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ON THE EVALUATION OF (¢, /p)

KENNETH S. WILLIAMS

Let m be a positive squarefree integer. We denote the class number of
Q (4/—m) by h(—m) and the fundamental unit of Q(4/m) by ¢,,. We con-
sider only those m for which the norm of ¢,, (written N(e,,)) is — 1, so that
the only possible primes dividing m are the prime 2 or primes congruent
to 1 modulo 4. Now, if p is an odd prime such that (m/p) = + 1, we can
interpret ¢,, as an integer modulo p, and ask for the value of the Legendre
symbol (e,,/p). Because of the ambiguity in the choice of 4/m taken mo-
dulo p, we must ensure that (¢,,/p) is well-defined. Since

( =1 ) - (ﬂ@),) - (gmzip ) - (m)<£m>
p p p pAp/
where the prime () indicates conjugation (/m — — /m), this will be

the case if (— l/p) = +1, that is, if p = | (mod 4). Thus it is assumed
throughout that

Suppose m has the prime decomposition m = ¢; ... q,, and let a denote
the number of ambiguous classes of forms of discriminant —4m in the
principal genus. Then, from genus theory, we know that

b= 25 a, if m odd,
T (2571 g, if meven,

is an integer dividing 4#(—m), and we define a positive integer / by
I = h(—m)/b.

We restrict our attention to primes (congruent to 1 modulo 4) represented
by forms in genera containing ambiguous classes, so that p‘ is represented
by an ambiguous form. For such primes p, when m is a prime or twice a
prime, the evaluation of (¢,,/p) is known, except in one case. In these cases,
the generic characters are given by (for & > 0)
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nk = (),

aw=(3) 0= ()

10 =(2) o= (%) m

and the ambiguous forms of discriminant —4m are given by

3
|

=2,

I

g(prime) = 1 (mod 4),

Il

24, g(prime) = 1 (mod 4),

I[=(1,0,2), m=2,
I=(,0,9,4=Q2,2,3%¢+ 1), m=aq,
I=(1,0,29),4=(0,q), m = 2q,

where (r, s, t) denotes the form rx2 + sxy + £)2.

We remark that N(e,,) = —1 when m = 2; when m = ¢ (prime) = 1
(mod 4) (Dirichlet [6: p. 225]); and when m = 2gq, ¢ (prime) = 5 (mod 8)
(Dirichlet [6: p. 226]). m = 2q, g (prime) = 1 (mod 8) is the only case
which requires the assumption that the norm of the fundamental unit
be — 1. In this case, the assumption # = A(—2q) = 4 (mod 8) has also to
be made, as Lehmer’s results [11: Theorems 2 and 3] require that 4/4 be
odd. What happens when # = 0 (mod 8) remains open. Both possibilities
occur as N(ep.q) = N(esqy3) = — 1, h(—82) = 4, h(—226) = 8. Writing
h for h(— m) the results in the known cases can be summarized as follows:

-
. . Em Refer-
m Assumptions Evaluation of< , ) . ences
o ,,,,] ,2, e ) *‘
) ‘<,:,,>=<,,,>: LW i p=x? 422 1
» > ( p v | (1]
T T S ST S R
q= l(mod 8) <,, 1 :<q>= +1, lfph/ x4+q) ‘ [14][5]
' p —1, if 2pr/t=x24 g2 \
S e ———
g = S5(mod 8) ‘<—7">:( g,>=1 (—1y, if pr2=x2+qy®  [11][13]
\
P '27 7q oo T e T T
2 (f ):( ):( ,)=1 LY, if pha=x2 4 2g)0 |
q Ly » » (=D p q) 1)
g=1mod8)  Nep)=—1 (=132 if pt=2x2+¢y?
h=4 (mod 8) ‘
2q <* l>=<24>=1 /(— 172, if ph'2 = x% +2qy? ‘[1[] [13]
» ;

g = 5(mod 8)’

p ‘(_])x/2+1’ ifph/2=2x2+qy2‘
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It is the purpose of this paper to discuss the remaining cases when m
has exactly two prime factors, that is, m = ¢,q,, where ¢, and ¢, are dis-
tinct primes congruent to | (mod 4).

