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ON THE EVALUATION OF (eqIq2/p) 

KENNETH S. WILLIAMS 

Let m be a positive squarefree integer. We denote the class number of 
Q ( J y m )  by h(-m) and the fundamental unit of ~ ( J r n )  by em. We con- 
sider only those m for which the norm of e, (written N(e,)) is - 1, so that 
the only possible primes dividing m are the prime 2 or primes congruent 
to 1 modulo 4. Now, if p is an odd prime such that (mlp) = + 1, we can 
interpret em as an integer modulo p, and ask for the value of the Legendre 
symbol (e,/p). Because of the ambiguity in the choice of Jii taken mo- 
dulo p ,  we must ensure that (e,/p) is well-defined. Since 

where the prime (') indicates conjugation ( - - J%), this will be 
the case if (- l/p) = + 1, that is, if p = 1 (mod 4). Thus it is assumed 
throughout that 

Suppose rn has the prime decomposition m = q1 . . . q,, and let a denote 
the number of ambiguous classes of forms of discriminant -4m in the 
principal genus. Then, from genus theory, we know that 

2, a,  if m odd, 
b = (  2s-1 a,  if m even, 

is an integer dividing h(-m), and we define a positive integer 1 by 

We restrict our attention to primes (congruent to  I modulo 4) represented 
by forms in genera containing ambiguous classes, so that pl is represented 
by an ambiguous form. For such primes p, when m is a prime or  twice a 
prime, the evaluation of (e,/p) is known, except in one case. In these cases, 
the generic characters are given by (for k > 0) 

- 
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,I (k)  = (-ply ~ 2 ( k )  = ($ ), m = q(prime) - 1 (mod 4), 

 XI(^) = ( ' ) ,  ~ 2 ( k )  = ($), m = 29, q(prime) = 1 (mod 4), 

and the ambiguous forms of discriminant -4m are given by 

1 = (1, 0, 2), nz = 2, 
I = (1, 0, q), A = (2, 2, +(q + I)), m = q, 
1 = (1, 0, 2q), A = (2, 0, q), m = 29, 

where (r, s, t )  denotes the form rx2 + S X ~  + ty2. 
We remark that N(e,) = - 1 when nz = 2; when m = q (prime) - 1 

(mod 4) (Dirichlet [6: p. 2251); and when rn = 29, q (prime) = 5 (mod 8) 
(Dirichlet [6: p. 2261). m = 29, q (prime) = 1 (mod 8) is the only case 
which requires the assumption that the norm of the fundamental unit 
be - 1. In this case, the assumption h = h( - 29) z 4 (mod 8) has also to 
be made, as Lehmer's results [l l:  Theorems 2 and 31 require that 1z/4 be 
odd. What happens when h - 0 (mod 8) remains open. Both possibilities 
occur as N ( C ~ . ~ ~ )  = N ( E ~ . ~ ~ ~ )  = - 1, h(- 82) = 4, h(- 226) = 8. Writing 
h for h(-m) the results in the known cases can be sumn~arized as follows: 

Assumptions Evaluation of ( ;-) 1~~~~~ 

I 

29 ( - 1 ) = ( ~ ) = ( ~ ) = l ~ ( - l ) ~ / z , i f p h / 4 = x z + 2 q j ~ 2  1 
I P  ( - 1)x/2, if p h / 4  = 2x2 + qy2 

I 
q = I (mod 8) N(e2J = - 1 I ~ 



EVALUATION OF (~,,,,/p) 56 1 

It is the purpose of this paper to discuss the remaining cases when rn 
has exactly two prime factors, that is, m = qlq2, where ql and q2 are dis- 
tinct primes congruent to I (mod 4). 

