The eleventh power character of 2

By Philip A. Leonard at Tempe, Brian C. Mortimer at Edmonton,
and Kenneth S. Williams at Ottawa*

1. Introduction

Let e be an odd prime and let p be a prime=1(mode). If ¢=3, an integer x,
is uniquely determined by

1.1 dp=x7+27x3, x,=-—1(mod3),
and Jacobi [1] showed that 2 is a cube (modp) if and only if x, =0 (mod?2). If e=35,
an integer x, is uniquely determined by

16p=x7+50x% +50x3+125x3, x,=—1(mod5),
1.2) JO _
X5 — X3 +X1X4+4XZX3 =0 .

and Lehmer [2] showed that 2 is a fifth power (modp) if and only if x, =0 (mod?2).

If e=7, an integer x, is uniquely determined by (see [3])

2p=2x3+42(x3 +x3+x3) +343(x2 +3x2), x,=—1(mod7),

12x3 —12x3 + 147 x2 — 441 x2 + 56 X1 x¢ + 24 x,x3 — 24X, X,

(1 3) +48X3X4+98x5x6=0,

12x3 —12x3 +49x2 — 147x2 +28x x5+ 28x x5 + 48 X, X
+24x,x,+24x3x4 +490x5x6 =0,

provided (x;, x5, X3, X4, X5, X¢) * (62, +2u, F2u, +2u,0,0), where p=1>+Tu?, t=1(mod 7);
and Leonard and Williams [4] showed that 2 is a seventh power (modp) if and only if
x, =0 (mod?2). It is the purpose of this paper to treat the next case, namely e= 11. In this
case the system corresponding to (1. 1), (1. 2), (1. 3), again excluding two trivial solutions
as in the case e =7, determines not a unique integer but rather three integers x,,, x5, x;3.
The corresponding necessary and sufficient conditions for 2 to be an eleventh power
are expressed in terms of certain parity conditions on x,;, X;,, X3, independent of how
the three integers are labeled (see Theorem 2). Before proving Theorem 2 in § 4 we state
in § 2, without proof, the relevant facts regarding the appropriate diophantine system
(see Theorem 1), and in § 3 we prove two preliminary lemmas, the first of which is
essentially due to Pepin [6]. For the proof of Theorem 1 the reader is referred to [5].

*) The research of the third author was supported by a grant (no. A7233) from the National Research
Council of Canada.
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2. The diophantine system

The following theorem is contained in [5].

Theorem 1. Let p be a prime=1(mod11). Then there are exactly 32 integral
solutions (X, . . ., X10) satisfying x, = — 1 (mod 11), of the diophantine system

1200p = 12x2 + 33x2 + 55x2 + 110x2 + 330x2 + 660 - (x2 + x2 +x2 + x2 +x2,)

45x% 4+ 5x3+20x2 — 540x2 + 720x2 — 720 x%, — 288 x x5 + 30 x,x;
—120x,x, —72x,x5+200x3x4 —360x3x5 + 360x,x5 + 1440 x5 X
—1440xxg + 1440 x,xg — 1440 x7x9 + 1440 xgx9 — 1440 x5x 1 o
+2880x9x,0=0,

45x3 —35x3 —80x2 4+ 720x3 — 720x%, — 144 x,x, — 144 x x5+ 150 x,x;
—96x,x4 —216X,x5+160x3x4 + 120 x3x 5 + 240x4x5 + 2880 x6x
—1440x6x9+ 1440 x,xg — 1440 x7x 1o+ 1440xgx4 + 1440 xgX o
+1440x9x,0=0,

45x3 + 5x3 +20x2 — 540x% + 720x3 — 720x% ) — 96 x ;x5 — 48 x x4 — 144X, X 5
+126x,x3+108x,x4 —36Xx,x5+20x3x4 —60x3x5 + 600X x5
+1440x6x7 + 1440 x6xg — 1440 x6x,o + 1440 x7x5 + 1440 x 7%
+2880x5x9 + 1440 x9x,,=0,

27x% 4+ 35x3 —40x3 —360x2 + 720x3 — 720x%, — 72x,x, — 24X, X4
—48x x,—144x, x5+ 114x,x3+48x,x4 + 144 x, x5+ 320x3x,4
+1440x6x7+ 1440 x6x 9 + 1440 x6x o + 2880 x5 x5 + 1440 x5 X,

+ 1440 xgx9 + 1440 x9x,, =0,

X3+ 2x,+2x5=0 (mod11),

@.1)

X3 —X4+3x5=0(mod 11).

