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THE CLASS NUMBER OF Q(V~p) MODULO 4,
FOR p = 5 (MOD 8) A PRIME

KENNETH S. WILLIAMS

Let p = 5 (mod 8) be a prime. Let h(p) denote the class
number of the real quadratic field Q(V p). It is well-known
that h(p) = 1 (mod 2). In this paper the residue of h(p) modulo
4 is determined.

Let P Ξ 5 (mod8) be a prime. Let h = h(p) denote the class
number of the real quadratic field Q{V~p). It is well-known (see for
example [2; § 3] that

(1) h = h(p) = 1 (mod 2) .

In this paper we determine h(p) modulo 4.
The fundamental unit εp (> 1) of Q(\/p) can be written

(2) e, = \{t + uVp),

Δ

where t and u are positive integers satisfying

(3 ) t = u (mod 2) .

The norm of εp is —1 so

(4) « * - j m 2 = - 4 .

If t = u = 1 (mod 2) then we have (using (4))

so

( 5 ) u = l (mod 4 ) .

If t = u = 0 (mod 2), we define positive integers t± and ux by ί = 2ίx,
^ = 2 ^ . Then, from (4), we have

t\ = put - 1 = 5ul - 1 = 7 , 4 or 3 (mod 8)

according as

ut = 0 , 1 or 4 (mod 8) .

Clearly we must have ^ Ξ 4 (mod 8), so that

( 6 ) t, = 2 (mod4), u, = 1 (mod2) .
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Further, we have

(=1) = (t\-Pul

so

(7) ^ = 1 (mod 4).

Next we define unique integers a and b by

(8) p = α2 + &2, α == ~ 1 (mod4) , δ = - ( y "̂  1 ) l α (modp) ,

and we note that (as p Ξ 5 (mod 8), a odd)

(9) 6 = 2 (mod 4) .

We prove

THEOREM 1. (a) Ift = u = l (mod 2) then

h(p) = — (—2ί + u + & + 1) (mod 4) .

(b) If t = u = 0 (mod 2) ίfeew

A(p) = -!-(*, + u, + b + 1) (mod 4) .
Δ

The proof depends upon a number of lemmas.

LEMMA 1.

( ^ l ) l s (-!)(*+«/«A (modp).

This is a result of Chowla [3].

LEMMA 2. (a) Ift = u = l (mod 2) ίftew

ί + 2(-l)(A+1)/2i = 0 (moda + bi) .

(b) If t = u = 0 (mod 2) £/&ew

*x + (-l) u+ 1 ) / 2i = 0 (modα + bi) .

Proof. From (8) and Lemma 1 we obtain

(10) at + 26(-l)(Ati>/2-=o (modp).

Then (4) and (10) give
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- bt) = 2(αί + 2 δ ( - l ) u + 1 ) / 2 ) ( - l ) ( λ + 1 ) / 2 - bpu2

= 0 (mod p) ,

As £ *fe 0 (mod p)> we deduce

(11) 2α(- l) ( A + 1 ) / 2 - 6 ί Ξ θ (mod p) .

Using (10) and (11) one easily verifies that (t + 2(~l) ( Λ + 1 ) / 2i)/(α + bi)
is a gaussian integer, which completes the proof of (a).

The proof of (b) is similar.

LEMMA 3. (a) Ift = u = l (mod 2) there are integers r and s
of opposite parity such that

i = a{r2 - s2) - b(2rs) , u = r2 + s2 ,

= a(2rs) + b(r2 - s2) .

(b) Ift = u = Q (mod 2) ίfcere are integers r and s of opposite
parity such that

= -a(2rβ) - δ(r2 - s2) , ^ = r2 + s2 ,

-1)(*+»/* = a(r2 - s2) - δ(2rs) .

Proof (a) The gaussian integers (t + 2(-l) ( A + 1 ) / 2i)/(α + δi) and
(t — 2(—l)(A+1)/2i)/(α — bi) are coprime and their product is u2. Hence
there exist integers r and s such that

(12) t + 4 ^ . ί- = e(r
a + δ̂

where e = ± 1 , ± i . Multiplying both sides of (12) by a + bi and
considering the parities of the coefficients of i on both sides of the
resulting equation, we see that ε = ± 1 . Replacing r + si by — s + ri,
if necessary, we can suppose, without loss of generality, that ε = +1 so

(13) t + 2(-l) ( A + 1 ) / 2 ΐ = (α + δΐ)(r + si)2 .