In the unique factorization domain Z[i] of Gaussian integers, we have 
ql = nlzl ,  q2 = n 2 ~ 2 ,  where n l  and n2 are primes, which we can take to 
be primary, that is, to satisfy n l  r n2 = 1 (mod (I + i)3). Now either 
E~~~~ or cqIq: is of the form T +  U JKG, where T and U are positive integers 
with T even and U odd. Since N(T + u 2/=) = - 1, we have, for j = 1,2, 
n jJ(T + i)(T - i), that is, njlT + i, as n j  is prime. Replacing n j  by its 
complex conjugate n,, if necessary, we can assume 

Writing [ /njJ2 (resp. [ /nil4) for the quadratic (resp. biquadratic) 
residue symbol (mod xi), and ( /p), for the rational biquadratic symbol 
(mod p) ( p  an odd prime), we have 

THEOREM 1 .  Jfp, ql, q2 are distinct priines congruent to 1 (mod 4), such 
that (qlq2/p) = + I, then 

where nl ,  7r2 are dc5ned as  above. (Compare Furuta [7: Theorem 31) 

PROOF. AS T is even, ( T  + i)/nln2, and ( T  - i)/z1z2 are coprime 
Gaussian integers. Since their product is U2, by the unique factorization 
property, ( T  + i)/nln2 must be an associate of a square, say, 

where u is a unit of Z[i], that is, u = f 1, +i. Reducing this equation 
modulo 2, we obtain u - i (mod 2), so that u = f i .  Replacing a by ia ,  
if necessary, we have 

As U > 0, aa > 0, this gives U = a a .  Hence, from 

we have 

Let n be a primary prime factor of p in Z[i], so that p = n7t, n E n -- 1 
(mod (1 + i)3). Interpreting 2/% as an integer modulo p, we have from 

(2) 
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= [-?-I [c] (by  the law of quadratic reciprocity in Z [ i ] )  
71-1 2 7r2 2 

- -  -- 

- - ["-3" [ "1". ["I ["I . [ " 1 ["I 
71-1 4 71-2 4 71-1 4 71-1 4 71-2 4 71-2 4 

= ["I ["I .[ " ] [-"-I . ["I [". . ["1 [-"I 
71-1 4 71-1 4 71-2 4 71-2 4 71-1 4 71-1 4 71-2 4 E2 4 

71- 

= [ ;;I4 [-El - 1  = [PI [PI [ " ] 4 71-171-171-271-2 4 71-1 4 71-2 4 9192 4 

= [ '-1 , ] FpZ2 ] (by  the law of biquadratic reciprocity 
71-1 4 71-2 4 4 

in Z [ i ] )  

COROLLARY 1 .  I f p ,  ql ,  q2 are distinct prirncs co~lgruent to 1 modulo 4 ,  
szrch that (q l /p)  = (q2/p) = + 1, then 

(Furuta [7: Corollary, p. 1431) 

PROOF. AS (411~)  = ( 4 2 / ~ )  = 1 ,  we have (9192/~)4 = (91/~)4(92/~)4 ,  and 
by  the law of quadratic reciprocity ( p / q l )  = ( p / q 2 )  = 1, so [p / r1 l4  = 

( ~ / q ~ ) ~ ,  [p /n2I4  = ( ~ 1 9 ~ ) ~ .  The result now follows immediately from 
Theorem 1. 

COROLLARY 2. I f p ,  q l ,  q2 are distinct primes congruent to I modulo 4 ,  
such that (q l /p)  = (q2/p) = - 1 ,  (ql /q2) = - 1 ,  then 

PROOF. AS (q2/q l )  = - I, we have [q2/n1I2 = - 1,  that is, 

Now, from T + i = in1x2a2, we have 
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giving 

[2/z112 = [~l/z112[~2/~112 = [2/zl:l2[~2/nll2, 

that is, 

Hence we have 

that is, 

by the law of biquadratic reciprocity in Z[i]. Also, by the law of biquadratic 
reciprocity in Z[i],  we have 

Multiplying (3) and (4) together, we obtain 

and Theorem 1 gives 

as required. 

We are now in a position to obtain the explicit evaluation of (~,,,,!p), 
when p1 is represented by an ambiguous form of discriminant -4qlq2. 
This is done, following ideas of Lehmer [ll:  pp. 369-37 I], by using the 
representation o fp '  to compute the residue symbols appearing in the ex- 
pression for (E, ,~~/P)  given in Theorem 1 or its corollaries. Many of the 
details are suppressed, as the calculations parallel those given by Lehmer. 
As in Lehmer's work, we require that 1 be odd, and an assumption to this 
effect is made wherever necessary. The results, which constitute Theorem 
2, are given in the Table. 
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TABLE 

