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ON EULER’S CRITERION FOR QUINTIC
NONRESIDUES

KENNETH S. WILLIAMS

Let p be a prime=1(mod5). If 2is a quintic nonresidue
(mod p) then 2715 = o (mod p) for some fifth root of unity
as (% 1) (mod p). Emma Lehmer has given an explicit expres-
sion for a; in terms of a particular solution of a certain
quadratic partition of p. In this paper we show how in
principle the corresponding result can be obtained for any
quintic nonresidue D (mod p). Full details are given for
D=2,3,5.

1. Introduction. Let k& be an integer =2 and let » be a
prime = 1 (modk). Euler’s criterion states that D® v =1 (mod p) if
and only if D is a kth power residue (mod p). Thus if D is not a
kth power residue (mod p), for some kth root of unity «, (% 1) moduo p
we have D”V* = a, (mod p). Clearly a, = —1. For k> 2 Emma
Lehmer [3] has proposed the problem of specifying which «, corre-
sponds to a given D. For D = 2,k = 8, 4, 5, 8, she has given explicit
expressions for «, in terms of certain quadratic partitions of p.
Elsewhere the author [6] has given a complete treatment of the
case k = 3. In this paper we treat the case k = 5. Full details are
given for D =2, 8, 5. The method used is described in §4 and can
be applied to any value of D if the reader has the patience to
supply the many details.

2. Two lemmas involving the domain Z[{]. We set { =
exp (27i/5). If Q denotes the field of rational numbers, the cyclotomic
field formed by adjoining { to @ is denoted by Q({). The domain of
integers of Q({) is denoted by Z[{]. Every element of Z[{] can be
written in the form a. + a,C® + a,0® + a,l*, where a,, a,, a;, a, are
rational integers. The domain Z[{] is a unique factorization domain.
The element 1 — ¢ is a prime in Z[{] which divides 5. The units of
Z[{] are given by =+={'({ + &), where 4 and j are integers with
0<:1<4. If a and B are associated nonzero elements, that is a/8
is a unit, we write &« ~ 8. The complex conjugate of an element
a e Z[{] will be denoted by @(e Z[(]). We will need the following
two results.

LEMMA 1. If ae Z[{] is such that a = 0(modl —{) then «
possesses an associate &' such that o' = —1 (mod (1 — ).

Proof. Seta=al+a*+al+alb=0a +a,+a;+a,c=
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a, + 2a, + 3a; + 4a,. As a #0(modl — ) we have b = 0(mod 5).
We define d uniquely by 2% = —1(mod5), 0 <d <3. Then we have
only to choose a’ = {2+ ), as {4+ ¢ = 2(mod (1 — 3)’) and
¢ = b (mod (1 — &)).

LemMA 2. If a, B Z[(] are such that
(a) ax=pB
(b) a, B # O(mOdl - C)y
(¢) a=pg(mod( —J)),
(d) a~3,
then

a=p0.

Proof. By (d) we have a = +{({ + {*)’B, for integers 7 and j
with 0<¢<4. Thus using (a) we obtain aa&= ({+ {)*RB =
€ + ¢YYaa. Now (b) guarantees that « = 0, so that a& = 0, and
we must have ((+ )% =1. As {+C=3(15-1)>0 we have
7j=0 and so a=*+B,0=<:¢<4. From (b) and (¢) we have
(£ = 1B =0(mod (1 —&)°), B#0(mod1 — L), so that

+8—1=0(mod (L — 0.

As 9=0,1,2 8, 4 this can only hold with the positive sign and
© =0, so that a = B.

3. Dickson’s diophantine system. Throughout the rest of this
paper p denotes a prime =1(mod5). Our results involve the
diophantine system

16p = a® + 50u® + 500* + 125w, x = 1(mod5),

3.1)
xw = v: — duv — ut.