Equating coefficients we obtain the required expressions for t and
2(-l) (*+ 1 ) / 2. Finally, we have

u , = t + 2(-iyk+1)'H . t -- 2 ( -
u

α + δi a — bi

= (r + sΐ)2(r - sΐ)2

= (r2 + s2)2 ,

so, as ^ > 0, r2 + s2 > 0, we obtain
u — r2 + s2 .
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Since u is odd this shows that r and s are of opposite parity.
(b) The proof is similar. In this case we obtain

(14) tx + (-l) ( Λ + 1 ) / 2 i = i(μ + W)(r + si)2.

LEMMA 4. (a) If t = u = 1 (mod 2) then

u = a + 2(—) (mod 8 ) .
\ "C /

(b) If t = u = 0 (mod 2) then

u = a + 2 (mod 8) .

Proof, (a) As 6 = 0 (mod 2) and one of r and s is even, we
have, by Lemma 3(a),

(15) t = a(r2 - s2) (mod 8) .

In particular, as a = — 1 (mod 4), (15) gives

ί = s2 - r2 (mod 4) ,

so that

it = 1 (mod 4) * = ^ r even, s odd ,

\t ΞΞ — 1 (mod 4) < = * r odd, s even .

Appealing to Lemma 3(a), (15) and (16), we obtain

u - a = (r2 + s2) - t(r2 - s2) (mod 8)

= (1 - ί)r2 + (1 + ί)s2 (mod 8)

_ [1 + t (mod 8) , if r even, s odd ,

~~ (1 — t (mod 8) , if s odd, s even ,

= 2 ( 4 ) (mod 8) ,

as required.
(b) As b = 0 (mod 2) and one of r and s is even, we have by

Lemma 3(b),

(17) (_i)<*+«/* = α(r 2 - s2) (mod 8) .

In particular, as a == — 1 (mod 4), (17) gives

r 2 - s 2 = ( - l ) ^ / 2 (mod 4) ,

so that

[h = 1 (mod 4) <=> r odd, s even ,
(18)

(fc = 3 (mod 4) <=^ r even, s odd .
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Appealing to Lemma 3(b), (17) and (18) we obtain

Ul - a Ξ (r2 + s2) - (_i)<*+»/'0 2 _ 8*) (mod 8)

s (1 + (-l)'*-1)/2)r2 + (1 + (-l)«+1)/2)s2 (mod 8)

== 2 (mod 8) ,

as required.
We are now in a position to prove Theorem 1.

Proof of Theorem 1. (a) As r + s is odd, we have, by Lemma
3(a),

(19) 2rs = (r + s)2 - (r2 + s2) = 1 - u (mod 8) .

Hence, by Lemma 3(a), (15) and (19), we have

2(-l)<"+1"2 = o(l - u) + abt (mod 8) ,

so, recalling α = — 1 (mod 4), b = 2 (mod 4), t = u == 1 (mod 2),

/̂  = 2 + (-l)<*+"/2 (mod 4)

α ^ ί (mod 4)

( ) ( ) (mod4)

= i . ( - 2 t + u + 6 + 1) (mod 4),

as required.

(b) As r + s is odd, we have, by Lemma 3(b),

(20) 2rs = (r + s)2 - (r2 + s2) = 1 - Ul (mod 8) .

From Lemma 3(b), (17) and (20), we have

ί, Ξ - α ( l - ud ~ ab(-iyh+1)/2 (mod 8) ,

so (as α Ξ - 1 (mod 4))

J f a) ( i ) (mod4)

As b = 2 (mod 4), multiplying both sides by δ/2 = 1 (mod 2), we obtain

I f f ^ ' ( T 5 1 ) ^ " " 1 ^ (mod 4),
giving
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(mod4)

(mod 4)

= -!•(*! + % + δ + 1) (mod 4) ,

as required.

