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SOME NEW RESIDUACITY CRITERIA

RicHARD H. HUDSON AND KENNETH S. WILLIAMS

Let ¢ and % be integers >2 with ¢ odd and £ even. Set
2l=L.C.M. (e, k) and let p be a prime with p =1 (mod 2/)
having ¢ as a primitive root. It is shown that the index of
¢ (with respect to g) modulo %2 can be computed in terms of
the cyclotomic numbers of order /. By applying this result
with e=3, k=4; e=5, k=4; e=3, k= 8; new criteria are
obtained for 3 and 5 to be fourth powers (mod p) and for 3
to be an eighth power (mod p).

1. Introduction. Let e and k be integers greater than or equal
to 2 with e odd and k£ even. Let » be a prime congruent to 1
modulo 2!, where 2] = L.C.M. (e, k). Let ¢ be a fixed primitive root
(mod p). If a is an integer not divisible by p, the index of a with
respect to g is denoted by ind(a¢) and is the least nonnegative
integer b such that a=¢* (modp). For 0<h, k<1 —1, the
cyclotomic number (h, k), of order ! is the number of integers =
1< n < p—2) such that ind (n) = A (mod 1), ind (n + 1) = k (mod I).

Using an idea due to Muskat [4: 257-258], we prove the follow-
ing congruence for the index of ¢ modulo k.

THEOREM 1.

. Ekl2—1 .(c—l)“_) 2lik—1lje—1 . k .
inde) =2 3, 1 3, <z+7'3,3+se>
=1 j=1 = 14

r=0 §=0

+ (@ —L)e — 1) (mod k) .
8e

Applying Theorem 1 with e = 3, k = 4, we obtain the following
criterion for 3 to be a fourth power (mod p).

THEOREM 2. Let p =1 (mod12) be a prime, so that there are
integers x and y satisfying
1.1) =22+ 3y, 2 =1 (mod3).
Then 3 is a fourth power (mod p) if and only if x =1 (mod 4).
This criterion should be compared with the classical result:
3 is a fourth power (mod p) if and only if

b =0 (mod3), if p=1 (mod24),
a =0 (mod3), if p =13 (mod24),
135
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where
p=a*+b, a=1 (mod4), b=0 (mod?2),

see for example [2: p. 24].
Next taking e = 5, k = 4, in Theorem 1 we obtain the following
new criterion for 5 to be a fourth power (mod p).

THEOREM 3. Let p =1 (mod 20) be a prime, so that there are
integers x, u, v, and w satisfying
1.2) 16p = 2* 4+ 50u* + 50v* 4+ 125w? xw = V' — duv — u’,
and
1.3) 2 =1 (mod5).
Then 5 18 a fourth power (mod p) if and only if
x =4 (mod8), if =0 (mod2),
2 = +3w (mod8), of =1 (mod2).

This eriterion should be compared with the well-known result
(see for example [2: p. 24]):
5 is a fourth power (mod p) if and only if

b=0(mod5), where p=a*+b, a=1(mod4), b=0(mod?2).

Finally, applying Theorem 1 with ¢ =3, £k =8, we obtain the
following new criterion for 8 to be an eighth power (mod p).

THEOREM 4. Let p =1 (mod24) be a prime so that there are
integers a, b, x and y satisfying

1.4) p=a+ b =gz + 3y,
and
1.5) a=1(mod4), b=0(mod4), x=1(mod6b), = 0 (mod 2) .

Assume 3 is a fourth power (mod p), so that
b=0 (mod3), 2 =1 (mod4).
Then 8 is an eighth power (mod p) if and only if
a=1 (mod3), 9y =0 (mod8),
or

a= —1 (mod3), = 4 (mod 8) .
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This criterion should be compared to that of von Lienen [3: p.
114], namely, if 3 is a fourth power (mod p) then 3 is an eighth
power (mod p) if and only if

a =c¢ (mod3), if p=1 (mod48),
a = —c¢ (mod3), if p =25 (mod 48),
where
n»=a+b=c + 2d°
and
a =1 (mod4), = 0 (mod 4), ¢ =1(mod4), d = 0 (mod 2) .

Combining these results, we see that if (3/p), = +1 (equivalently
b=0 (mod3) or x =1 (mod 4)), we have

ijO(mod8)<=»czl(mod3), if p=1 (mod48),
ly =0 (mod8) — ¢ = —1 (mod3), if »=25 (mod48).

