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SOME NEW RESIDUACITY CRITERIA

RICHARD H. HUDSON AND KENNETH S. WILLIAMS

Let e and k be integers >2 with e odd and k even. Set
2/ = L. C. M. (e, k) and let p be a prime with p = 1 (mod 2/)
having ^ as a primitive root. It is shown that the index of
e (with respect to g) modulo k can be computed in terms of
the cyclotomic numbers of order /. By applying this result
with e — 3, k = 4; e = 5, & = 4; £ = 3, & = 8; new criteria are
obtained for 3 and 5 to be fourth powers (mod p) and for 3
to be an eighth power (mod p).

1* Introduction* Let e and Jc be integers greater than or equal

to 2 with e odd and k even. Let p be a prime congruent to 1
modulo 21, where 21 — L.C.M. (e, k). Let # be a fixed primitive root
(modp). If a is an integer not divisible by p, the index of a with
respect to g is denoted by ind (α) and is the least nonnegative
integer b such that a = gb (moάp). For O^fe, fc ^ Z — 1, the
cyclotomic number (h, k)t of order I is the number of integers n
(1 ^ n ^ p — 2) such that ind (n) = ft (mod Z), ind (% + 1) = k (mod I).

Using an idea due to Muskat [4: 257-258], we prove the follow-
ing congruence for the index of e modulo k.

THEOREM 1.

fc/2-l (e-D/2 2Z/fc-l lle-1 / h, \

ind (e) = 2 Σ * Σ Σ Σ (» + r-ϊ-, i + se)
1=1 j = l r = 0 s=0 \ 2 / !

+ ( P - D O - I ) 1

 ( m o d j f e ) .
8β

Applying Theorem 1 with e = 3, A; — 4, we obtain the following
criterion for 3 to be a fourth power (moάp).

THEOREM 2. Lei p = 1 (mod 12) be a prime, so that there are
integers x and y satisfying

(1.1) p - x2 + 3 r , α ΞΞ 1 (mod 3) .

Then Z is a fourth power (modp) if and only if x = 1 (mod 4).

This criterion should be compared with the classical result:
3 is a fourth power (mod p) if and only if

b = 0 (mod 3) , if p = l (mod 24) ,

a = 0 (mod 3) , if j) Ξ 13 (mod 24) ,
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where

p = a2 + ¥ , a = 1 (mod 4) , δ = 0 (mod 2) ,

see for example [2: p. 24].
Next taking e = 5, & = 4, in Theorem 1 we obtain the following

new criterion for 5 to be a fourth power (modp).

THEOREM 3. Let p = 1 (mod 20) be a prime, so that there are
integers x, u, v, and w satisfying

(1.2) 16p = x2 + 50u2 + 50v2 + 125w2 , xw = v2 - Auv - u2 ,

and

(1.3) a ΞΞ 1 (mod 5) .

Then 5 is a fourth power (mod p) if and only if

x = 4 (mod 8) , if x = 0 (mod 2) ,

x ΞΞ ±3w (mod 8) , ΐ/ a Ξ 1 (mod 2) .

This criterion should be compared with the well-known result
(see for example [2: p. 24]):

5 is a fourth power (modp) if and only if

b Ξ 0 (mod 5) , where p = α2 + 62 , α Ξ 1 (mod 4) , 6 ΞΞ 0 (mod 2) .

Finally, applying Theorem 1 with e = 3, & = 8, we obtain the
following new criterion for 3 to be an eighth power (modp).

THEOREM 4. Let p = 1 (mod 24) be a prime so that there are
integers a, 6, x and y satisfying

(1.4) p = a2 + b2 = x2 + Zy2 ,

(1.5) α Ξ 1 (mod 4) , N O (mod 4) , α ΞΞ 1 (mod 6) , y = 0 (mod 2) .

.̂sswmβ 3 is a fourth power (mod p), so that

b ΞΞ 0 (mod 3) , x ΞΞ 1 (mod 4) .

Then 3 is an eighth power (mod p) if and only if

a ΞΞ 1 ( m o d 3) , J / Ξ O ( m o d 8) ,

or

a ΞΞ - 1 (mod 3) , 2/ Ξ= 4 (mod 8) .
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This criterion should be compared to that of von Lienen [3: p.
114], namely, if 3 is a fourth power (mod p) then 3 is an eighth
power (mod p) if and only if

a = c (mod 3) , if p = 1 (mod 48) ,

a = —c (mod 3) , if p = 25 (mod 48) ,

where

p = a2 + 62 = c2 + 2d2

and

α ΞΞ 1 (mod 4) , 6 = 0 (mod 4) , c == 1 (mod 4) , d = 0 (mod 2) .

Combining these results, we see that if (3/p)4 = + 1 (equivalently
6 = 0 (mod 3) or x = 1 (mod 4)), we have

J2/ Ξ 0 (mod 8) <=* c = 1 (mod 3) , if p ΞΞ 1 (mod 48) ,

[y = 0 (mod 8) <=> c = - 1 (mod 3) , if p = 25 (mod 48) .