In the unique factorization domain Z[i] of Gaussian integers, we have
g1 = T1T1, §2 = T2T2, Where 71 and z, are primes, which we can take to
be primary, that is, to satisfy z; = 7, = | (mod (1 + i)3). Now either
€4,0, OF €4, is of the form T+ U 4/q,q,, where T and U are positive integers
with Teven and U odd. Since N(T + U+/q19,) = — 1, we have, forj = 1,2,
7T + iXT — i), that is, z;|T + i, as z; is prime. Replacing z; by its
complex conjugate 7;, if necessary, we can assume

mIT+i (j=1,2).

Writing [ /z,]; (resp. [ /z;]4) for the quadratic (resp. biquadratic)
residue symbol (mod =), and (  /p), for the rational biquadratic symbol
(mod p) (p an odd prime), we have

THEOREM 1. If p, q1, q- are distinct primes congruent to | (mod 4), such
that (q1q92/p) = + |, then

() = [ELLZ L)

where 1, 7o are defined as above. (Compare Furuta [7: Theorem 3])

Proor. As T is even, (T + i)/mymo, and (T — i)/7m 7, are coprime
Gaussian integers. Since their product is U2, by the unique factorization
property, (T + i)/m w2 must be an associate of a square, say,

T + i = umzya?,

where u is a unit of Z[i], that is, v = +1, +i. Reducing this equation
modulo 2, we obtain ¥ = i (mod 2), so that # = +i. Replacing « by ia,
if necessary, we have

(1) T + i = immea®.
As U > 0, aa > 0, this gives U = aa. Hence, from
AT + iXT + Uy/quqz) = (T + i + UV q142)%,
we have
(2) (1 + iVm7zoT + U q1gs) = (immea + @4/q140)%

Let 7 be a primary prime factor of p in Z[i],so that p = z7%, 7z = 7 = 1
(mod (1 + i)3). Interpreting 4/¢;9, as an integer modulo p, we have from

) '
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<MI;> - <,T + Uvg19 ) - [,T + Uy 51‘12,}
2

p o x

{2 -[2][7]
[ ]2 (by the law of quadratic reciprocity in Z[i])
IR RN ELE]
WELEIELEELELE]
-ElEl==L- R

[ P[P ][99 , o
=\ = ]4 [ 7:2 L [ i 1‘ (by the law of biquadratic reciprocity

in Z[i))
SENEICS)

COROLLARY 1. If p, q1, g5 are distinct primes congruent to 1 modulo 4,
such that (q1/p) = (q2/p) = +1, then

) = ()5,

(Furuta [7: Corollary, p. 143])

z

PrROOF. As (q./p) = (q2/p) = 1, we have (§192/p)s = (91/P)4(g2/P)s» and
by the law of quadratic reciprocity (p/q,) = (p/q2) = 1, so [p/mi]y =
(plq)s, [ p/7sls = (plgs)s. The result now follows immediately from
Theorem 1.

COROLLARY 2. If p, q1, q5 are distinct primes congruent to 1 modulo 4,

such that (q:/p) = (q2/p) = — 1, (1/q2) = — 1, then
()=~ R
p g2 /i\ q1 /a\ P /4
PROOF. As (g5/q)) = — 1, we have [qp/m], = —1, thatis,
(mo/m1)e [mo/mile = — 1.

Now, from T + i = iryz.a?, we have
172
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2 = mmoa? + TTad2,

SO
2 = 7mea? (mod 7y),
giving
Rizily = [m/millTo/mile = [2/m1lol7e/ 71l
that is,

[Zo/mile = +1, [mo/mi) = — 1.
Hence we have
[71/72)y [mofmily = [/ 7ol 7o/ mily = [m/7alalme/711d
= [m1/m @2/ Tr Lol 7o/ 1 )4

—[m1/7ala[ 7o/ 71l

il

that is,
3) [?{17}[7:{( - (=D al, 424—1’
Tg J4_ 71 4

by the law of biquadratic reciprocity in Z[i]. Also, by the law of biquadratic
reciprocity in Z[/], we have

TRl -1, g
@ E S CU R
Multiplying (3) and (4) together, we obtain
[q1/7aldlga/m1]s = — 1.

and Theorem 1 gives

(eya/ P) = [ p/7ilal pI72ls(0192/P)s
—[pq\/7maldl Pga/ w114(9192/P)ss
—(Pq1/92)4( Pq2/91)4(4192/P)s-

It

as required.