Assumptions , Evaluation of - - 

+ 1, if ph/16 =x2 +qlq2y2 
q1 = q2 = 1 (mod 8) 

i or q,x2 + q2y2 
- 1, if 2phl16 = x2 + qlq2 y2 

1 h=16(mod32)  or q1x2 + q2y2 

I ql  1 (mod 8) ~ , -1, if 2 p h / 8 = ~ 2 + q l q 2 y 2  
h = 8 (mod 16) 

I1 -- - -PA - --pP- - 

I (5') = + I ,  (:) = (Y,.) = - I  + ~ , i f p ~ / ~ = q , x ~ + q ~ y ~  

~ I h = 8 (mod 16) - 1, if 2ph/8 = q1.u2 + q2y2 
- P- - 

' ql-1, q2-5 (mod 8) (- l)y,  if phI8 =x2  + qlq2y2 
111 

I N(em)= - 1 I i or qix2 + q2y2 

h=8(mod16)  
1 - -- - - - P----P - - - - -- -- I 

I 

1 h=8(mod16)  i - 1, if shI8 =qlx2 + q2Y2 
-- -- -- -P 

N.B. T is defined by e1 = T + U d m ,  2 = 1 or 3 

h is the classnumber of Q(d-). 

All representations are primitive. 
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Let I, A, B, C denote the classes of the forms [l, 0, qlq2], [2, 2, 
i(qiq2 + I)], [ql, 0, q21, L2q17 2q17 i(q1 + q2)1 respectively. These are Pre- 
cisely the ambiguous classes of forms of discriminant -4qlq2, so that the 
classes of forms of discriminant -4qlq2 fall into 4 genera. The generic 
characters are xl(k) = (-llk), x2(k) = (k/ql), xa(k) = (klq,) (k > 0). 
The six cases appearing in the table are treated below. 

CASE I. ql = q2 -- 1 (mod 8), (ql/q2) = + 1. In this case I, A, B, C are 
all in the principal genus, so that lz = h(-qlq2) = 0 (mod 16) (Brown 
[4: Theorem I]). Thus, if p is a prime, such that (-  llp) = (ql/p) = (q2/p) 
= 1, there are positive coprime integers x and y such that p1 = x2 + 
q1q2y2, 2x2 + 2xjl + 3(qlq2 + l)y2, qlx2 + q2y2, or 2qlx2 + 2qlxy + 
$(ql + q2)y2; that is, there are positive coprime integers x and y such that 

p1 or 2p1 = x2 + qlq2y2 Or qlx2 + q2y27 

where 1 = h/16. We now assume that N ( E ~ ~ ~ ~ )  = - 1 and h = 16 (mod 32) 
(so that 1 is odd). These are two independent assumptions since: N ( E ~ ~ . ~ ~ ~ )  
= - 1 and h(-41.241) = 1 12 = 16 (mod 32), whereas N(&17.89) = + 1 
and h(- 17.89) = 16; also N ( E ~ ~ . ~ ~ ~ )  = - 1 and lz( - 17 -281) = 32, where- 
as N ( E ~ ~ . ~ ~ ~ )  = + 1 and h(- 17.137) = 32. 

Taking p1 = x2 + qlq2y2 modulo p, ql and q,, we obtain 

so that, by Corollary 1, we have 

Next we set 

x = 2axl7 xl s 1 (mod 2), a 2 0, 

y = 2Pyl, y1 = 1 (mod 2), P 2 0. 

By the law of quadratic reciprocity, we have (as 1 is odd) 

giving 
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I f p  - 1 (mod 8), (2/p) = + 1, so (e,,,/p) = + 1 ; i fp  - 5 (mod 8), 
then a + ,8 = 1, and again (eqIq,/p) = + 1. 

Similarly, using p1 = q1x2 + q2y2 in Corollary 1, we obtain 

But, as N(&q,q,) = - 1, we have (q1lq2)4(q,lq1)4 = + 1 
(Brown [2: Lemma 4]), so that (eq,,,/p) = + 1. 

Using 2pl = x2 + qlq2y2 in Corollary 1, we obtain, using the easily 
proved result (2/p)(2/x)(2/y) = ( - 1)(q1+q?-2/8), 

where d, e are positive odd integers defined by qlq2 = 2e2 - d2. As 
(ql/q2)4(q~/q1)4 = + 1 (since N(eqlq,) = - I) and h( - q1q2) = 16 (mod 32), 
we have (e/ql)(e/q2) = - 1 (Kaplan [9: Prop. C;]), so that (eqlq,/p) = - 1. 