2. Proof of Theorem 1* The roots of the congruence

(2.1) χβ ~1 = 0 (moάp)

x — 1

are

x Ξ= flf^ (mod p) , j = 1, 2, *, e - 1 ,

where p — 1 = ef, so that

(2.2) x*-1 + xe-2 + + x + 1 ΞΞ= Π (x ~ 9jf) (mod p) .
i=i

Taking x — 1 in (2.2), we obtain

(2.3) e = Π (1 - g») (mod p) ,

and so

(2.4) ind (e) Ξ= Σ ind (1 - ^ ) (mod p - 1) .

Next

Σ ind (1 - gjf)
j=(e + l)l2

(e-l)/2

= Σ ind (1 - ί/18-^)
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(e-ί)l2 (e- l )/2

Σ ind (1 - gif) + Σ ind (-g-if) (mod p - 1)

( m o d ί > -

so

(2.5) ind (e) Ξ= 2 ( ' | ' 2 ind (1 - gjf) + vp ~ ± Λ < g ~~ ±J (mod p - 1)

Next the roots of

xf _ gjf == o (mod p)

are

x ΞΞ #e ΐ +^ (mod p) (i = 1, 2, , /) ,

so

(2.6) xf - flry/ ΞΞ II (α? - r i + i ) (mod p) .
t = l

Taking ίc = 1 in (2.6), we obtain

1 — gif == Π (1 — 0β<+'*) (mod p) ,
ΐ = l

SO

(2.7) ind (1 - βr") Ξ= Σ ind (1 - gH+*) (mod p - 1) .
z = l

Further, working modulo &/2, we have

Σ ind (1 - geί+j)

Σ ind (1 - n)
n=2

ind(n) =j(mod e)

= Σ ind(w-l)+ Σ ind(-l)
ind(w)=j(mod e) ind(n) Ξj(mod e)

P-2 ^ φ -ĵ  p-ί

— Σ ind {%) -\- =- Σ 1

fc/2-l P-2

n=l
ind(»+l)=i(mod β)

that is
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(2.8) Σ ind (1 - gn+*) = ^ i " i f ' Σ (i + rk/2, j + ae)t .
i=l i = l r=0 s=0

The result now follows from (2.5), (2.7) and (2.8).

3* Proof of Theorem 2* Taking e = 3, & = 4, so that Z = 6,
in Theorem 1, we obtain, for p = 1 (mod 12),

(3.1) ind (3) = 2 Σ Σ (1 + 2r, 1 + 3 )̂6 + 2Lzl (mod 4) .
r=0 s=0

Defining x and 2/, as in [6: p. 68], by

x = 6(0, 3)6 - 6(1, 2)β + 1

and

2/ - (0, l)β - (0, 5)β - (1, 3)β + (1, 4)β ,

so that x and 2/ satisfy (1.1), from the tables for the cyclotomic
numbers of order 6, we obtain

Σ Σ ( H 2r, 1 + 3s)6 - h<p - x - Zy) .

Hence, from (3.1), we obtain

ind (3) =—(p - x) - V + SLZll (mod 4) .
3 6

Now

(0 (mod 4) , if p = 1 (mod 24) ,

that is

giving

V (2 (mod 4) , if p = 13 (mod 24) ,

V = —(P ~ 1) (mod 4) ,
b

ind (3) = —(P -x) = —(1 - *) (mod 4) ,
3 3

which completes the proof of Theorem 2.

4. Proof of Theorem 3 Taking e = 5, k = 4, so that i = 10,
in Theorem 1, we obtain for p = 1 (mod 20),



140 RICHARD H. HUDSON AND KENNETH S. WILLIAMS

(4.1) ind (5) = 2 Σ Σ Σ (1 + 2r, j + 5s)10 + A(j> - 1) (mod 4) .
i=l r=0 s=0 5

Define m by 2 = gm(moάp). Replacing g by an appropriate power
of g, we may suppose that m == 0 or 1 (mod 5). Next we define a?,
u, v, w by

3x = -p + 14 + 25(0, 0)β ,

u = (0, 2)5 - (0, 3)5,

v = (0, 1)5 - (0, 4)5 ,

w = (1, 3). - (1, 2), ,

so that x, u, v, w is a solution of (1.2) satisfying (1.3) (see for
example [5: p. 100]). From the tables of Whiteman [5: pp. 107-109]
for the cyclotomic numbers of order 10, we obtain in the case
m = 0 (mod 5), that is, 2 is a fifth power (mod p) or equivalently,
x Ξ 0(mod2) [1: p. 13]:

Σ Σ Σ ( H 2 r , i + 5*)10
j—lr=0 s=0

= — {Ap + x -

SO

ind (5) = — {4p + x - 15u + 15v ~ 30 ;̂} (mod 4)

= A-(χ + 4) - —(u -v) + w(mod 4) .
10 2

Emma Lehmer [1: p. 13] has shown in this case that

x = u = v = w = 0 (mod 4) , u Ξ V (mod 8) ,

so that

ind (5) = l ( s + 4) ΞΞ J . + 2(mod4) ,

completing the proof of Theorem 3 in this case.
When m = 1 (mod 5), 2 is not a fifth power (mod p) and

£Ξl(mod2) . From the tables of Whiteman [5: pp. 107-109], in
this case, we obtain

Σ Σ Σ d + 2 r , i + 5s)10
j = \r=0 s=0

= -L{8^ - 2>χ
40
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so that

4 ind (5) = 8p - Zx + 10u + 2Qv - 25 (mod 16) ,

which shows that w = 1 (mod 2).
Since

400(0, 2)10 = 4p - 36 + 17a? + 50% - 25w ,

we have (as x = w = 1 (mod 2))

lOu Ξ 3x + 5w (mod 16) ,

so that

ind (5) = v + w (mod 4) .