Of these 32 solutions, 2 trivial solutions are given by

2.2) (54,0,0,0,0, +b, ¥b, +b, b, +b),
where
2.3) 4p=a*+11b%, a=9 (mod11).
Amongst the remaining 30 non-trivial solutions we can find 3 ‘““generating” solutions
2.4 (X1is--->X108) (i=1,2,3)
such that all 30 solutions are given by _
[ 1 0 0 0 0 00 o0o0 o]}
o —-14 -14 -1/4 —-14 0 0 0 0 O
0 —-512 =512 712 —-1/12 0 0 O O O
0 53 -—1/3 16 —-1/6 0 0 0 0 O
2.5 (xy5--5x001 O O 2 192 —-12 0 0 0 0 O
0 0 0 0 0 01t 00 O
0 0 0 0 0 00 01 0
0 0 0 0 0 00 00 -1
0 o0 0 0 0 00 -10 O
| 0 0 0 0 0O -1 0 0 0 0|
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fori=1,2,3 and k=0, 1, 2,...,9. Thus (2. 1) determines three integers x,,, x5, X;3
if the two trivial solutions (2. 2) are excluded.

We next indicate how the 32 solutions of (2. 1) arise. For full details the reader
should consult [5]. Let { =exp(2ni/11), and let Q({) denote the cyclotomic field formed
by adjoining { to the rational field Q. Fori=1, 2, .. ., 10 we let 5, denote the automorphism
of Q({) defined by ¢,({) ={'. For any element 1€ Q({) we set 4, =0;(4) (i=1, 2,..., 10),
so that in particular A, =A. If #n is any prime factor of p in Z[{]—the ring of integers

of Q({)—we define the eleventh power character <?> modulo =, for any A e Z[{], by

11
1

(2. 6) <'1> {C', if A£0(mod=n) and Agl:rEC’(modn), 15r<10,
. 11—

£l 0, if A=0(modn).

Thus for any rational integer x we have

k
Q.7 <i> =<1> . k=1,2,...,10.
T /11 T /11

In terms of this character we define the Jacobi sum of order 11, for any pair of integers m, n by

@8 T =% (—f) (1 ‘x)" € 2D
x=0\7 /11 T J1
If none of m, n, m + n is divisible by 11 it has the properties
2. 9) Jo(m, m)= —1 (mod (1 - {)?),
@ 10)  Jo(m, n)=Jy(n, m)=J(—m—n, n)=J,(—~m—n, m),
(2. 11) Jo(m, n) J(m,n)=p .

We next define integers a;, b;, ¢; (i=1,..., 10), which we will need in the proof
of Theorem 2, in terms of certain Jacobi sums. The integers aq;, b; (i=1, 2,...,10)
are defined by

@ 12) w=1, (1 D)= al',
i=1
10

@ 13) p=4(1,9= % bL'.

Now it is known that
A= EM M3MyMMg, P=NM T, MyMsTsg ,
where ¢, i are units in Z[{]. Thus we have
A7 =&7MeMyTNgNgT 10 »
®1o=E10M2M5M7 Mg 10 »
Br =11 M3 6T g
and so

