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On the Imaginary Bicyclic Biquadratic
Fields With Class-Number 2

By D. A. Buell, H. C. Williams and K. S. Williams*

Abstract. Assuming that the list of imaginary quadratic number fields of class-number
4 is complete, a determination is made of all imaginary bicyclic biquadratic number
fields of class-number 2.

1. Introduction. Recently, Brown and Parry [2] have determined all imaginary
bicyclic biquadratic fields K with class-number H = 1, using results of Stark [11], [12]
and Montgomery and Weinberger [10] giving all imaginary quadratic fields with class-
numbers 1 and 2. Assuming that the list of imaginary quadratic fields with class-number
4 given by the first author [3], [4] is complete, we determine all imaginary bicyclic
biquadratic fields with class-number 2. Available evidence suggests that this list is in-
deed complete, for if there were an imaginary quadratic field with class-number 4 and
discriminant D with —D > 4 x 10°, then, by Dirichlet’s class-number formula, we
would have
Am_

0 <L(1,xp) < 3550

< 0.0065.

However, the observed minimum of L(1, xp) for 0 <—-D < 4 x 10% is 0.1988 (see
[4D)-

We let &k, k, and k be the three quadratic subfields of K, where we take k to be
the real field. We write & for the class-number of k and h; for the class-number of k;
(i = 1, 2). The fundamental unit of k is denoted by €. From the work of Herglotz
[6] we have

where 0 = 2 or 1 according as K = Q(\/:, \/—_2_) or not, and A, is defined by
Ny /k(E )= e}\o, where E denotes a fundamental unit of K. Herglotz [6] has noted
that Ay = 1 or 2, and Brown and Parry [2] have remarked that if the norm of € is —1,
then Ny = 2. f K = Q(+/—1,/=2),thenh, =h, =h =1,0=2,e=1++/2,
Ao = 2; and we have /# = 1. This field can thus be omitted from all future consid-
erations, and we take o = 1 from this point on.

The determination of those fields with H = 2 falls naturally into 4 cases:

I. hy =h, =1,
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. hy =1,h, =2,

Hl. h, =1,h, =4,

IV. hy =h, =2.
For H = 2 in case I, we must have h = 2, Ay = l,0or & = 4,7, = 2;in case ILhr=1,
Ao =1,0orh =2,y =25in case Ill, h = 1,X\o = 2; and in case IV, h = 1A, =2.

Stark [11] has shown that the only imaginary quadratic fields with class-number
1 are the nine fields

OG~=n):n=1,2,3,7,11,19,43,67,163.

In case [, direct verification, using tables of class-numbers of real quadratic fields, shows
that neither # = 2 nor & = 4 ever occurs; case I yields no fields K with H = 2.

2. Determination of A,. In this section we develop a criterion for determining
the value of A, in the case when N(e) = +1. Our first lemma, giving the roots of
unity in K, is well known.

LEMMA 1. Let m and n be positive squarefree integers with m > 1. Let € be
the fundamental unit of Q(\/_n; ).

(a) If\/—_l S Q(\/r_n_, ﬁ), then the only roots of unity in Q(\/E, \/_—7)
are £1, \/:_1, with the additional roots Y%(* V2t \/_——2-), if m = 2, and
K1 £4/=3), B3 t/1),if m = 3.

(b) If /=2 € Q(V/m,~/=n), then the only roots of unity in Q(\/m,~/—n)
are *1, with the additional roots i\/:—l, l/z(i\/—2— i\/:—Z), if m = 2, and
w(x1 £4/=3),if m = 6.

(©) If\/——_3 € Q(\/;z_, \/:;), then the only roots of unity in Q(\/;n—, \/_——n) are
£1, %(t1 £+/=3), with the additional roots /=1, %(x+/3 £+/=1),if m = 3.

(d) If none of \/——1-, \/_—_2, \/——3 belongs to Q(\/rz, H), then the only roots
of unity in Q(\/r;, \/_——n) are +1.

Our next lemma occurs in the work of Kuroda [9] and of Kubota [8].
LEMMA 2. Suppose N(e) = +1.

