Delta 6 (1976), 23-28.
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1. Introduction

Let k be an integer greater than 2 and 1let p be a
prime, p = 1 (mod k). Euler's criterion asserts that the con-
gruence xk = D (mod p) is solvable if and only if
D(p_l)/k = 1 (mod p). In this case D is called a k-th power
residue (mod p). If D is a k-th power nonresidue (mod p),

then p(P™1)/k #Z 1 (mod p) but, since (D(p_l)/k)k = Pt

1 (mod p) by Fermat's theorem, we must have D(p_l)/k = (mod p),

where is some k-th root of unity, o #Z 1 (mod p). For

x
k =2 we clearly have Q. = -1 and there is nothing more to be
said, but when k > 2 there is the question of deciding which
k-th root of unity @, corresponds to a given D. We shall look
at the case k = 3. (For results in this direction see [3], [4],
[51.)

From now on let p be a prime, p = 1 (mod 3). Gauss showed

that there are integers L and M such that

(1.1) 4p = L° + 27M, L =1 (mod 3).

Indeed L and M are unique. Equation (1.1) implies that

L + 9M
L -~ 9M

L - OM
L +9M

(L + 9M)3 = (L - 9M)3 (mod p), so that and are

the two cube roots of unity, neither congruent to 1 (mod p). Thus
if D is a cubic nonresidue (mod p) by Euler's criterion, we
have
(p-1)/3 _ L + 9M (p-1)/3 _ L - 9M
D SL -9y o D =L roM (mod p).
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The guestion arises—~—how should the sign of M be chosen so

that the first of these possibilities holds? 1In this article

we show how this guestion can be answered for any particular D,
using Eisenstein's law of cubic reciprocity. Without loss of
generality we may restrict D to be a (positive) prime. Three
cases arise according as D =1 (mod 3), D= 2 (mod 3) or D = 3.
We illustrate each of these cases by giving the details for

D=2,3 and 7.

2. Eisenstein's Law of Cubic Reciprocity

We denote the domain of rational integers by Z and let
z[¢] denote the integral domain {x + y&: x,y € 2}, where { 1is
the complex cube root of unity (-1 + /-3)/2. The elements of
z{¢] are called Eisenstein integers and were used by Eisenstein
in his work on cubic reciprocity. For details of the arithmetic
of the Eisenstein integers we refer the reader to the delightful
book [1] by Ireland and Rosen, whose notation we follow. If
a € z[t], we write N(a) = aa ( € ) for its norm, where a is
the complex conjugate of a. There are exactly six units (elements
of norm 1) in 2[¢]), namely +1, +¢, ng. TwO non-zero
Eisenstein integers a, B are said to be associates, written
a ~ B, if their quotient %- is a unit. 2z[¢] is a Euclidean
domain, so each non-zero, non-unit element is expressible in an
essentially unigue manner as a product of primes. The primes of
7z[{] consist of positive rational primes g = 2 (mod 3) and their
associates, complex primes of the form a + bf having norm a
rational prime congruent to 1 (mod 3), and 1 - ¢ and its asso-
ciates. We remark that the norm of 1 - ¢ is 3; indeed,
3 =-t2(1 - )2,

If 7w is a prime in 2[{] and not an associate of the prime

1 - ¢ (written w #1 - £), then N(n) = 1 (mod 3) and the cubic
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residue character modulo m of a & zZ[f] is defined by

0, if a = 0 (mod 7),

s =1 ¢ (N(m)-1)/3 _

t*, if o £ 0 (mod 7) and a ol

(mod ),

£
r =0, 1, 2.

This character enjoys the following properties: if a,B8 & 2z[¢],

then
ay - o2y o Zy . oqaBy oy By .
(W)3 - (ﬂ.)3 - (7'?)31 (W)3 - (W) (W)3’
4 - B i a = mod
(3= () if a=5 (mod ).

Also we have

- (S
(T)3 =1, (T!')3 -

P (N(m)-1)/3,

A prime 7 of 2[{] is called primary if it satisfies
m =2 (mod 3). If 7 1is a prime #1 - £, then among its six
assoclates exactly one is primary. Clearly 1 - ¢ and its
associates are not primary. In 1844 Eisenstein [3] proved the

following.

LAW OF CUBIC RECIPROCITY: If 7 and X are primary primes

of 2[f], then
Ay (I
(77')3 - ()\_)3‘
Two proofs of this are given by Ireland and Rosen [1]. 1In

the same year Eisenstein also proved this sequel.

