Ontario Mathematics Gazette 15 (1976), 42-44.

PEDOE'S FORMULATION OF URQUHART'S THEOREM

Kenneth S. Williams, Department of Mathematics, Carleton University

Urguhart's theorem of Euclidean geometry states:

Let ℓ and ℓ ' be two straight lines which intersect at A. Let B and C be points on ℓ with C between A and B. Let D and E be points on ℓ ' with E between A and D. Suppose that BE and CD intersect at F. If AC + CF = AE + EF, then we have AB + BF = AD + DF.

In a recent article Pedoe [2] asserts that an equivalent version of Urguhart's theorem is the following:

If C and E are points on an ellipse with foci A and F, then B = AC \cap EF and D = AE \cap CF lie on a confocal ellipse.

Unfortunately, this is not quite correct as it stands. To make it correct, we must insert the requirement that C and E lie on opposite sides of AF. More precisely we have:

Let C and E be points on an ellipse ξ with foci A and F, and set B = AC \cap EF and D = AE \cap CF. If C and E lie on opposite sides of the major axis of ξ , then B and D lie on a confocal ellipse; whereas, if C and E lie on the same side of the major axis, then B and D lie on a confocal hyperbola.

To prove this, we choose our co-ordinate system so that ξ has the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, 0 < b < a. Writing e for the eccentricity of ξ , we have A = (-ae, 0), F = (ae, 0). Since C and E lie on ξ , we can suppose $C = (acos\theta,bsin\theta)$, $E = (acos\phi,bsin\phi)$. Setting $\alpha = \frac{1}{2}(\phi + \theta)$, $\beta = \frac{1}{2}(\phi - \theta)$, a straightforward calculation shows that

$$B = \left\{ ae \frac{\cos\alpha(\sin\alpha + e\sin\beta)}{\cos\beta(\sin\beta + e\sin\alpha)}, be \frac{(\sin^2\alpha - \sin^2\alpha)}{\cos\beta(\sin\beta + e\sin\alpha)} \right\}$$
 and

$$D = \left\{ ae \frac{\cos\alpha(-\sin\alpha + e\sin\beta)}{\cos\beta(\sin\beta - e\sin\alpha)}, -be \frac{(\sin^2\alpha - \sin^2\beta)}{\cos\beta(\sin\beta - e\sin\alpha)} \right\}.$$

It is easily verified (remembering that $b^2 = a^2(1 - e^2)$) that B and D lie on the conic

(1)
$$\frac{x^2}{L} + \frac{y^2}{M} = 1 ,$$

where

$$L = a^2 e^2 \frac{\cos^2 \alpha}{\cos^2 \beta}$$
, $M = a^2 e^2 \frac{(\cos^2 \alpha - \cos^2 \beta)}{\cos^2 \beta}$.

Since L = $a^2 + \lambda$, M = $b^2 + \lambda$, with

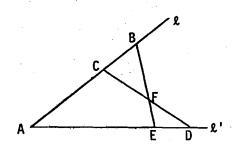
$$\lambda = a^2 \left[\frac{e^2 \cos^2 \alpha}{\cos^2 \beta} - 1 \right].$$

(1) is a conic confocal with ξ . Now, if C and E lie on opposite sides of AF, the chord joining them, viz.,

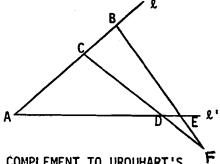
 $\frac{x}{a}\cos\alpha+\frac{y}{b}\sin\alpha=\cos\beta$, meets the x-axis between x=-a and x=a, so we have $-1\leq\frac{\cos\beta}{\cos\alpha}\leq 1$, that is $\cos^2\alpha-\cos^2\beta\geq 0$, i.e., $M\geq 0$ and (1) is an ellipse (possibly degenerate). On the other hand, if C and E lie on the same side of the major axis, then reasoning as above, we obtain $M\leq 0$, so that (1) is a hyperbola. This completes the proof.

The case when C and E lie on the same side of AF leads to the following complement to Urquhart's theorem (see for example [1]):

Let ℓ and ℓ' be two straight lines which intersect at A. Let B and C be points on, swith C between A and B. Let D and E be points on ℓ' with D between A and E. Suppose that BE and CD intersect at F. If AC + CF = AE + EF, then we have AB - BF = AD - DF.



URQUHART'S THEOREM: AC+CF = AE+EF => AB+BF = AD+DF



COMPLEMENT TO URQUHART'S THEOREM:

AC+CF = AE+EF => AB-BF = AD-df

References

- 1. H. Grossman, Urquhart's quadrilateral theorem, The Mathematics Teacher, 66 (1973), 643-644.
- 2. D. Pedoe, The most elementary theorem of Euclidean geometry, Mathematics Magazine 49 (1976), 40-42.