Using Lemma 4 in conjunction with Theorem 1, we obtain

COROLLARY 1. (i) / / t = 1 or 3 (mod 8) or ίx Ξ= 6 (mod 8)

i 6 + i) (mod 4).
(α + 6 +

Δ

(ii) 1/ ί Ξ 5 or 7 (mod 8) or tx = 2 (mod 8)

h(p) = -ί(α + & - 3) (mod 4).

Reformulating Theorem 1, we obtain

COROLLARY 2. (a) If t = u = l (mod 2) ίftew

— ί + — (u + 3) (mod 4) , if b = 2 (mod 8) ,

ί +JL(U + Z) (mod4) , i/ 6 = 6 (mod8) .
Δ

(b) If t = u = 0 (mod 2) ίfee^

— (ίi + ux + 3) (mod 4) , if b = 2 (mod 8) ,

— (ίi + %! — 1) (mod 4) , ifb = 6 (mod 8) .

Now Gauss [5] has shown that h(—p) (the class number of the
imaginary quadratic field Q(l/—p), see also [1: p. 828] satisfies.

LEMMA 5. fc(—p) = a + b + 1 (mod 8).

Putting together Corollary 1 and Lemma 5 we obtain

COROLLARY 3. (i) If t Ξ= 1 or 3 (mod 8) or tx = 6 (mod 8)

Λ(-p) = 2fc(p) (mod 8) .
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(ii) If ί Ξ 5 or 7 (mod 8) or t, = 2 (mod 8) then

: h(-p) ΞΞ 2λ(p) + 4 (mod 8) .

The result corresponding to Corollary 3 for primes p = 3 (mod 4)
has been given by the author in [4].

Finally we show that there does not exist a result analogous to
Theorem 1 for primes p = 1 (mod 8). It is easily checked that the
above arguments fail to yield such a result in this case, as we do
not know the exact power of 2 dividing δ in the representation
p = a2 + δ2, a odd, δ even. We prove

THEOREM 2. Let p = 1 (mod 8) be a prime. We define unique
integers a and b by

p = α

2 + δ 2 , a ΞΞ - 1 (mod4), b == - Y p ~ 1 ) τ α (modp) ,

so that

J = 0 (mod 4) .

The fundamental unit (> 1) of the real quadratic field Q(\/ p) is of
the form

εp = «! +

where tx and ux are positive integers such that

t\ - pu\ = - 1 , ^ == 0 (mod 4), ^ == 1 (mod 4) .

Analogous to Lemma 4(b) ^e have

(21) ^ == α + 2 (mod 8) .

Then there do NOT exist integers llf l2, l3, l± independent of p, such that

(22) h{p) ΞΞ i-(Z ltt + Z2δ + Wi + i j (mod 4) .

(Note: We remark that it is unnecessary to include multiples of
either p or ux inside the parentheses on the right hand side of (22)
since p = 1 (mod 8) and u± satisfies (21).)

Proof. Suppose that a congruence of the form holds. Taking
p = 97, so that tx = 5604, u, = 569, α = - 9 , b = +4, fe = 1; and p =
257, so that tx = 16, ut = 1, α = — 1, δ = +16, h = 3; we must have

ί-ΘZx + 4Ϊ2 + 5604Z3 + ί4 = 2 (mod 8) ,

1-1! + 16ί2 + 16Ϊ3 + k = 6 (mod 8) .



248 KENNETH S. WILLIAMS

Subtracting the two congruences in (23) we obtain

8k + 12l2 - 5588*3 = 4 (mod 8) ,

that is

4Ϊ2 + 4ί3 = 4 (mod 8) ,

or

(24) 12 + ! 3 Ξ 1 (mod 2 ) .

Next taking p — 41, so that tx = 32, ux = 5, a = —5, 6 = + 4 , h = 1;
and p = 73, so that tt = 1068, ux = 125, α = 3, 6 = - 8 , h = 1; we obtain

ί-Bίi + 4ί2 + 32Z3 + Z4 = 2 (mod 8) ,

[Sk + 8Z2 + 1068Z3 + l4 = 2 (mod 8) .

Subtracting the congruences in (25) we get

8k - 12l2 + 1036ί3 = 0 (mod 8)

that is

U2 + 4ί3 = 0 (mod 8) ,

or

(26) l2 + k = 0 (mod 2) .

(24) and (26) provide the required contradiction.
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