%1087 -
7=T=87 L& oM My msms T, € Z[(]
7
28+
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as &7 '&,9n, is a unit of Z[{]. Thus we can define the integers c; (i=1, 2,..., 10) by

o 10 )
@. 14) =11 _ s
i=1

oy

The 30 non-trivial solutions of (2.1) are obtained from ay,...,%9, Bis---5Bios

10
Y1s- > V10, as follows: if 3 k;{'is one of these then (x,. .., x,,) given by
i=1
x1=k1+k2+k3+k4+k5+k6+k7+k3+k9+k10,
x2=k1+k2+k3+k4—~4k5—4k6+k7+k8+k9+k10,
X3=k1+k2+k3—'3k4“'3k7+k8+k9+k10,
X4=k1+k2—2k3—2k4+k9+k10,
xs=ki—k,—kotkio,

(2 16) xe=ki—kyo,
x,=k,—kg,
xg=k3—kg,
Xo=ks—k;,
x1o=ks—ke, _
is a non-trivial solution of (2. 1) with x, = —1 (mod 11). The three integers x,, X2, X3

are given b
g y Xpp=a,+---+d,

.17 Xi2=by+---+b,
x13=cl+' . +C10.
Next we indicate where the two trivial solutions come from. We have

%z = &M My MMy g, &3 =E3M N3M5T7Tg
so that

. 18) PILIY

oc =£2_1831111t11z31t4n51t9 eZ[(],
2

as &5 ‘g3, is a unit of Z[{]. Moreover as { is invariant under the mapping o it must be
an integer of Q()/—11) (=Q()). From (2.9), (2. 11) and (2. 18) we have 85 =p,
= —1 (mod (1 —{)?), so that

1
61=53=54=55=59 =7(a+b|/ '—11),

1
52=56=67=58=510=7(0_bl/ '—11),

where 4p=a®+11b%, a=9 (mod11). Using 6, and &, in (2. 16) gives the two trivial
solutions of (2. 1) noting that

2. 19)

1 1
2.20) 6=F(b-aC+P+I+E+O) -5 b+ C++T+E+1).
Finally we note one further relationship we will need. If g is a primitive root (mod p)

such that (5_) ={ then
T /11

(2. 21) 11ai=¢11(4gi)—-—¢“(4), i=1,2,...,10,
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where @, (m) is the Jacobsthal sum of order 11 defined by

2. 22) o m=3 (M) :
x=0 p

where <;> denotes Legendre’s symbol.

3. Two preliminary lemmas
We prove
Lemma 1. Let p be a prime =1 (mod 11).
(a) 2 is an eleventh power (mod p) if and only if
a,=a,=---=ao=1(mod2).
(b) 2 is not an eleventh power (mod p) if and only if

Q= EQG A =Q = EalOEO(mOdz),
a, =1 (mod?2),

for some k with1 £k <10.

Proof. Let m be an integer % 0 (mod p) and set

11
P =Number of x(1 £x <p— 1) such that (—x—(i—;i—ni)—>= +1,

11
N = Number of x(1 £x <p— 1) such that (___x(x p+ m)) _1,

11
Z = Number of x(1 £x <p— 1) such that (&piTl): 0,
so that
P+N+Z=p—-1.
p—1 11
Now &, ,(m)= Y <&p—t@—> = P — N, so that eleminating p we obtain
x=1
&, (im=p—1—-2N—-2Z=2Z(mod2).
But
_ {11, if m is an eleventh power (mod p) ,
] 0, otherwise ,
so modulo 2
1, if m is an eleventh power (modp) ,
| (0] =
G-1) 1 (m) {0, otherwise .

(a) If g is a primitive root (mod p) such that (%) ={ then
11

217
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2 is an eleventh power (mod p)

. {4 is an eleventh power (mod p) and
i

4g* is not an eleventh power (mod p), k=1,2,...,10,
iff &, (4)=1(mod2), J,,(4g")=0(mod2), k=1,2,...,10 (by (3.1)),
iff @, =1 (mod 2), k=1,2,...,10 (by (2. 21)).

(b) Again for g a primitive root (mod p) such that <ii—> = { we have

11
2 is not an eleventh power (mod p)
; 4g* is an eleventh power (mod p) for some k, 1 <k <10,
4g' is not an eleventh power (mod p) for i=0,...,10, i+k,
®,,(4g)=0(mod2), i+k,
. _J0(mod2), ik .
lff l——{1 (m0d2), i=k’ 1—1,2,. .oy 10.