A theorem of Dickson [1] asserts that (3.1) has exactly four solutions.
If (x, u, v, w) is one of these, the other three are given by (x, —u,
—v, w), (x, v, —u, —w), (x, —v, u, —w). Taking the first equation
in (3.1) modulo 8 and the second one modulo 4 we can show (after
a little calculation) that = + 2u — w = + 20 + w = 0(mod 4) for
any solution of (3.1). This enables us to make the following defi-
nition.

DEFINITION 1. For any solution (x, u, v, w) of {(3.1) we define
¥ = P&, w, v, w) € Z[{] by
(3.2 ¥ =cl+ el + el + el

where ¢, = ¢z, u, v, w)e Z(1 £ 1 < 4) are given by
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4e, = —x + 2u + 4v + 5w,
4¢, = —x + 4u — 2v — bw,
dc; = —ox —4u + 2v — 5w,
de, = —x — 2u — 4v + bw .

(3.3)

The properties of + that we shall need are given in the next
lemma.

LEMMA 3. (a) 4 = p.
(b) = —1(mod (1 — &)?.
(¢) If 0,1 <1< 4) is the automorphism of Q)
defined by o,8) = ¢ then G.C.D. (¥, ¥s) 18 a prime of Z[(], where
¥ =0, (V)1 =S¢ < 4).

Proof. (a) As L+ =1/2(—1+VF), 2+ =1/2(—1—V5),

we have from (8.2)
= {(cf + ¢+ ¢ + i) — Té—(clcz Tt €oCs + €56 + €10
+ e¢, + ce) + __L25 (cie; + coes + cse — iy

— GCy — 0204)}
= L@ + 500" + 500 + 125w?) — 5V5
16 8
X @ —4duv —u —aw)=p.
(b) From (3.1) and (3.8) we have
e,t+e+e+e,=—x=—1¢ + 2¢ + 3¢; + 4¢, = 0(mod 5) ,

so that ¢ = —1 (mod (1 — &)?).

(¢) Let = be a prime dividing p. As p = 1(mod5) we have
D = W,T,7sw,, Where @, = 0,(7), 1 <1< 4. By (a) ¥ is (up to multi-
plication by a unit) one of =x, =7, w7, m,wr,. In each case G.C.D.
(¥4, ¥) is a prime.

Lemma 1 and Lemma 3(c) enable us to define a prime %  of
Z[C] as follows.

DEFINITION 2. For any solution (x, u, v, w) of (3.1) we let
= (%, w, v, w) € Z[C] be such that

9~ G.C.D. (o, o) , F = —1(mod (1l — Q).
We remark that .2 is not unique, indeed all such .2#" are given by
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(=1 + &2 (re Z). However this does not matter for our pur-
poses. Next we give the prime decomposition of + using Lemma 2.

LEMMA 4. = — 975, .

Proof. As 27~ G.C.D. (v, ¥,) we have 27|+, say, ¥, = %\,
Hence +, = .2Z7\, and as 97|+, we must have 927|\,, that is 2#|\,,
say N = 53¢, Then «, = Z#7.0%;t and so we have

TG T, =P = "#1"—/7\1 = (%%ﬂ)(%%zﬁ)
= 1.9 000
Hence we have pff =1, so that g is a unit of Z[{], proving that
A~ 7%, Clearly « and — 2¢7.57; satisfy the conditions of Lemma 2
so that = — %077,
Finally in this section we set for any solution (z, u, v, w) of (3.1):

a(x? u! vy w)
(3.4) _ w(125w® — &) + 2(xw 4 5uv)(25w — @ + 20u — 10v)
w(125w* — x?) + 2(xw + buv)(25bw — x — 20u + 10v)

and prove

LEMMA 5. «af(x, w, v, w) = { (mod 2¢).

Proof. From (8.2) and +, = +, = 0 (mod 5¢") we obtain modulo
7

5¢, = (€ — Dyrs + (€ — Dy,
5¢, = (L' — Dyrs + (& — Dy,
5¢; = (L — Dys + (& — Dy,
5¢, = (' — Dy + (& — Dy, .