As

200(0, 9)10 = 2p - 18 - Ax + 25u - 25v + 25w

and

200(1, 2)10 = 2p + 2 + x 4- 25% + 25?; - 50w

we have

u — v = i — w (mod 8) ,

u + v ΞΞ £ + 2w — x (mod 8) ,

so

u = - L ( w — x) (mod 4) , v = —(3w? — α?) (mod 4) .
2 A<

Hence we have

(4.2) ind (5) Ξ —(5^ - a?) (mod 4) .

Since all solutions of (1.2) satisfying (1.3) are given by (see for
example [1: p. 13])

(x, u, v, w) , (x, v, -u, — w) , (x, -u, -v, w) , (x, -v, u, -w) ,

(4.2) gives

ind (5) Ξ 0 (mod 4) <=> x = ±Sw (mod 8) ,

and

ind (5) Ξ 2 (mod 4) ^=> x = ±w (mod 8) ,

which completes the proof of Theorem 3.
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5* Proof of Theorem 4* Taking e = 3, k = 8 so that I = 12,
in Theorem 1, we obtain, for p = 1 (mod 24),

(5.1) ind (3) ΞΞ 2 Σ i Σ Σ (* 4r, 1 + 3s)12 + i-(p 1) (mod 8)

Following Whiteman [6: p. 64], we define m and m' by 2 Ξ= #m (mod p)
and 3 Ξ # W ' (mod p) respectively. As p = 1 (mod 8) we have
m Ξ 0 (mod 2). Replacing e/ by an appropriate power of # we may
suppose that m = 0 or 2 (mod 3), so that m Ξ= 0 or 2 (mod 6). Further,
as we are assuming 3 is a fourth power (modp), we have

m Ξ 0 (mod 4). Next we define x and 7/ (as in [6: p. 68]) by

x = 6(0, 8)β - 6(1, 2)β + 1 ,

2/ = (0, 1)6 - (0, 5)β - (1, 3)β (1, 4)6

and a and 6 by equations (4.4) and (4.5) in [6] (a replaces Whiteman's
x, b replaces Whiteman's 2y). Then x, y, α, b satisfy (1.4) and (1.5).
Whiteman [6: pp. 69-73] gives the cyclotomic numbers of order 12
in terms of x, y, a and 6, as defined above. When m == 0 (mod 6),
we must use Tables 9 and 10 of [6] and, when m = 2 (mod 6), we
must use Tables 3 and 4. By considering the cyclotomic numbers
(3, 6)12 in Table 9; (2.4)12 in Table 10; (1, 2)12 in Table 3; (2, 8)12 in
Table 4; it is easy to check that Whiteman's quantity c = ± 1 (see
[6: pp. 64-65]) satisfies

c = - 1 a = 2 (mod 3) .

We remark that a -φ. 0 (mod 3) as 3 is assumed to be a fourth power
(mod p).

Next we set

i - 1, 2, 3) ,

+ 2 Σ + 3 Σ ) + —(p - 1) (mod 8).
2 3 / 6

so that

(5.3) ind (3) =

From Whiteman's tables, we obtain

(p - 26 - x - Zy , if α Ξ 1 (mod 3) ,
12 Σ =

1

12 Σ =

+ 26 - a? - 3# , if a = - 1 (mod 3) ,

- 2a + x + Zy , if a = l (mod 3) ,

p + 2a + x + 3?/ , if α = — 1 (mod 3) ,
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(p + 2b - x — %y , if α Ξ 1 (mod 3) ,

3 ~~ \p - 26 - x - 32/ , if α ΞΞ - I (mod 3) .

From (5.3) and (5.4) we obtain

(5.5) ind(3)

1 - ±-(2a-2b + x)-y +—(p - 1) (mod 8) , if a Ξ= 1 (mod 3) ,
3 6

l+±-(2a-2b-x)-y + —(p-l)(mod8), if α Ξ= -1 (mod3) .

Also, from Whiteman's tables, we have in every case,

p + l-8a + 6χΞ=0 (mod 16) ,

so

ind (3)

£ ± i — (p-l)(mod8) , if a ^
6

(ί)-l)(mod8) , if a ^ - l (4 α i / +
2 6

_ { — y (mod 8) , if a = 1 (mod 3) ,

~ (4 - y (mod 8) , if a = - 1 (mod 3) ,

which completes the proof of Theorem 4.
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