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THE CLASS NUMBER OF Q(+7) MODULO 4,
FOR p=5 (MOD 8) A PRIME

KENNETH S. WILLIAMS

Let p =5 (mod8) be a prime. Let %(p) denote the class
number of the real quadratic field Qv p). It is well-known
that 4(p) = 1 (mod 2). In this paper the residue of z(p) modulo
4 is determined.

Let p=5 (mod8) be a prime. Let h = h(p) denote the class
number of the real quadratic field @V »). It is well-known (see for
example [2; §3] that

(1) h=hp)=1 (mod2).

In this paper we determine h(p) modulo 4.
The fundamental unit ¢, (> 1) of @/ p) can be written

(2) G=1t+w/p),

where t and % are positive integers satisfying
(3) t=wu (mod?2).

The norm of ¢, is —1 so

(4) ' —pu'= —4.

If t=u=1 (mod2) then we have (using (4))

(-5 (=52) - (9= .

(5) =1 (mod4).

If ¢t =% =0 (mod2), we define positive integers ¢, and u, by ¢t = 2¢,,
# = 2u,. Then, from (4), we have

=pul—1=5ut—1=7, 4 or 8 (mod8)
according as
=0, 1or 4 (mod8).
Clearly we must have ¢ = 4 (mod 8), so that
(6) t, =2 (mod4), u, =1 (mod?2).
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Further, we have

so
(7) u, =1 (mod4).
Next we define unique integers a and b by
(8) p=a+b, a=—1 (modd), b= —(pgl)z a (mod p),

and we note that (as p = 5 (mod 8), a o0dd)
(9) b=2 (mod4).

We prove
THEOREM 1. (@) Ift=wu =1 (mod2) then
h(p) = _;_(—215 +u+b+1) (modd).
) Ift=wu=0 (mod2) then
h(p) = %(tl +u +b+1) (modd).
The proof depends upon a number of lemmas.

LEMMA 1.

p—1 1 = (—1)B+072 t
( 5 ) = (—1) - (mod p) .
This is a result of Chowla [3].

LEMMA 2. (@) Ift=wu=1 (mod2) then
t+2(—1)*% =0 (moda + b7).
(b) If t=u =0 (mod?2) then
t, + (—1D*V% =0 (moda + bi) .
Proof. From (8) and Lemma 1 we obtain
(10) at + 2b(—1)*+92 = 0 (mod p) .
Then (4) and (10) give
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t(2a(_1)(h+l)/2 —_ bt) — 2(at + zb(_1)(h+1)/2)(__1)(h+1)/2 —_ bpuz )
=0 (modp).

As t #= 0 (mod p), we deduce
(11) 2a(—1)*+2 — bt =0 (mod p) .

Using (10) and (11) one easily verifies that (¢ + 2(—1)*+9%)/(a + b%)
is a gaussian integer, which completes the proof of (a).
The proof of (b) is similar.

LEMMA 8. (@) If t=wu =1 (mod 2) there are integers r and s
of opposite parity such that

{t =a(r*— 8’ —b2rs), u=1r" 4 s,
2(—1)*+072 = q(2rs) + b(r* — s?) .

(b) If t=u =0 (mod 2) there are integers r and s of opposite
parity such that

{tl = —a(2rs) —b(r*—s¥, wu, =1 +s°,
(_1)(h+1)/2 — a(,rz . 82) . b(2’l‘8) .

Proof. (a) The gaussian integers (t + 2(—1)*+V%})/(a + bi) and
(t — 2(—1)**+124)/(a — bt) are coprime and their product is u®.. Hence
there exist integers » and s such that

t + 2(_1)(h+1)/2,i

12
(12) a + b1

= &(r + i),

where ¢ = +1, 4. Multiplying both sides of (12) by a + b¢ and
considering the parities of the coefficients of 4 on both sides of the
resulting equation, we see that ¢ = +1. Replacing 7 + si by —s + 74,
if necessary, we can suppose, without loss of generality, that ¢ = +1 so

(13) £ 4+ 2(—1)%+12 = (@ + bi)(r + si)? .

Equating coefficients we obtain the required expressions for ¢ and
2(—1)*+v2 Finally, we have ‘
. t -+ 2(_1)(h+1)/2,i ) t — 2(_1)(h+1)/2,i
a+ b1 a— bi
= (r + 81)(r — s1)’
=@+ 8,

w

so, as u > 0, * + s* > 0, we obtain

u =7+ 8.
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Since u is odd this shows that » and s are of opposite parity.
(b) The proof is similar. In this case we obtain

(14) t, + (—1)**% = 4(a + bi)(r + s1)*.
LEMMA 4. (a) Ift=u=1 (mod2) then
_ 2
w=a+ 2(—t-) (mod 8) .

(b) Ift=u=0 (mod 2) then
u=a-+2 (mod8).

Proof. (a) As b=0 (mod 2) and one of » and s is even, we
have, by Lemma 3(a),

(15) t=a(®— s (mod8).
In particular, as a = —1 (mod 4), (15) gives

t=s8—17r" (mod4),

so that
(16) {

t =1 (mod4) — r even, s odd ,
= —1 (mod 4) — r odd, s even.
Appealing to Lemma 3(a), (15) and (16), we obtain
w—a =+ s — t(r*— s’ (mod8)
=0 —tr*+ (1L +¢t)st (mod8)
_ {1 4+t (mod8), if = even, s odd,
" (1—t (mod8), if s odd, s even,

_ 2
=2(?) (mod 8) ,
as required.