We are now in a position to obtain the explicit evaluation of (e,,,,/P),
when p is represented by an ambiguous form of discriminant —4g;q..
This is done, following ideas of Lehmer [11: pp. 369-371], by using the
representation of p/ to compute the residue symbols appearing in the ex-
pression for (g,,,/p) given in Theorem [ or its corollaries. Many of the
details are suppressed, as the calculations parallel those given by Lehmer.
As in Lehmer’s work, we require that / be odd, and an assumption to this
effect is made wherever necessary. The results, which constitute Theorem
2, are given in the Table.
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TABLE
Caseﬁ m=q,q, Assumptions } Evaluation of (—6”‘—)
- 1‘77 T T o 7717?}:/16_ +7T a
st (G-I
I H (lh) 11 N, =—1 L1, if 2ph i =x2+q,q,)°
‘ qz h=16 (mod 32) ‘ or 4,x*+ 4,y
S - [ R
| G- e e
! g1=¢.=1 (mod 8) h 8 (mod 16) = Lif 2pM0=x"+q,9.5*
1 - o o
(Zi)=_l (_pl) +1, (p) (‘;;)=—1 L+ 1,0 ptr=g X2 +q.p?
| h=8 (mod 16) — 12" =gt g
‘} $i=1,4,=5 (mod 8) (;i) - (‘;) :(‘i;) —+1 (=177, i P =x*+ q,q,5*
‘IH : (ql) — 11 N(e)=—1 or ¢,x* +4.,)*
JACH h=§ (mod16) |
; ¢:=1, g,=5(mod 8)} (;1) = (%) = (‘ij) =+1 (=1, if pAt=x"+ q,q,y"
v : S
R e e
: | (=@ =(B)=r1 | 4nitprmrrgar
j | g,=4.=5 (mod 8) | Neey)=—1 = Lif pPr=g.x + gyt
\% | ‘
94— 41 _ . B ‘ (_1)7/4 if2ph/8
i e P
Nem)=—1 i —41x2+512y2
Gl =er g
aERESmeds) e =1 if 29 =g x4 o
VI, (?):-1 | (:1)_41 )= (75 =1 L i 2 g )
p /=t = ; , WL 2p*E=x"+q.q,y
.‘ h=8 (mod 16) w — L if -#0=g,x* +g,)*

N.B. T'is defined by eA=T+ U +/m, A=1 or 3
h is the classnumber of Q(+/ —m).

All representations are primitive.
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Let I, A, B, C denote the classes of the forms [1, 0, g192], [2, 2,
g2 + DL [g1, 0, q2), [2q1, 2q1, 3(q1 + g2)] respectively. These are pre-
cisely the ambiguous classes of forms of discriminant —4g,¢,, so that the
classes of forms of discriminant -4q,¢, fall into 4 genera. The generic
characters are yy(k) = (—1/k), yo(k) = (k/q1), xo(k) = (k/gz) (k > 0).
The six cases appearing in the table are treated below.

Case I. g; = g, = 1 (mod 8), (¢1/9;) = + 1. In this case I, A, B, C are
all in the principal genus, so that # = A(—q19,) = 0 (mod 16) (Brown
[4: Theorem 1]). Thus, if p is a prime, such that (—1/p) = (q1/p) = (q2/p)
= 1, there are positive coprime integers x and y such that p! = x2 +
q192)%, 2x% + 2xy + Hq1q2 + D% qix® + g2)%, or 2qix% + 2q1xy +
(g1 + g2))?; that is, there are positive coprime integers x and y such that

ptor2pt = x% + q1q2)? or 1x2 + g;)%,

where [ = £/16. We now assume that N(e,,,) = — 1 and & = 16 (mod 32)
(so that / is odd). These are two independent assumptions since: N(eg.241)
=—1 and A(—41-241) = 112 = 16 (mod 32), whereas N(gy7.50) = +1
and A(—17-89) = 16; also N(ej7.081) = — | and h(—17-281) = 32, where-
as N(ey7.137) = +land A(—17-137) = 32.

Taking p' = x2 + ¢1¢9,»? modulo p, g; and ¢,, we obtain

(@1/P)a(q2/p)s = QIp)(X/p)(¥/P),

(PlgVs = (x/q1), (Plg2)s = (x/q2),
so that, by Corollary 1, we have

)= GGG

I (mod 2), &« = 0,
y=20y,y =1 (mod 2), 52 0.