(a) If either /—1 or /=2 belongs to Q(/m,~/—n), then € is a fundamental
unit of Q(\/m,\/—n), equivalently N\, = 2, if and only if there do NOT exist rational
integers A and B such that

2e= (4 +BVm )?.
(This condition is equivalent to the condition that 2¢ = u?, for some algebraic integer
wof Q(Vm))
(6) If /=3 belongs to Q(\/m,N/~n), and Q(/m,N/=n) # Q(/3. V1),
then € is a fundamental unit of Q(\/;z_ , \/:;1-), equivalently N\, = 2, if and only if
there does NOT exist an integer |\ of Q(\/;z_ ) such that

3e = pu2.

(¢) If none of /=1, /=2, /=3 belongs to 0(\/m, \/—n), then € is a
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fundamental unit of Q(\/m,~/—n), equivalently N\, = 2, if and only if there does NOT
exist an integer | of Q(\/ﬁ ) such that

ne=p.

Lemma 2 provides us with a criterion for determining A,. We next develop an
effective method for applying it.
We define rational integers x and y by setting

%(x + yv/m), x=y (mod 2),if m =1 (mod 4),

x +yv/m, if m=2,3 (mod 4).

Further, in order to simplify the statements of the following lemmas, we shall use the
term “‘representable” to mean “‘representable as the square of an integer of Q(\/E ).

For the next two lemmas, see [1, Theorem 3.1].

LEMMA 3. Let r be a squarefree rational integer such that re is representable. Then

(@) if m=1or 2 (mod4), or m =3 (mod 4) and y even, we have r|m, and
me/r representable, and

(b) ifm = 3 (mod 4) and y odd, we have r even, r/2|m, and 4me/r representable.

LEMMA 4. Let r and s be squarefree rational integers such that re and se are
both representable. By Lemma 3, in case (a) we have r |m and s |m, and, in case (b)
rand s are even and r/2 |m and s/2 |m. Then in case (a) either r = s or rs = m, and
in case (b) either r = s or rs = 4m.

Lemmas 3 and 4 imply that if there are any squarefree integers r such that re is
representable, then there are exactly two such integers, both of which must be factors
of m or 2m. We now specify these factors.

Let the principal cycle of binary quadratic forms of discriminant d (d = m if
m =1 (mod 4), and d = 4m if m =2, 3 (mod 4)) be (ay, by, —a;) ~ =+ = =~
(xa;, b\i, Fa; )~ 0t~ (—@yp—q> byx—q>ay), where ay = a,, = 1. Halfway
through this cycle we find

(Fag—y, by—y» *ag) ~ (a, by, Fag_y),

with a; | by, bpy = by, @g_q = a4 ¢-

The form (xay, by, Fa, . ;) is ambiguous, and the second half of the cycle con-
tains the opposites of the forms of the first half in reverse order.

LEMMA 5. The two squarefree integers r, and r, such that r € and r,€ are
representable are, in case (a), a; and m/a; and, in case (b), a; and 4m/a, .

Proof. Defining recursively the integers o; of Q(\/r; ) by

b, +
_u0+vox/_ 0 \/—

ay

o =u; +v/m = a,_ <b+ > i=1),

2454
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we have the following well-known result [7]:

by +m\ [b, +m byry +Vm
€= %K1 T 2a, 2a, T 2a,, '
But,as b, =by_y_; @x; = Gx_p Ay = 1, the above product is
2 2 2
bo +m\ [by +/m bey TVM\ 1
€= 2 2a, 2ap4 a;’

Thus a,e is the square of an integer of Q(v/m). Since a; |by, a; |d, and thus g, is
squarefree.

The following useful lemma is a consequence of Lemma 3.

LEMMA 6. If n, and n, are distinct positive squarefree integers, and g = (n, n,)
> 1, then Ny = 2 for Q(\/—ny, /—1ny).

Proof. Let m = nyn,/g?, so that m is a squarefree integer > 1. The real qua-
dratic subfield of Q(\/:n_l, \/%) is Q(\/');{). As g > 1, we have n,4m and n, {m

so that by Lemma 3, n, e and n,e are not representable. Hence the fundamental unit
€ of Q(v/m) is not a fundamental unit of Q(v/—n,,+/—n, ), and we must have A, = 2

3. Consideration of Case II. In this case we consider those fields K for which
hy =1 and h, = 2. Montgomery and Weinberger [10] and Stark [12] have shown
that there are exactly 18 imaginary quadratic fields with class-number 2, namely,

Q(+/—n): n=5,6,10,13,15,22,35,37,51,58,91,115,123,187,235,267,403,427...