Appealing to (3.3) we get

T =yt Py, 25u = oy + By s
25V = By — @, ,  2DW = — Yy F Vo,

where

a=-20+0C-0+20,
B=C+20—-20 -,
T=0-C-0+ .

It is easy to check that

aB=a*— =57, 7"*=5.
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After some calculation we find that

25{w(125w* — x?) + 2(xw + 5uv)(25w — x + 20w — 10v)}
= 4V P (2 + 209 + 289)

and

25{w(125w* — %) + 2(xw + 5uv)(@bw — x — 20u + 10v)}
= 4792 + 2895 + 20

from which the result follows immediately.

4, Outline of method. We start with the necessary and
sufficient condition for D (without loss of generality we may take D
to be a (positive) prime) to be a quintic residue (mod p) in terms of
congruences (mod D) involving a solution of (38.1). These have been
given for D=2, 3,5, 7in [4] and for D=11, 13, 17, 19 in [9]. Results
for other values of D could be obtained using the period equation as
in [9]. If D is a quintic nonresidue (mod p) this condition is used
to specify a unique solution of (8.1) by means of congruences (mod D).
This unique solution is specified in such a way that after using
Lemma 4 we find that the corresponding .2~ satisfies (%7/D); = C.
If D+ 5 we can then appeal to Eisenstein’s reciprocity law

“If o« = —1(mod (1 — £)*) and a is a rational integer prime to 5
then (a/a); = (a/a);”
to obtain (D/2¢7), =, so that D" "" = a(x, u, v, w) (mod .2%") by
Lemma 5. As both D" and a(x, u, v, w) are rational we have
DPV = q(x, w, v, w) (mod p) as required. If D = 5 we must replace
the use of Eisenstein’s reciprocity law by Kummer’s supplement to
the law of quintic reciprocity involving the prime 1 — ¢ [7]. Un-
fortunately, this requires working modulo 25 rather than modulo 5
and so involves a large number of cases. We thus give an alternative
approach based on a result of Muskat [5].

5. D=2, Lehmer [2] has shown that 2 is a quintic residue
(mod p) if and only if # = 0 (mod 2), where (x, u, v, w) is any solution
of (8.1). Thus if 2 is a quintic nonresidue (mod p) we can find by
Dickson’s theorem a unique solution (z, u, v, w) of (3.1) such that

5.1) z=1(mod2), u=0(mod2), =+ u— v =0(mod4).

In terms of this solution a simple calculation using (3.3) shows that
¥ = *(mod 2). Then by an examination of cases in conjunction with
o = — 2%..%; (Lemma 4) we find that

=0, (+8 or {+C+ 8 (mod2),
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so that (2£7/2); = L. Appealing to Eisenstein’s reciprocity theorem
as indicated in §4 we have reproved

THEOREM 1 (Lehmer [3]). Let p be a prime = 1 (mod 5) for which
2 18 a quintic nonresidue (mod p). Let (x, u, v, w) be the unique
solution of (3.1) satisfying (56.1). Then we have

2071 = a(x, u, v, w) (mod p) .

6. D =3. (Lehmer [2] has shown that 8 is a quintic residue
(mod p) if and only if u = v = 0(mod 3), where (z, u, v, w) is any
solution of (3.1).) Thus if 3 is a quintic nonresidue (mod p) we can
find by Dickson’s theorem a unique solution (z, u, v, w) of (3.1) satis-
fying one of

(a) =1, u=1, =0, w=2(mod3),
(b) 2=2, =2, v=0, w=1(mod3),
(¢) =1, =2, v=1, w=1(mod3),
(d) z2=2, u=1l, v=2, = 2 (mod 3) .

(6.1)

In terms of this solution a simple calculation using (3.3) shows that

= (-0 +¢(@mod3), if (a) holds,
v=C+ 03— (mod8), if (b) holds,
= —{ (mod 8), if (c) holds,
= (mod 8) , if (d) holds.