Next we set

I

x = 2%xy, X1

By the law of quadratic reciprocity, we have (as / is odd)
(x/p) = @/p)>*(xi/p) = QIp)>*(p/x1) = QIp)(p'/x1) = 2/p)(q1/x1)(g2/X1)
lp) = @Ipynlp) = QP plyD) = QP! 1y = Q/p¥,

(x/q0) = Q/q*(x1/q1) = (x1/q0), (x/92) = Q/g2)*(x1/q2) = (x1/2),

giving
(iw,) - (2 )”““_
p p
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Ifp =1 (mod 8), (2/p) = + 1,50 (e4,4,/p) = +1;if p = 5(mod 8),
then & + § = 1, and again (e,,./p) = +1.
Similarly, using p* = qx2 + ¢,)? in Corollary I, we obtain

() - ()
p g2 /a\q1 /4
But, as N(e,,,,) = —1, we have (91/q2)4(q2/q1)s = +1
(Brown [2: Lemma 4]), so that (g,,,/p) = +1.
Using 2p! = x2 + q19,)? in Corollary 1, we obtain, using the easily
proved result (2/p)(2/x)(2/y) = (= 1)@+e-2/8)

()= (-G
p q1/4\ 92 /4 AN P
where d, e are positive odd integers defined by g;q, = 2¢2 — d2. As

(91/92)4(g2/q1)s = +1 (since N(e,,,) = —1) and h(—g19;) = 16 (mod 32),
we have (e/q;)(e/q;) = —1(Kaplan [9: Prop. C]), so that (g,,,,/p) = —1.
Using 2pt = ¢1x% + ¢, 2% in Corollary 1, we obtain in a similar manner

()= () -

Case Il. ¢; = g, = 1 (mod 8), (g,/92) = —1. In this case I, A are in
the principal genus and B, C are in the non-principal genus for which
y1 = +1, so that i = h(—q,9,) = 0 (mod 8) (Brown [4: Theorem 1]).
Thus, if p is a prime such that (—1/p) = (¢q;/p) = (¢2/p) = 1, there are
positive coprime integers x and y such that

plor2p = x2 + qiq3)%,

where [ = h/8, and, if (—1/p) = 1, (q1/p) = (g2/p) = — 1,
such that

plor2pt = q1x% + gz)°.

As (q1/g2) = —1 we have N(e,,) = —1 (Dirichlet [6: p. 228]), and we
assume that # = 8 (mod 16) (so that / is odd). The example ¢q; = 17,
g, = 73, h = h(—1241) = 32, shows that this is a genuine assumption.
Using p! = xZ + ¢,4,)? in Corollary 1 we obtain (¢,,,/p) = +1.
Using 2p! = x2 + ¢q14,)% in Corollary 1, we obtain

(6(114;7) _ (— l)('ll'ﬂl,’"?)/S (3 ») (777277>
p q1/:\ 92 /¢

the right hand side of which is —1, as i(—¢;9,) = 8 (mod 16) (Kaplan
[9: Prop. By)).
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Using p! = ¢;x% + g,)? in Corollary 2 we obtain (g,,,/p) = +1.
Finally, using 2p! = ¢;x% + g5 in Corollary 2, we obtain

ﬂl,lﬁg>= —1 <qp‘qrz)/8<3 \ (i)
< p (=0 01 )4 92 /&

the right hand side of which is —1, as A(—qq;) = 8 (mod 16) (Kaplan
[9: Prop. B;)).

Case III. ¢; = 1, g, = 5 (mod 8), (g1/92) = + 1. In this case I, B are
in the principal genus and A, C are in a non-principal genus for which
y1 = —1. We have 4 = h(—q,9,) = 0 (mod 8) (Brown [4: Theorem 1]).
Thus, if p is a prime for which (—1/p) = (¢:1/p) = (g2/p) = +1, there
are positive coprime integers x and y such that

Pl =X + qqp)*% or q1x% + q;)7,

where / = h/8. We now assume that N(g,,,) = —1 and 1 = 8 (mod 16)
(so that /is odd).
These are two independent assumptions since: N(g;.53) = —1 and

h(—17-53) =24 = 8 (mod 16), whereas N(g17.999) = +1 and A(—17-229)
=40 = 8 (mod 16); also N(eygp.5) = —1 and A(—1601-5) = 48 =0
(mod 16), whereas N(e;;.13) = +1 and A(—17-13) = 16 = 0 (mod 16).