(b) As b =0 (mod2) and one of » and s is even, we have by
Lemma 3(b),

(17) (=102 = g(p? — g%) (mod 8) .
In particular, as ¢ = —1 (mod 4), (17) gives
r*— s’ =(—1)"*"* (mod4),

so that

(18) h =1 (mod 4) = 7 odd, s even,
h =8 (mod 4) — r even, s odd .
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Appealing to Lemma 3(b), (17) and (18) we obtain

u, —a = (2 + 8% — (—1)*+0%(y* — 5% (mod 8)
=1+ (=% + (1 + (—1)**)s*  (mod 8)
=2 (mod 8),

as required.
We are now in a position to prove Theorem 1.

Proof of Theorem 1. (a) As» + s is odd, we have, by Lemma
3(a),

(19) 2rs=r+8)—(@"+s)=1—u (mod8).
Hence, by Lemma 3(a), (15) and (19), we have
2(—1)**2 = q(1 — u) + abt (mod 8),
8o, recalling o = —1 (mod4), b =2 (mod 4), t =u =1 (mod 2),
h=2+ (—D"2 (mod4)

= 2+a(1;u> —I—a(%)t (mod 4)

52+(“;1)—-g—t (mod 4)

=2 () (g o) ey

= %(—215 +u+b+1) (mod4),
as required.

(b) As r + s is odd, we have, by Lemma 3(b),
(20) 2rs=(r+s8)f—@1*+s8)=1—u, (mod8).
From Lemma 3(b), (17) and (20), we have

t, = —a(l — u,) — ab(—1)**2 (mod 8) ,

so (as @ = —1 (mod 4))
_t_1_= 1—u, l _1\(hgD)/2

= (155) ¢ (§) o ot

As b = 2 (mod 4), multiplying both sides by 4/2 = 1 (mod 2), we obtain
t b <1 — U

i.__l_:_. _1\h+1)/2
s b= (58)+ - (mod 4) ,

giving
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h =2+ (—1)*1% (mod 4)

=2+ —g—(ﬁ—_{-g_‘——l) (mod 4)

52-{—(%-—1)—#(&-2:—]2)—1—% (mod 4)

—;—(tl fu, +b+1) (modd),

as required.
Using Lemma 4 in conjunction with Theorem 1, we obtain

COROLLARY 1. (i) Ift=1 or 8 (mod8) or t, =6 (mod8) then
h(p) = %(a +b+1) (modd).
(i) Ift=5 or 7 (mod8) or ¢, =2 (mod 8) then

h(p) = —;—(a +b—38) (mod4).

Reformulating Theorem 1, we obtain
COROLLARY 2. (a) Ift=u =1 (mod?2) then

—t +%(u+3) (mod4), ¢fb=2 (mod8),
h(p) = 1
t +E(u+3) (mod4), if b=6 (mod8).

(b) Ift=u=0 (mod 2) then

| l%(t1+u1+3) (mod4), ifb=2 (mod8),
h(p) = 1

E(t1+u1—1) (mod 4), 4f b =6 (mod8).

Now Gauss [5] has shown that h(—p) (the class number of the
imaginary quadratic field Q(V/—p), see also [1: p. 828] satisfies.

LEMMA 5. h(—p)=a + b + 1 (mod 8).
Putting together Corollary 1 and Lemma 5 we obtain

COROLLARY 3. (i) Ift=1 or 8 (mod8) or t, =6 (mod8) then
h(—p) = 2h(p) (mod8) .
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() Ift=50r 7 (mod 8) or t, =2 (mod8) then
‘h(—p) = 2h(p) + 4 (mod8).

The result corresponding to Corollary 38 for primes p =3 (mod 4)
has been given by the author in [4].

Finally we show that there does not exist a result analogous to
Theorem 1 for primes p = 1 (mod 8). It is easily checked that the
above arguments fail to yield such a result in this case, as we do
not know the exact power of 2 dividing b in the representation
p=a®*+ b, a odd, b even. We prove

THEOREM 2. Let p =1 (mod8) be a prime. We define unique
integers a and b by

)t a (modp),

p=a+0, a=—1 (mod4), b= _<p;1
so that
b=0 (mod4).

The fundamental unit (> 1) of the real quadratic field QV » ) is of
the form

=t +uVop,
where t, and u, are positive integers such that
t—put=-—1, ¢, =0 (mod4), u,=1 (mod4} .
Analogous to Lemma 4(b) we have
(21) u,=a-+2 (mod8).
Then there do NOT exist integers l,, l,, ls, I, independent of p, such that

(22) h(p) = -;—(lla F 0+l + 1) (mod4).

(Note: We remark that it is umnecessary to imclude multiples of
either p or u, inside the parentheses on the right hand side of (22)
since p = 1 (mod 8) and w, satisfies (21).)

Proof. Suppose that a congruence of the form holds. Taking
p = 97, so that ¢, = 5604, u, =569, = —9,b= +4,h=1; and p =
257, so that ¢, =16, v, =1, a = —1, b = +16, h = 3; we must have

—9l, + 41, + 5604l; + I, =2 (mod8),

23
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Subtracting the two congruences in (23) we obtain

8l, + 121, — 55881, = 4 (mod 8) ,

that is

4, + 4l; =4 (mod8) ,
or
(24) L+1l,=1 (mod2).

Next taking p = 41, so that t, =382, u, =5, a = —5,b= +4,h =1;
and p = 73, sothat ¢, = 1068, u, = 125,a = 3,b = —8, h = 1; we obtain

—5l, + 41, + 32, + I, =2 (mod8),

25
(25) 31, + 81, + 1068l, + 1, =2 (mod8).

Subtracting the congruences in (25) we get

8l, — 121, 4+ 1036/, = 0 (mod 8)

that is

4l, + 4, =0 (mod8),
or
(26) L+10;=0 (mod2).

(24) and (26) provide the required contradiction.
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