Lemma 2. Let p be a prime=1 (mod 11). Then 2 is an eleventh power (modp) if and
only if x,, =0 (mod 2).

Proof. From (2. 17) and (2. 21) we have, as
10
Y 0,,(4g)=—11, x;;=—(1+9,,(4)
i=0

so that from (3. 1) we have

2 is an eleventh power (mod p)

iff 4 is an eleventh power (mod p)

iff ,,(4)=1(mod?2)

iff x,; =0 (mod 2).

4. Proof of Theorem 2

We suppose that 3 solutions of (2. 1) are known, which generate the 30 non-trivial
solutions by means of (2.5). Thus we know x;;, x;;, X;3 in some unknown order.
We write u, v, w for x,,, x,,, X3 in some order, and prove, with a, b, given by (2. 3),

Theorem 2. Let p be a prime =1 (mod 11).

(@) If a=b=0 (mod2) then 2 is an eleventh power (modp) if and only if
u=v=w=0(mod?2).

®) If a=b=1 (mod2) then 2 is an eleventh power (modp) if and only if exactly
one of u, v, w is even, say, u=0 (mod2), v=w=1 (mod2), u,=---=u,;,=0 (mod2),
where (uy, . .., uyo) is any solution of (2. 1) with u, = u.
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Proof. (a) If 2 is an eleventh power (mod p) then by Lemma 1 we have

(4. 1) alEazE"'EaloEl(modz)
so that
(42) X11=a1+"‘+a1050(m0d2).

Also from (4. 1) and (2. 12) we have
o =1 (mod?2) k=1,2,...,10)
and so by (2. 18)
o=f, (mod2),
giving modulo 2

1 1
blEb3Eb4EbsEb9§7(b_a), szb6Eb7Engb1057(b+a).

Hence we obtain

4.3 Xy2=b;+---+b;y=5b=0(mod2).
Also from (4. 1) and (2. 14) we have

y=$, (mod2)
giving modulo 2
ci1=bg,c,=bs,c3=b,, c4=byy, cs=bq, ce=by, c7=by, cg=bg, cog=bg, c1o=b; .

Hence we have

4.9 Xi3=¢C;+---+c;o=b;+---+bp,=0(mod?2).
Thus from (4. 2), (4. 3), (4. 4) we have

u=v=w=0(mod2).

Conversely if u=v=w=0 (mod2) then x,; =0 (mod2) and Lemma 2 shows that 2
is an eleventh power (mod p).

(b) If 2 is an eleventh power (mod p) then by Lemma 1 we have

4.5 a,=a,=-+-=a,0=1(mod?2).
and so
4.6) X =X = =X,0,=0(mod2)
for any solution (x,,,..., X;o,) arising from one of «,,...,a;,. Also from (4. 5) and

(2. 12) we have
o, =1 (mod?2) k=1,2,...,10)
and so from (2. 18) we obtain
4.7 d=p,(mod2),
giving modulo 2
b15b35b4sb55b9£—;—(b——a), b25b65b75b85b105—;—(b+a).
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Hence we obtain
(48) X12=b1+"'+b1055b51(m0d2).

Also from (4. 7) and (2. 14) we have
y=$; (mod2),
and so modulo 2 we have
ci=bg,c,=bs,c3=b,,c4=bg, cs=bq, cs=by, c7=by, cg=bg, cg=bg, c1o=b3,
giving
(4.9 Xy3=c¢;+---+co=by+---+bo=1(mod2).
Thus from (4. 6), (4. 8), (4. 9) we see that exactly one of u, v, w is even, say =0 (mod 2),

v=w=1(mod2), and that u,=---=u,,=0 (mod2) for any solution (u,,...,u;,)
of (2. 1) withu; =u.

We will prove the converse by showing that if 2 is not an eleventh power (modp)
then exactly one of u, v, w is even, say u=0 (mod2), v=w=1 (mod?2), but for any
solution (u,, . . ., u;o) of (2. 1) with u, = u there is some (2 <i < 10) with ;=1 (mod 2).