Thus, we have 9 x 18 = 162 fields to consider. In order to have H = 2 we must have
h=X,=1o0rh=2x,=2. Of these, nineteen have # = 1, of which four have Ao =1

G.1) 0W-1,v-6), Q(-1,/-22), OW-2,+/-6), QW-2,V/-22).

These fields have H = 2. The other 15 fields appear in the list given by Brown and
Parry [2] and have H = 1. It should be noted that for each of these N(e) = —1.
There were no fields with h = 1, N(e) = 1, Ay = 2, H = 1. Of the remaining 143
fields, eight have # > 2 and so can be excluded. Five of the remaining fields have
N(e) =—1,\, = 2, hence H = 2. They are

0(V~1,v/-10), 0&/-1,/-38), 0(~2,/-5),
0(V-2,v/~13), Q(-2,v/-37).

Finally, using the criterion given in Lemma 5 we determine whether A\, = 1 or 2 for
the remaining 130 fields. We find that there are exactly 85 with A = 2, so that
H=2:

(3.2)
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Q(W-1,v/-n), n=15,3591,115,403,
0(-2,v/-n), n=15,3591,115,235,403,427,
Q(W-3,V/~n), n
QW-7,v/-n), n=5,10,13,15,51,115,123,187,235,267,403,

(323) O(W-11,v/-n), n=6,13,51,58,91,123,403,427,
Q(-19,/-n), n=6,13,22,37,58,91,123,403,
Q(V-43,/-n), n=5,6,10,15,22,35,37,58,115,235,267,427,
Q(V-67,4/-n), n=5,6,10,13,15,22,35,123,235,403,
Q(V-163,\/-n), n=5,6,10,13,15,22,35,37,51,58,91, 115,187,

235,267,403.

5,10,22,35,58,115,187,235,

Case Il yields 94 fields with H = 2.

4. Consideration of Case III. In this case we consider those fields K with i,
=1,h, = 4. In order for H = 2 to hold we must have » = 1, A, = 2. The class-
number of Q(+/=n) is 4 for the 54 values of n shown in Table 1; it is conjectured
that this list is complete. We thus have 9 x 54 = 486 fields to consider.

We begin by considering the 54 fields K containing Q(\/——l ) as a subfield. Direct
examination of tables and genus considerations show that # > 2 (so that H > 2) except
in 13 cases. Of these, four have N(¢€) = —1, so that Ay =2, H = 2:

@.1) Q/-1,V=17), Q(~1,V=73), Q(W~-T,/-97), Q(/~1,V~193).

The condition that 2€ be representable is satisfied for » = 14 and 46, so A, =1,
H = 4. The discriminant of the real quadratic subfield in the remaining 7 cases is odd;
therefore, 2€ cannot be represented.

Thus, the seven fields

OW-1,v/=21), 0(-1,v/-33), O(-1,V-57), Q(/~1,4/-93),
O(~-1,v/-133), Q(W-1,v/=177), Q(/-1,V/-253),

all have H = 2.

Next we consider the fields K having Q(\/—_E ) as a subfield. Again, direct ex-
amination of tables and appeal to genus considerations show that # > 2 (so that H
> 2) except in six cases. Of these six fields, two have N(e) = —1, so that Aj = 2,
H = 2, namely the fields

(43) 0(=2,4/-3%), Q(/-2,v/-82).

Of the remaining four fields Q(v/—2,+—n) (n = 14,42,46,142) the condition that
2 be representable is satisfied for the three values n = 14,46,142. Thus, just the
field

(4.2)
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TABLE 1
Imaginary quadratic fields of discriminant
d with class-number 4
01
39 323 1027
55 355 1227
-d = pq 155 667 1243
203 723 1387
odd 219 763 1411
discriminants
259 955 1507
291 1003 1555
195 627
02
435 715
-d = par 483 795
555 1435
595
Eq 4,17 4,97
-d = 4p
4,73 4,193
E2 8.7 8.41
d =8 8.17 8.71
Even 8.23
discriminants E 4.21 4.93
3
4,33 4.133
-d = 4pq
4,57 4,177
4,85 4,253
E4 8.15 8.51
8.21 8.65
-d = 8pq 8.35 8.95
8.39
0(V-2,v/-42)
“44)
has H = 2.