Using p! = x? + q14,)?% in Corollary 1, we obtain (g,4,/p) = (= 1).
Using p! = ¢1x2 + ¢,)? in Corollary 1, we obtain

() =0 @

As N(gg0,) = —1, we have (q1/92)4(92/q1)s = +1 (Brown [2: Lemma 4]),
50 that (e,,0,/p) = (= ).
CaselV. gy =1, g, = 5 (mod 8), (¢:/g2) = — 1. In thiscase I, A,B,C

are each in different genera, with I in the principal genus and B in the non-
principal genus with y; = +1. We have i = A(—q,9;) = 4 (mod 8)
(Brown [4: Theorem 1]). Thus, if p is a prime such that (— [/p) = (q,/p) =
(q2/p) = 1, there exist positive coprime integers x and y such that p! =
x%2 + g19,)%, where [/ = h/4 is odd, and such that p/ = q;x% + ¢,)2,
if(=1/p) =1, (q/p) = (q2/p) = —1. As (q1/q2) = —1, a theorem of
Dirichlet [6: p. 228] guarantees that N(g,,) = —1. Using p! =
X% + q19)% in Corollary 1, we obtain (g,,,,/p) = (—1)?, and using p! =
@1x% + gz3% in Corollary 2, we also obtain (g,,,,/p) = (—1).

CASEV. q; = g, = 5 (mod 8), (¢1/g2) = + 1. In this case I, B are in the
principal genus and A, C are in the non-principal genus with y; = +1.
We have & = h(—q1q;) = 0 (mod 8) (Brown [4: Theorem 1]). Thus, if p
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is a prime such that (—1/p) = (q¢/p) = (g2/p) = 1, there exist positive
coprime integers x and y such that p/ = x2 + q195)2 or ¢1x2 + ¢,32; and,
if (=1/p) =1, (q1/p) = (g2/p) = —1, such that 2p' = x? + q1q;)? or
q1x% + q2»%, where | = h/8. We assume that N(g,,) = — I, so that by
a theorem of Brown [2: Lemma 4] we have (¢1/92)4-(g2/g1)s = 1, and hence
by a theorem of Kaplan [9: Prop. B;] we have & = 8 (mod 16), so that /
is odd. Using p' = x% 4+ ¢,4,)?% in Corollary I, we obtain (¢,,,/p) = +1
and using p' = ¢;x% + ¢2)? in the same corollary we obtain (e,,,,/p) =
—(01/92)4(q2/91)4 = — 1.

When 2p! = x% + q192)% or q1x% + q»% the evaluation of (eg,,/p)
appears to be more difficult. It was originally hoped to give a third corol-
lary to Theorem | expressing (g4,,,/p) in terms of (2p/q1)4(2p/q2)4(q192/P)s
when p, g1, g, are distinct primes congruent to 1 modulo 4, and such that
(q1/p) = (q2/p) = =1, (q1/g2) = +1, g1 =g, =5 (mod 8). No such
representation was found, and so instead we apply Theorem | directly.

If 2p! = x% + g,9,v% we have

CPLLILL
JEEA AR L el

oE E EAN FAR A A AR T )
- Xe ) e ) ()
[l G)

()= (@) = (@)= (@)= (-GG

Now, by Jacobi’s form of the law of quadratic reciprocity, we have (as /
is odd)

SO

Co) = Ll kG XRG ) = ™ ),

Settingx = g + hi, where « is defined by (1), we have
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iznqz) —(—1 (q1+42-2)/8 [_72*[‘ [2]
< 4 (=D T JLQ’ 2

= 0" 2 | e ey

= (= |)lorrax 284 T/4ihr2
)

by the supplements to the laws of quadratic and biquadratic reciprocity
in Z[i], since T = 0 (mod 4) in this case. As 7, (j = 1, 2)is a primary prime
factor of ¢; (j = 1, 2), we have =; = a; + ib;, a; = | (mod 2), b; =0
(mod 2), a; + b; — | =0 (mod 4), a2 + b% = g;. Since ¢q; = 5 (mod
8), we have, forj = 1, 2,

a; = 7 (mod 8), b; =2 (mod 4), ifg;, =5 (mod 16),
a; = 3 (mod 8), b; =2 (mod 4), ifq; = 13 (mod 16).