2. Proof of Theorem 1. The roots of the congruence

2.1) 9; —1 =0 (mod p)
are

x = ¢’ (mod p) , 7=1,2---,e—1,
where p — 1 = ef, so that
2.2) 2t +x+1s§(w—gﬁ) (mod p) .
Taking © = 1 in (2.2), we obtain
(2.3) e=T(1—g¢" modp),
and so
2.4) ind (¢) = g ind (1 — ¢°) (modp — 1)
Next

e—1
>, ind (@1 —g¢¥)
j=(e+1)/2
(e—=1)/2

= >, ind (1 — g“ %)

iz
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(e—1)/2

= S ind (1 - g
= S ind@ —¢") + 3, ind(—g) (mod p — 1)

(e—1)/2

— jf) (mod p — 1),

(e—1)/2 .
ind (1 — g) + 3 (p L
i=t 2

Jj=1

SO

@25) ind(e) =2 ‘i:i ind (1 — g7y + P = 1;(: U (modp —1).

Next the roots of

2/ — g’ = 0 (mod p)

are
r=g"" (modp) (t=12---,1),
SO
- f
(2.6) o — g7 =11~ g°"*’) (mod p) .

Taking « = 1 in (2.6), we obtain
1— g7 =T - g") (modp),
S0
@.1) ind (1 — g) = é ind (1 — ¢**) (mod p — 1)
Further, working modulo %/2, we have

i‘, ind (1 — g“*9)

= S imdda-n

n=2
ind(n)=j(mod e)

-

»—1

S, ind(n —1) + >, ind(—1)

n=2 n=2
ind(n)=7(mod e) ind(n) =7 (mod ¢)

=

Il

p—2 . P — 1 p—1

S ind(w) +5¥=——= 31

n=1_ 2 n=1

ind(n-+1) =4 (mod e) ind z=7(mod ¢)
ki2—1 p—2

> 20,

1=0 n=1
ind (n)=¢(mod k/2) ind(n+1)=j(mod e)

il

i

that is
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12/1

f
(2.8) Z{ind(l gty = Z ) Z Z t + 7k/2, 7 + se), .
The result now follows from (2.5), (2.7) and (2.8).

3. Proof of Theorem 2. Taking ¢ =3, k = 4, so that [ =6,
in Theorem 1, we obtain, for »p = 1 (mod 12),

3.1) ind (3) = 22( L2, 1 +3s), + 221 - 1 mod 4) .

Defining 2 and y, as in [6: p. 68], by
x = 600, 3); —6(1, 2), + 1
and
vy =1(0,1) —(0,5) — (1, 3)s + (1, 4)s ,

so that x and y satisfy (1.1), from the tables for the cyclotomic
numbers of order 6, we obtain

S5+l +3s)6:—é—(p —z—3y).
Hence, from (3.1), we obtain

ind (3) .—;—%(p — %) —y + —p—%l(mod 1) .

Now
0 (mod 4) , if p=1 (mod 24),
2 (mod 4) , if » =13 (mod24),
that is
_ 1
= —G—(p —1)(mod 4) ,
giving

ind (3) = %@ —x) = %(1 — &) (mod 4)
which completes the proof of Theorem 2.

4, Proof of Theorem 3. Takinge =5, k=4, so that [ = 10,
in Theorem 1, we obtain for » = 1 (mod 20),
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. 2 4 1 . 2
(4.1) ind (5) = 23, Z&Zo(l + 27,5 + 58), + E(p — 1) (mod 4) .
J=17r=0 8=

Define m by 2 = g™ (mod p). Replacing g by an appropriate power
of g, we may suppose that m = 0 or 1 (mod5). Next we define z,
%, v, w by

3x = —p + 14 + 25(0, 0),,

% = (0, 2); — (0, 3);,

v = (0’ 1)5 - (09 4)5 ’

w=(1,3);—1,2),
so that =, w, v, w is a solution of (1.2) satisfying (1.3) (see for
example [5: p. 100]). From the tables of Whiteman [5: pp. 107-109]
for the cyclotomic numbers of order 10, we obtain in the case

m = 0 (mod 5), that is, 2 is a fifth power (mod p) or equivalently,
2 = 0 (mod 2) [1: p. 13]:

S+ 2, 5+ B8k

j=1r=08=0
1

= 55{410 + x — 15u + 15v — 30w},

S0

ind (5) = 1i0{4p + o — 15u + 150 — 30w} (mod 4)
_1 3
= _—(x +4) — EW — v) + w(mod 4) .