Finally, it remains to consider the 7 x 54 = 378 fields K which do not possess either

O(/—1)or Q(v/—2) as a subfield. These are all of the form Q(v/—p, \/—n), where
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p is a prime = 3 (mod 4) (indeed p = 3,7,11,19,43,67,163) and 7 is one of the
integers listed in Table 1.
We begin by looking at those fields for which p4n. Genus considerations show

that in cases O, E,, E, (see Table 1) we have 2 |k, and in cases O,, Ej, E, we have
4 | h, so that certainly # # 1. In many cases this can also be directly verified from
tables. Thus, we need only consider those fields for which p |n. However, when p |n
we know from Lemma 6 that N, = 2, giving H = 2h. However, the only such fields
with 2 = 1 are given by:

p=3, n=21,33,39,42,57,93,177,219,291,483,627,723,1227,

p=7, n=14,21,42,133,203,259,483,763,
4.5)
p=11, n=33,55,253,627,1243,1507,
p=19, n=57,133,323,627,1387.
(There are none corresponding to p = 43,67,163.) Those listed in (4.5) all have H = 2.
Case III yields 46 fields with H = 2.

Il

5. Consideration of Case IV. In this case we consider those fields K
Q(-n,,\/-n,) with h; = h, = 2. There are 17 + 16 ++ + + +2 + 1 =153
cases to consider. For H = 2 to hold, we must have h = 1, ;) = 2. If (n;,n,) =1,
genus considerations show that 2 |A. If (n,, n,) = 2, genus considerations show that
2 |h except when n; = 2p,, n, = 2p,, p,, p, distinct primes with p, = p, (mod 4).
There are just 2 fields to be considered individually, namely, Q(\/:z, \/——22 ) and
Q(\/:ﬁ, \/—_58; ). The second of these is ruled out as # = 4. The first, on the other
hand, has 4 = 1, N(¢) = 1, and Lemma 6 shows that A\, = 2, so that H = 2 for

(5.1) 0(H—-6,/—22).
The only fields left to be considered are those for which (n,, n,) > 2. We need
only consider those 19 fields for which 4 = 1, namely,

10,15,35,115,235,

n; =35, ,

n, =10, n, =15,35,115,235,
n, =13, n, = 91,403,

n, =15, n, = 35,115,235,

n, =35, n, = 115,235,

n, =51, n, = 187,

n, =91, n, = 403,

n, =115, n, =235.

The first of these, Q(v/=5, v/—10), has N(¢) = —1,\, = 2, H = 2. The remaining
eighteen have N(e) = +1, and by Lemma 6, \, = 2, H = 2. Thus all 19 fields listed
in (5.2) have H = 2. Case IV yields 20 fields with H = 2.
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6. Main Theorem and Concluding Remarks.

THEOREM. If the list of imaginary quadratic fields with class-number 4 given in
Table 1 is complete, then there are exactly 160 imaginary bicyclic biquadratic fields
with class-number 2. These are listed in (3.1), (3.2), (3.3), (4.1), (4.2), (4.3), (4.4),
4.5),(5.1),(5.2).

The following tables were used in the proof of the Theorem:

(i) that of E. L. Ince [7] giving the class-number, the cycles of binary quadratic
forms, the fundamental unit € and its norm, and the representation of a suitable
multiple of € as the square of an integer of Q(\/r_n-), for fields Q(v/m) of radicand m,
2 <m <2025

(ii) that of M. N. and G. Gras [5] giving the class-number and the norm of e of
O(\/m) for radicands m, 2 < m < 10%;

(iii) that of H. C. Williams and J. Broere [13] giving (among other things) the
class-number of Q(\/r;) for radicands m, 2 <m < 1.5 x 10%;

(iv) an unpublished table of A. O. L. Atkin giving the class-number, the cycle of
forms, and the norm of e, for fields Q(\/C—l'_ ) of (odd and even) discriminant d, 4 <
d <4000,

(v) an unpublished table of A. O. L. Atkin giving the class-number and the norm
of ¢, for fields Q(v/d ) of odd discriminant d, 5 < d < 900000,

(vi) that of D. A. Buell [3] giving the class-numbers and class groups of the
imaginary quadratic fields Q(\/j ) of discriminant d, 0 < —d < 4000000.

Where necessary, further machine computations were carried out by the first and
second authors independently on different computers. No numerical results in this
paper are presented on the strength of a single source; needed information contained in
only one of the tables (this applied particularly in determining A) was verified by a
separate computation. The determination of A was made by expanding \/m as a con-
tinued fraction to find the integer n such that ne,, is representable in Q(\/E). We remark
that no discrepancies were found among the various tables.
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