Then by an examination of cases (mod 3) in conjunction with Lemma 4
we find that

F=xC-0-0Y, xC—-C+ &+ ) (mod3), if (a) holds,
F=xC -, £C—-C—)(mod8), if (b) holds,

F =L, +xC-—C)mod8), if (c) holds,

F =+, £C++ ) (modd), if (d) holds,

so that in every case (%7/8); = {. Appealing to Eisenstein’s reci-
procity theorem as before we have the following result.

If

THEOREM 2. Let p be a prime = 1(mod5) for which 3 is a
quintic nonresidue (mod p). Let (x, u, v, w) be the unique solution
of (38.1) satisfying (6.1). Then we have

3(11—1)/5 = a(x’ U, v, w) (mOd p) .

7. D=05. For paprime = 1(mod5), g a primitive root (mod p),
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h, k integers selected from 0, 1, 2, 3, 4, the cyclotomic number (%, k); is
defined to be the number of solutions (s, ) with 0 < s, t <(p — 1)/5
of g+ 4+ 1 = ¢*** (mod p). Let (x, u, v, w) be any solution of (3.1).
Choose g such that (9/.%%"); = {. Then it can be shown that

25(0, 0); = p — 14 + 3,

100(0, 1), = 100(1, 0); = 100(4, 4); = 4p — 16 — 3z -+ 50v + 25w ,
100(0, 2), = 100(2, 0); = 100(3, 3); = 4p — 16 — 3w + 50u — 25w ,
100(0, 8), = 100(3, 0); = 100(2, 2); = 4p — 16 — 3z — 50u — 25w ,
100(0, 4), = 100(4, 0); = 100(1, 1); = 4p — 16 — 3¢ — 50v + 25w,
100(1, 2), = 100(1, 4); = 100(2, 1), = 100(3, 4); = 100(4, 1),

= 100(4, 3); = 4p + 4 + 2z — 50w ,
100(1, 8), = 100(2, 3); = 100(2, 4); = 100(3, 1), = 100(3, 2),

= 100(4, 2); = 4p + 4 + 2x + 50w,

and Muskat [5] has shown that
ind, (5) = (0, 4); — (0, 1); + 2((0, 3); — (0, 2),)) (mod 5)
so that
ind, (5) = —2u — v (mod 5) .

Thus if 5 is a quintic nonresidue (mod p) 2u + » % 0 (mod 5) and by
Dickson’s theorem there is a wunique solution of (8.1) satisfying
2u + v = 4 (mod 5). With this solution we have ind, (5) = 1 (mod 5)
and so

BO-1/5 = gindg®)(P=/5 = g(P=1/5 = <_g(9?)5 = (mod %) .

Thus we have proved

THEOREM 3. Let p be a prime = 1 (mod 5) for which 5 is a quintic
nonresidue (mod p). Let (x, u, v, w) be the unique solution of (3.1)
satisfying 2u + v = 4 (mod 5). Then we hawve

50 = q(x, u, v, w) (mod p) .

8. ExampLE. We take p = 311. A solution of (3.1) in this case
is (—49, 7,0, 1) (see for example [8]) so none of 2, 3,5 is a quintic
residue (mod 311). The unique solution given by Theorem 1 is (—49,
0,7 —1) so that

2276 — 98.46 _ —2232 _ —55
2276 + 98.94 11488  —19

2(17—1)/5 — 262

= 52 (mod 311) .
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The unique solution given by Theorem 2 is (—49, —7, 0, 1) so that

2276 — 98.214  —23248 77

P15 — gez = —2276 + 98.66 _ 4192 _ 149 _ 216 (mod 311) .

The unique solution given by Theorem 3 is (—49, 7, 0, 1) so that

—2276 + 98.66 4192 149

515 — B2 = —2276 — 98.214 _ —23248 _ 77 _ 36 (mod 311) .
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