SUPPLEMENT TO THE LAW OF CUBIC RECIPROCITY: Let 7 be a

primary prime of 2[¢(]). If w =g is rational, let g = 3m - 1.

If 7 =a + bl is a primary complex prime, let a = 3m - 1.

We shall also need some results of Jacobi [2] which can easily
be deduced from the above results of Eisenstein. (Part (a) below

is treated in [1] (p. 120).)
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THEOREM (Jacobi):

(a) 2 4is a cubic residue (mod p) if and only if

M= 0 (mod 2).

(b) 3 4is a cubic residue (mod p) if and only if
M =0 (mod 3).

(¢) 7 is a cubic residue (mod p) if and only if
L=0 (mod 7) or M= 0 (mod 7).
3 D=2

If 2 is not a cubic residue (mod p), then by Jacobi’s

il

theorem [2] we have L = M =1 (mod 2). Thus we can choose the

sign of M uniquely so that L = M (mod }). Now set
1
(3.1) 7 = (L + 3M) + 3ML,
so that 7 1is a primary prime factor of p in 2[{]. The choice

of M ensures that 7 = £ (mod 2). Then by Eisenstein’s law of

cubic reciprocity we have, as 2 remains prime in z[¢],

I
so that
(p-1)/3 '%(L t3M) L yom
(3.2) 2 =t = T = T 3w (mod m).

As both sides of (3.2) are rational, we have

THEQOREM 1 (Lehmer [3]): If 2 is not a cubic residue
(mod p) and (L,M) 4is the unigue solution of (1.1) satisfying
L =M (mod 4), then

o(P-1)/3 _ i—f%ﬁ (mod p).

hoop=3

If 3 is not a cubic residue (mod p), then by Jacobi’s
theorem we have M Z O (mod 3). We can choose the sign of M
uniquely so that M = -1 (mod 3). With this choice of M we
define 7 as in (3.1). Then by Eisenstein’s supplement to the
law of cubic reciprocity we have
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3y o peM _
(W)B_C _C:
so that
1
“o(L +3M) Ly oom

(4.1) 3(P_l)/3 =t = B = I —%nm (mod 7).

As both sides of (4.1) are rational, we have
THEOREM 2 (Williams [4]): If 3 1is not a cubic residue
(mod p) and (L,M) 4is the unigue solution of (1.1) satisfying
= -1 (mod 3), then

00/3 - L G ).

5. D=7
If 7 is not a cubic residue (mod p), then by Jacobi’s

theorem we have L Z 0 (mod 7) and M Z 0 (mod 7). Define k

(k # 0 (mod 7)) by k = ﬁ-(mod 7), so that from (1.1) we have

k° 4+ 27 = —8 Z 0 (mod 7). That is, k #Z + 1 (mod 7), which gives
M

L=+2M or L=+ 3M (mod 7). Thus we can choose the sign of
M uniquely so that L = 2M (mod 7) or L = 4M (mod 7). With
this choice define 7 as in (3.1). Since 7 factors as

7 = (-1 - 3¢)(2 + 3¢) in 2z[t], by the law of cubic reciprocity

we have

Ty _ =1 - 3¢&y 2 + 3¢C _ i is
(ﬂ)3 - ( T )3( T )3 - (—l - 3&)3(2 + 3@)3‘
If L = 2M (mod 7) (we omit similar details for L = 4M (mod 7)),

we have

1}

EM + 3IME. ,EM + 3IME
(T 303G T30 = Co 53 a 530 )3
_ M 6 + 3¢ M 6 + 3¢
- (T-3r)s =) Er e aa3e)s

—w -, s 4
= (T35 T35 (TS5 e

il

(+ 1) (7250557375
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Now as

(T?T)B = 5(7—1)/3 =52 =22 = r2 (mod -1 - 3r)
and
55 = #7103 2 42 = 2 (moa 2 + 30),
we have (%)3 = t°-r? = ¢, and the rest of the proof is as before.
we have:

THEOREM 3 (Williams [4]): If 7 is not a cubic residue

(mod p) and (L,M) is the unigue solution of (1.1) satisfying

either L =2M or L = 4M (mod 7), then

of (1.1). As -26/4

LRSS )

EXAMPLE: If p = 277, then (-26, +4) are the two solutions

4 (mod 7), the unique solution specified in

Theorem 3 is (-26, 4) and we have

92 _ =26 + 9(h4) _ 10 _
7 = :58_:_%{ﬂ%-: 56 = 116 (mod 277),

which can be verified directly.

2.

4.
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