Using 2p' = q1x2 + q2y2 in Corollary 1, we obtain in a similar manner 

CASE 11. ql -- q2 -- 1 (mod 8), (ql/q2) = - 1. In this case I, A are in 
the principal genus and B, C are in the non-principal genus for which 

= + 1, so that h = h(- q,q2) - 0 (mod 8) (Brown [4: Theorem 11). 
Thus, if p is a prime such that ( -  l/p) = (ql/p) = (q2/p) = 1, there are 
positive coprime integers x and y such that 

p' or. 2p' = x2 + q1q2p,  

where I = h/8, and, if ( -  l/p) = 1, (ql/p) = (q2/p) = - 1, 
such that 

As (ql/q2) = - 1 we have N(eqlq,) = - 1 (Dirichlet [6: p. 228]), and we 
assume that h - 8 (mod 16) (so that I is odd). The example ql = 17, 
q2 = 73, h = h( -  1241) = 32, shows that this is a genuine assumption. 

Usingp' = x2 + qlq2 y2 in Corollary 1 we obtain (eqlq,/p) = + 1. 
Using 2p' = x2 + qlq2y2 in Corollary 1, we obtain 

the right hand side of which is - 1 ,  as /I(-qlq2) = 8 (mod 16) (Kaplan 
[9: Prop. B;]). 
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Usingp' = q1x2 + q2j!2 in Corollary 2 we obtain (e,,,,/p) = + 1. 
Finally, using 2p1 = qlx2 + q2yz in Corollary 2, we obtain 

the right hand side of which is - 1, as h(- qlq2) = 8 (mod 16) (Kaplan 
[9: Prop. B;]). 

CASE III. ql -- 1, q2 = 5 (mod 8), (ql/q2) = + 1. In this case I, B are 
in the principal genus and A, C are in a non-principal genus for which 

= - 1. We have h = h(-qlq2) = 0 (mod 8) (Brown [4: Theorem 11). 
Thus, if p is a prime for which (-  llp) = (qllp) = (q2/p) = + 1 ,  there 
are positive coprime integers x and y such that 

where I = h/8. We now assume that N(E,,,,) = - I and 12 - 8 (mod 16) 
(so that I is odd). 

These are two independent assumptions since: N(eI7.,,) = - 1 and 
h(- 17 - 53) = 24 r 8 (mod 16), whereas N ( E ~ ~ , ~ ~ ~ )  = + 1 and h( - 17 -229) 
= 40 = 8 (mod 16); also N ( E ~ ~ ~ ~ . ~ )  = - 1 and h( -  1601 -5) = 48 - 0 
(mod 16), whereas N ( E ~ ~ . ~ ~ )  = + 1 and h(- 17.13) = 16 = 0 (mod 16). 

Using p1 = x2 + q1q2y2 in Corollary 1, we obtain (eqlq2/p) = (- 1 ) ~ .  
Using p1 = qlxz + q2y2 in Corollary 1, we obtain 

As N(E,,,,) = - 1, we have (ql/q2),(q2/ql)4 = + 1 (Brown [2: Lemma 411, 
so that (E,~,~/P) = (-  1)y. 

CASE IV. q1 -- 1, q2 -- 5 (mod 8), (ql/q2) = - I .  In this case I, A, B, C 
are each in different genera, with I in the principal genus and B in the non- 
principal genus with = + 1. We have 11 = h(-q1q2) -- 4 (mod 8) 
(Brown [4: Theorem 11). Thus, if p is a prime such that ( - I /p) = (ql/p) = 

(q2/p) = 1, there exist positive coprime integers x and y such that p1 = 

x2 + q1q2y2, where I = h/4 is odd, and such that p1 = qlx2 + q2~32, 
i f  (-  1 /p) = 1, (ql/p) = (q2/p) = - 1.  As (ql/q2) = - 1, a theorem of 
Dirichlet [6: p. 2281 guarantees that N(e,,,,) = - 1. Using p1 = 

x2 + q1q2y2 in Corollary 1, we obtain (e,,,,/p) = (-  l ) ~ ,  and using pL = 

qlx2 + q2j,2 in Corollary 2, we also obtain (E,~,~/P) = ( - 1 ) ~ .  