Il

Set a + ib = 77y, SO we have
a = d\a; — blbg, b = albg + aZbl'
Clearly we have

a=5(mod8), b=0(mod4), ifqg; + g, = 10 (mod 16),

a=1(mod8), b=0(mod4), ifg; + g, = 2 (mod 16).
From 1 — Ti = mymoa® = (a + ib)(g + ih)?, we have
I = a(g® — h?) — b(2gh),
so that

g=1(mod2), h=2(mod4), ifq + g, = 10 (mod 16),

g=1(mod?2), h=0(mod4), ifqg + g, = 2 (mod 16),
giving

h2 = (g1 + g2 — 2)/8 (mod 2),
so that
(g0 P) = (= D74
Similarly one can prove that (g;,,,/p) = (—1)7/4"1, when 2p/ = ¢;x2 +

q2)2, using (q1/92)4(q2/91)s = +1.

Case VL. ¢; = g, = 5(mod 8), (g1/g.) = —1. In this case I and C are
in the principal genus and A and B are in the non-principal genus with
x1= +1. We have & = h(—q,9;) = 0 (mod 8) (Brown [4: Theorem 1]).
Thus, if p is a prime such that (—1/p) = (g1/p) = (g2/p) = +1, there are
positive coprime integers x and y such that p! = x2 + ¢g,)% or 2p! =
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q1x% + qz)%, and if (=1/p) = 1,(q1/p) = (g2/p) = —1, such that p' =
g1x% + g2)* or 2p' = x% + q1g2)%, where | = h/8. As (q1/q;) = —1, by
Dirichlet’s theorem [6: p. 228], we have N(g,,,) = —1, and we assume

that A = 8 (mod 16), so that /is odd. The example ¢, = 5, g5 = 37, h =
h(—185) = 16, shows that this is a genuine assumption.

Using p! = x2 + qq2p% in Corollary 1, we obtain (e,4,/p) = +1,
and using 2p! = qx% + g,)%in Corollary 1, we obtain

<,,.€,‘qu1> _ (_ 1)(q1+qrz)/8<72i> (2&)
P qz2 /e\ 91 /¢

the right hand side of which is —1, as A = 8 (mod 16) (Kaplan [9: Prop.
B)). Using 2p! = x2 + ¢149,)% in Corollary 2, we obtain

&@)* _ (Q]JQQ%G)/S(E@) <2q&> _
(p =(=D q24q14_+1'

Finally using p! = ¢q;x% + g,)? in Corollary 2, we obtain (g,,4,/p) = —1.

This completes the proof of Theorem 2. We remark that parts of II and
VI of Theorem 2 have been proved without the restriction A(—gqq;) = 8
(mod 16) using class field theory [5].

We conclude with a few examples to illustrate the theorem.

ExaMpLE 1. (Compare Kuroda [10: pp. 155-156]) Choose q; = 5, g, =
13, so that (gy/q;) = —1, and h = h(—qy9;) = h(—65) = 8. By part VI
of Theorem 2, if p is a prime such that

(9= (3)-(2)- .

(&) _ (ﬁ ﬁi) _ [+ 1, ifp =+ 652
p {—l, if 2p = 5x% + 13)%;

then

p

and if p is such that

()= 1) ()

( _eﬁg,_) _ (FS__iLéj ) _ {+ 1, if2p = x2 + 652,
p P —1, ifp = 5x% + 132

then

Thus, for example, we have

€65 \ — 42 .32
<601> +1, as 601 = 42 + 65-32,
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> “1, as2-29 = 5-32 4 1312,

(ii> = +1, as2-37 = 3% + 65-12,

(fi@) — —1, as193 = 5-62 + 1312,

These are easily verified directly:

€65 ) = 8#2&,) < i\_(
(es)= ("%l sor) = (or)= *+1
(55)=("%°)=(3)=-
29 ) 29
€65 \ _ 8 + 18) <26>
(55 )=(*% 37)= b
(18- b4)- (1) -
193 193 193/ )
ExampLE 2. Choose q; = S, ¢, = 29, so that (q1/q2) = + 1, N(egq,)

= Neys) = N(12 + 4/145) = — 1, h = h(—q1q9;) = h(—145) = 8. By
part V of Theorem 2, we have

