p be a prime congruent to 1 modulo 6 and
define L and M by (3.1). Let q ̂  5 6β αw odd prime, which is a
cubic nonresidue (mod p). Then

/ L - l , i f L = M = 1 ( m o d 2 ) , L ^ M ( m o d 4 ) a n d

L= —kM (mod q) for some ke^f,

or

L = M.~1 (mod 2) , L = -Λf (mod 4) and

L = kM (mod q) for some k e .ώ17,

\

i/ L = ilί = 1 (mod 2) , L Ξ — Jlf (mod 4)

L = — kM (mod g) /or sone ke^f,

or

L = Λf = 0 (mod 2) α^d L Ξ fcM (mod q)

for some keJZf,

4 ( - L - 9 A T - 2 ) ,

ΐ/ L = Λf = 1 (mod 2) , L Ξ= M (mod 4)

1/ Ξ &Λf (mod q) for some k 6 £f,

or

L = M ΞΞ 0 (mod 2) and L = —kM (mod q)

for some keSf.

ίfee case g = 3. have from [15: Theorem 1]
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(3.15)
_ιm_UL + 9M)/(L-9M) (mod p) , if M = - 1 (mod 3) ,

= ((L-9M)/(L + 9M) (modp) , if M=l (mod3) .

As in the proof of Theorem 2 we obtain

THEOREM 3. Let p be a prime congruent to 1 modulo 6, for
which 3 is a cubic nonresidue (moάp). Then

L - 1 , i/ L == Λf = 1 (mod2) , L Ξ ilί (mod4) and

M=l (mod 3) ,

or

L = M ΞΞ 1 (mod 2) , L Ξ -AC (mod 4)

U £ Ξ - 1 (mod 3) ,

i ( - L - 9 A Γ - 2 ) ,

i/ L Ξ J K Ξ I (mod2) , L = M (mod4)

AΓΞΞ.-I (mod 3),

or

L = ikΓ Ξ 0 (mod 2) and M=l (mod 3) ,

i/ I / Ξ A ί = l (mod 2 ) , L = -Af (mod 4)

If = 1 (mod 3) ,

or

L Ξ I Ξ O (mod2) αmί M = - 1 (mod3) .

We remark that Φ3(<?2), where q is a prime, which is a cubic
nonresidue (mod p), is easily determined using Theorems 2 and 3 and
the relation

(3.16) ,(1) + ΦM + Φ3(<Z2) = - 8 ,

see for example [14: p. 92]. Moreover, as in § 2, we can treat ΦZ(D)
for composite D.

Finally we remark that the ideas of this paper can be used in
conjunction with results in [10], [11] and [16] to treat Φ5(D) and
Φ7(D) for certain values of D.
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