Emma Lehmer [1: p. 13] has shown in this case that
r=u=v=w=0(mod4), % = v (mod 8) ,

so that

ind (5) = 11‘0(” +4=2 +2(modd),
completing the proof of Theorem 3 in this case.
When m =1(mod5), 2 is not a fifth power (modp) and
2 =1(mod2). From the tables of Whiteman [5: pp. 107-109], in
this case, we obtain

SIS+ 2, + 58k

j=1r=08=0

{8p — 3x + 10u + 20v — 25w},

8=
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so that
4ind (5) = 8p — 3x + 10u + 20v — 25 (mod 16) ,

which shows that w = 1 (mod 2).
Since

400(0, 2),, = 4p — 36 + 17z + 50u — 25w ,
we have (as x = w = 1 (mod 2))

10u = 32 + 5w (mod 16) ,

so that
ind (5) =v + w(mod 4) .
As
20000, 9),, = 2p — 18 — 4x + 25u — 25v + 25w
and
200(1, 2),, = 2p + 2 + v + 2bu + 25v — 50w
we have
u—v=4— w(mod8),
w+v=4+2w — x(mod8),
S0
u = —é—(w — x) (mod 4) , v = %‘—(3@0 — x) (mod 4) .

Hence we have

(4.2) ind (5) = %(57,0 — &) (mod 4) .

141

Since all solutions of (1.2) satisfying (1.3) are given by (see for

example [1: p. 13])

(x, u, v, w) ’ (:L', v, —U, —’ZU) ’ (fl?, —Uu, —7, ’W) ’ (xy -V, U, —w) ’

(4.2) gives
ind (5) = 0 (mod 4) —= ¢ = +3w (mod 8) ,

and

ind (5) = 2(mod 4) == & = +w (mod 8) ,

which completes the proof of Theorem 3.
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5. Proof of Theorem 4. Taking ¢ =38, k = 8 so that [ = 12,
in Theorem 1, we obtain, for p = 1 (mod 24),

3 2

61  ind@) =213 z (i + 47, 1+ 38), + %(p — 1) (mod 8) .
Following Whiteman [6: p. 64], we define m and m' by 2 = g™ (mod p)
and 3 = g™ (mod p) respectively. As p=1(mod8) we have
m = 0 (mod 2). Replacing g by an appropriate power of g we may
suppose that m = 0 or 2 (mod 3), so that m = 0 or 2 (mod 6). Further,
as we are assuming 3 is a fourth power (mod®), we have
m’ = 0 (mod 4). Next we define x and y (as in [6: p. 68]) by

r = 6(01 3)6 - 6(11 2)6 + 1 ’
y=(0,1) —(0,5) — (1, 8) + (1, 4)s ,

and a and b by equations (4.4) and (4.5) in [6] (a replaces Whiteman’s
x, b replaces Whiteman’s 2y). Then x, vy, a, b satisfy (1.4) and (1.5).
Whiteman [6: pp. 69-73] gives the cyclotomic numbers of order 12
in terms of z, y, a and b, as defined above. When m = 0 (mod 6),
we must use Tables 9 and 10 of [6] and, when m = 2 (mod 6), we
must use Tables 3 and 4. By considering the cyclotomic numbers
(3, 6),, in Table 9; (2.4),, in Table 10; (1, 2),, in Table 3; (2, 8),, in
Table 4; it is easy to check that Whiteman’s quantity ¢ = *=1 (see
[6: pp. 64-65]) satisfies

¢c=+1==0a=1(mod3),

(5.2)
c=—1==qa=2(mod3).

We remark that a = 0 (mod 3) as 3 is assumed to be a fourth power
(mod p).
Next we set

S =3R48, (=123,
so that
(5.3) ind (3) = 2@ +23 +3 ;) + %(p — 1) (mod 8) .

From Whiteman’s tables, we obtain

122:{p—2b—x——3y, ?f a=1(mod3),

1 »+2b—2x—3y, if a= —1(mod3),

122:{p—2a+x+3y, ff a=1(mod3),
2 p+ 20 +2+ 3y, if a= —1(mod3),
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‘p + 2b — x — 3y, if a=1(mod3),

12> = .
3 »p—2b—2— 3y, if a= —1(mod3).

From (5.3) and (5.4) we obtain
(5.5) ind (3)

1 %—(2a—2b+x)—y —{——é—(p —1)(mod8), if a=1(mod3),
1+ —é—(Za——Zb—w)—y +—é—(p —1)(mod8), if a= —1(mod3).

Also, from Whiteman’s tables, we have in every case,
p»+1—8a + 62 =0 (mod16),
S0
ind (3)
1+2a—2b4—%ﬂ~4a-y+%(p—1>(mod8), if a=1(mod3),

1—2a+2b+—p-2ﬂ—4a—'y%-%(p—l) (mod 8), if a=—1(mod3),

/,’-y(modS), if a=1(mod3),
4 —y(mod8), if a= —1(mod3),

which completes the proof of Theorem 4.
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