CASE V. q1 = q2 = 5 (mod 8), (ql/q2) = + 1. In this case I, B are in the 
principal genus and A, C are in the non-principal genus with = + 1. 
We have h = h(-q1q2) -- 0 (mod 8) (Brown [4: Theorem I]). Thus, if p 
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is a prime such that (-  l/p) = (ql/p) = (q2/p) = 1, there exist positive 
coprime integers x and y such that p1 = x2 + qlq2y2 or qlx2 + q2y2; and, 
if ( -  l/p) = 1, (ql/p) = (q2/p) = - 1, such that 2p1 = x2 + q1q2~'%r 
qlx" q2y2, where I = 1218. We assume that N(e,,,,) = - I ,  so that by 
a theorem of Brown [2: Lemma 41 we have (ql/q2)4- (q2/q1)4 = 1, and hence 
by a theorem of Kaplan [9: Prop. Bi] we have h = 8 (mod 16), so that 1 
is odd. Usingpl = x" qlqz?..2 in Corollary 1, we obtain (e,,,,/p) = + 1, 
and using p1 = qlxQ q2j'"n the same corollary we obtain (e,,,,/p) = 

- (q1lq2)4(q2/(71)4 = - 1. 
When 2p1 = x2 + q 1 q 2 y b r  qlx2 + q2y2 the evaluation of (a,,,,/p) 

appears to be more difficult. It was originally hoped to give a third corol- 

lary to Theorem I expressing (~,,,,/P) in terms of ( 2 ~ / ~ 1 ) 4 ( 2 ~ l q 2 ) 4 ( ~ 1 ~ , / ~ ) 4  

when p,  ql, q2 are distinct primes congruent to 1 modulo 4, and such that 

( ~ I / P )  = ( ~ z / P )  = - 1 , (41/q2) = + 1, q1 - q2 = 5 (mod 8). No such 
representation was found, and so instead we apply Theorem I directly. 

If 2pl = x2 + qlq2j12 we have 

as (;;) = (;J = (4q) = (9 = - 1, (9'P2) = (2)(x)(J'). 
P 4  P P P  

Now, by Jacobi's form of the law of quadratic reciprocity, we have (as 1 
is odd) 

Setting a = g + hi, where a is defined by (I), we have 
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by the supplements to the laws of quadratic and biquadratic reciprocity 
in Z[i], since T - 0 (mod 4) in this case. As n j  ( j  = 1,2) is a primary prime 
factor of q j  ( j  = 1 ,  2), we have ;zj = a, + ibj, a j  - I (mod 2), b j  = 0 
(mod 2), a, + bj  - I - 0 (mod 4), a: + b: = q,. Since q j  E 5 (mod 
8), we have, for j = 1, 2, 

a j  - 7 (mod 8), bj = 2 (mod 4), if q j  - 5 (mod 16), 
a, s 3 (mod 8), bj  - 2 (mod 4), if q j  = 13 (mod 16). 

Set a + ib = nln2, so we have 

a = ala2 - blb2, b = alb2 + a2bl. 

Clearly we have 

a =. 5 (mod 8), b - 0 (mod 4), if ql + q2 - 10 (mod 16), 

a r 1 (mod 8), b i 0 (mod 4), if ql + q2 = 2 (mod 16). 

From 1 - Ti = nln2a2 = (a + ib)(g + ih)z, we have 

so that 

g = 1 (mod2) ,  h - 2 (mod4),  i f q l  + q2 = IO(mod 16), 

g = 1 (mod 2), h - 0 (mod 4), if q1 + q2 = 2 (mod 16), 

giving 

h/2 - (ql + q2 - 2)/8 (mod 2), 

so that 

Similarly one can prove that (~,,,,/p) = (- l)7"4+l, when 2pl = q1x2 + 
q2y2, using (ql/q2)4(q2/q1)4 = + 

CASE VI. ql -- q2 -- 5 (mod 8), (ql/q2) = - 1.  In this case I and C are 
in the principal genus and A and B are in the non-principal genus with 