As 2 is not an eleventh power (mod p) by Lemma 1 we have for some k(1 £k <10)

@4.10)a,=-- =aq,_ =@y, =---=a,0=0(mod2), ag=1(mod2),
and so
4. 11) Xy1=a;+:--+ao=1(mod?2).

We will just treat the case k = 1; the other possibilities can be treated in the same way with
only minor differences. Thus from (4. 10) (with k =1) and (2. 12) we have

4. 12) u={(mod2) (I=1,2,...,10)

and so from (2. 18) we obtain

0={(p (mod2)
giving modulo 2
bi=bs=bg=b,=by=1,
b,=b3=b,=bg=0,
@. 13) 2 "1 ’
bmz—z-—(b—a).
Hence we have
1
(4. 14) x12=b1+"'+b10‘37(b+a)(m0d2).

Also from (4. 12) and (2. 14) we have
y={3, (mod?2),
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and so modulo 2

¢1=bg—by=0,
c;=by—by=1,
3= —by=1,
ca=bg—by=1,
cs=bs—by=0,
4. 15) ce=b,—bo=1,

1
C7Eb10‘b95—2~(b—"a)+1 Y

cg=b;—by=0,
co=by—by=1,
cio=by —by=0,
giving
1
(4. 16) x13EC1+"'+CIOE"2—(b—a),
and so from (4. 14) and (4. 16) we obtain
4.17) Xi2+x3=b=1(mod2).

Thus from (4. 11), (4. 17) x,, is odd and exactly one of x,,, x5 is even. If x,, =0 (mod 2),
the solution corresponding to f3, say (x5, X33, .., X1012), has from (4. 13) and (2. 16)

X9, =by—b;=1(mod2),
and so by (2. 5) any solution arising from some f; will have at least one odd coordinate.

Onthe other hand if x, ; =0 (mod 2), the solution correspondingto y, say (x 3, X33, . . -» X103)
has from (4. 15) and (2. 16)

Xg3=c3—cg=1(mod2),
and so by (2. 5) any solution arising from some y; will have at least one odd coordinate.

This completes the proof of Theorem 2.

5. Examples
(i) p=23.As4-23=9%+11-1? we have a=b = 1 (mod 2). Three generating solutions

of (2. 1) are

21,1, -3,0, —4,2,2,0, —1,4),

(—12,3, 1,8, -2,2, -2,1,4,1),

(_17 24, —'49 2, 0, '—1s _13 29 —23 1) s
so that we can take

u=-12, v=21, w=-1.

Thus by Theorem 2 as not all the coordinates in the second solution are even 2 is not
an eleventh power (mod 23).
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(i) p=331. As 4-331=35+11-32 we have a=b=1 (mod2). Three generating
solutions of (2. 1) are
(32, —48,0, —12,12, 6, 2, 14, —6, —10),
(—67,18, —14, 40,0, 11, -3, -9, 1, -3),
(109, -6, 2, —16,4, 5, 3,11, —3, —13),

so that we can take
u=32, v=-67, w=109.

Thus by Theorem 2 as all the coordinates in the first solution are even, 2 is an eleventh
power (mod 331). Indeed it is easy to check that

2=62!! (mod331).

(iil) p=397. As 4-397=2%+11-12% we have a=b=0 (mod2). Three generating
solutions of (2. 1) are

(—45,15, -9,3,29, -2, —13, —-2,2, —-8),
(43,43, —5,25, —17, -2, —1,18,4,0),
(—67,13, 37,10, —12, —6, —10, 17,2, 0),

so that we can take u = —45, v =43, w= —67. Thus, by Theorem 2, asu=v=w=1 (mod?2),
2 is not an eleventh power (mod 397).

Unfortunately no example of the situation a=b=0 (mod2), 2 an eleventh power
(mod p), occurs for p < 1000, the primes for which the authors know the solutions of (2. 1).
These solutions were computed by the second author using the University of Alberta’s
computer.
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