G)-()-(2)-

(6145 > _ <12 i\/145> — {+1, if p = x2 + 1452,
p p —1, if p = 5x2 4+ 29)%;

then

and if p is such that

()= ()-(2)- -

then
(i.‘pﬁ)_(_l_?i&i)_ +1, if2p=5x2+29y3,
p P —1, if2p = x% + 145)2.
ExampLE 3. Choose ¢ = 17, g, = 5, so that (q;/q;) = —1, and

h = (—q192) = h(—85) = 4. By part IV of Theorem 2, we have that if
p is a prime such that
(5(5)-
p p

then
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(5 = (M)) T ()= (5)=1 p=wesmn
P P (—1y, if(-i}) = 6) =1, p= 1T+ 52

Thus, for example, we have

(585 )=<%(9+ 145)>=( 77 )= 1, 349 =32 4 8522,

349 349
—(W%(l
(59)- (052 - (3
(%(9 + 3,1)) _ (2,0.) =1, T73=17.22+5-12

ExaMmPLE 4. Choose ¢, = 17, g, = 53, so that (qi/g))= +1, h =
h(—q1q95) = W(—901) = 24, N(e,,) = N(ego1) = —1. By part IIT of
Theorem 2, we have that if p is a prime such that

G-E)-()- =

(%>=<30+p~/§07)=(_1)y’

= —1, 89 =22+8512

= +1, 37

17-12 + 5.22,

then

where
p3 = x%2 + 901y% or p3 = 17x% + 53)2,

Thus, for example, we have

m_élf,E)_(i,)_ 3 _ 5872 202
(89)_( )= (g9 )= +1. 892 = 5872+ 901-20%,

€901\ _ 30+2>_<l>__ 3 — 362 .12
(13>_< )= ()= -1 13 =362+ 90112,

o1 ) _ (30 + 93,) = <L23> - 3 — 17.2692 .1082

(149>—< 149 =149 f+l, 1493 = 17-2692 + 53-1982,

001\ _ 30+253>_< 283 )_ _ 3._17. 2 ) 2

(1753>_< FINS(28 ) = —1, 17539=17-154100 45350472,
ACKNOWLEDGMENT

The author acknowledges with thanks the help of Dr. Duncan A.Buell (Bowling



EVALUATION OF (&.5,/p) 573

Green State University) and Dr. Philip A. Leonard (Arizona State University) in
the preparation of this paper.

REFERENCES

1. Pierre Barrucand and Harvey Cohn, Note on primes of type x* + 32y% class
number, and residuacity, J. reine angew. Math., 238 (1969), 67-70.

2. Ezra Brown, Binary quadratic forms of determinant-pq, J. Number Theory, 4 (1972),
408-410.

3. , The power of 2 dividing the class-number of a binary quadratic discrim-
inant, J. Number Theory, 5 (1973), 413-419.

4. , Class numbers of complex quadratic fields, J. Number Theory, 6 (1974),
185-191.

5. Duncan A. Buell, Philip A. Leonard and Kenneth S. Williams, Note on the quadra-
tic character of a quadratic unit, Pacific J. Math. (to appear).

6. P.G.L. Dirichlet, Einige neue Sdtze iiber unbestimmte Gleichungen, Ges. Werke,
republished by Chelsea, 1969, pp. 221-236.

7. Yoshiomi Furuta, Norms of units of quadratic fields, J. Math.Soc. Japan, 11(1959),
139-145.

8. Helmut Hasse, Uber die Klassenzahl des Korpers P( v/ —2p) mit einer Primzahl
p # 2, J. Number Theory, 1 (1969), 231-234.

9. Pierre Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. reine
angew. Math., 283/284 (1976), 313-363.

10. Sigekatu Kuroda, Uber die Zerlegung rationaler Primzahlen in gewisesn nicht-
abelschen galoisschen Korpern, J. Math. Soc. Japan, 3 (1951), 148-156.

11. Emma Lehmer, On some special quartic reciprocity laws, Acta Arith., 21 (1972),
367-377.

12. Philip A. Leonard and Kenneth S. Wiiliams, The quadratic and quartic character
of certain quadratic units 1, Pacific J. Math., 71 (1977), 101-106.

13. , The quadratic character of certain quadratic units 11, Rocky Mountain
J. Math., 9 (1979), 683-692.

14. Charles J. Parry, On a conjecture of Brandler, J. Number Theory, 8 (1976), 492—
495.

CARLETON UNIVERSITY
OTTAWA, ONTARIO, CANADA

Research supported by the National Research Council of Canada under grant A-7233.