= + 1. We have h = h(- qlq2) = 0 (mod 8) (Brown [4: Theorem I I). 
Thus, if p is a prime such that (-  Ilp) = (ql/p) = (q2/p) = + 1, there are 
positive coprime integers x and y such tha tpL  = x2 + qlq,y2 or  2pl = 
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qlx2 + q2y2, and if ( - l/p) = 1, (ql/p) = (q2/p) = - 1, such that pl = 
q1x2 + q2y2 or 2pr = x2 + qlq2y2, where I = h/8. As (ql/q2) = - 1, by 
Dirichlet's theorem [6: p. 2281, we have N(E,,,,) = - 1, and we assume 
that h r 8 (mod 16), so that I is odd. The example ql = 5, q2 = 37, h = 
h(- 185) = 16, shows that this is a genuine assumption. 

Using p1 = x2 + qlq2 y2 in Corollary 1, we obtain (eqlq,/p) = + 1, 
and using 2pr = q1x2 + q2 y2 in Corollary 1, we obtain 

the right hand side of which is - 1, as h r 8 (mod 16) (Kaplan [9: Prop. 
B;). Using 2pr = x2 + qlq2y2 in Corollary 2, we obtain 

Finally using pl = q1x2 + q2 y2 in Corollary 2, we obtain (e,,,,/p) = - 1. 
This completes the proof of Theorem 2. We remark that parts of I1 and 

VI of Theorem 2 have been proved without the restriction h(-qlq2) = 8 
(mod 16) using class field theory [5]. 

We conclude with a few examples to illustrate the theorem. 

EXAMPLE 1. (Compare Kuroda [lo: pp. 155-1561) Choose ql = 5, q2 = 

13, so that (ql/q2) = - 1, and h = h(- qlq2) = h(- 65) = 8. By part VI 
of Theorem 2, if p is a prime such that 

then 

and if p is such that 

then 

+ 1, if 2p = x2 + 65y2, 
P - 1 ,  i f p  = 5x2 + 13~2. 

Thus, for example, we have 
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These are easily verified directly: 

EXAMPLE 2. Choose ql = 5, q, = 29, so that (ql/q2) = + 1, N(cqIq2) 
= N ( E ~ ~ ~ )  = N(12 + 4145) = - 1, h = h(-qlq2) = h(- 145) = 8. By 
part V of Theorem 2, we have 

then 

12 + 4 1 4 5  i f p  = x2 + 145y2, 
P P  - 1 ,  if p  = 5x2 + 29y2; 

and if p  is such that 

then 

EXAMPLE 3. Choose ql = 17, q2 = 5, so that (q1/q2) = - 1, and 
h = (-qlq2) = h(- 85) = 4. By part IV of Theorem 2, we have that i f  
p  is a prime such that 
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Thus, for example, we have 

( ~ ) = ( f ( ~ +  1 4 5 ) ) = ( 7 7 ) =  + I ,  3 4 9 =  32 + 85.22, 
349 349 349 

( ) ( 9 2 1 ) ( ) ,  8 9 = 2 2 + 8 5 . 1 2 ,  
8 9 

3(9 + 23) 37 = 17. l2  + 5.22, 

+(9 + 31) 20 ( ) = ( - - - ) = ( - 7 3 - ) = - 1 ,  7 3 = 1 7 . 2 2 + 5 . 1 2 .  

EXAMPLE 4. Choose ql = 17, q2 = 53, so that (ql/q2) = + 1, h = 

h( - qlq2) = h( - 901) = 24, N ( E ~ , ~ ~ )  = N(E~,-,~) = - 1. By part I11 of 
Theorem 2, we have that i fp  is a prime such that 

then 

where 

p3 = x2 + 901~2  or p3 = 17x2 + 53y2. 

Thus, for example, we have 

30 + 79 893 = 5872 + 901 -202, 

30 + 2 ( ~ f ~ - ) = ( ~ ) = ( & ) = - l ,  133=362+901.12,  

30 + 93 ( -  )=($;-)= + l ,  1493 = 17.2692 + 53-1982, 

30 + 253 ( A ~ O ~ ) = (  1753- ) = ( 8 3 ) = - 1 ,  17533=17.154~102+53-50472. 
1753 1753 
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