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2 AS A NINTH POWER (MOD p)
By KENNETH S. WILLIAMS*

[Received July 10, 1974]

1. Introduction. Let p be a prime # 2,3. We consider the problem
of giving a necessary and sufficient condition for 2 to be a ninth power
(mod p), analogous to those known for 2 to bea k th power (mod p) for
k=3[3],k=5[4],k=7[5]and k =11 [6].. If p=2 (mod 3) then 2
is always a ninth power (modp) so we may restrict our attention to
iarimes p=1 (mod 3)." For such primes, Gauss showed that there are
integers L,M such that

4p = [2 4 27M?% L =1 (mod 3) (1.1)
Indeed there are just two solutions of (1.1), namely (L, £+ M). Jacobi
[3] proved that 2 is a cube (mod p) if and onlj if L=0 (mod 2). Clearly
2 cannot be a ninth power (mod p) without being a cube (mod p). If 2is a
cube (mod p) and psE1(mod 9) then 2 will also be a ninth power
{mod p). Howevér if 2 is a cube (mod p) and p=1 (mod 9) then 2 may
or may not be a ninth power (mod p). In this case, using a result of
- Dickson [2], we prove that 2is a ninth power (mod p) if and only if
x;=0 (mod 2), where x, is uniquely determined by the diophantine
system
8p = 2x} + 3x2 + 18x3 + I8x34 27x3 +54x3, ]
X3 — 9x3 — 2x,%, + 4%,%5 + 2%,%5 — 2XgXy + 2X,X, -
+ 6x,%5 + 12x3%, + 6425 + 12x5%4 + 6x¢%5 + 24x0%5  { 1.2)
+ 18x,x4 = 0,
X3Xp — 2%, X4 + X3 X5 + 2X5Xy — 2X9 X4 — 3XaXg — 6xgXg
— 12x,xg — 6x,%; — 6x4Xg + 9x;X4 =0,
with (x,, Xy, X3, X4, X5 Xg) (L, 0, 0,0,0, &+ M) and x,=1 (mod 3)
(compare [3], [4], [5] and [6]).
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2. A Prehminary Lemma We prove

LEMMA. Let p be a prime=1 (mod 9). Then any solution (x,, x4, X3,
X4, Xp, X¢) 0f (1.2) satisfies '
Xy 4 Xy ==Xy + Xy == X3 + X3 + x¢=0(mod 2) @)
and ‘ ,
Xy + 2x3 4 3x; =0 (mod 4). (2.2)

PROOF. Reducmg the first equation in (1.2) modulo 2 we obtain
| %, + %5=0 (mod 2), @3
which is part of the assertion (2.1). Next we reduce the same equation
modulo 4 obtaining
2x3+ 3x3 + 2x3 + 2x% + 3x3 4 2x5 =0 (mod 4). 2.4
From (2.3) we have X3 = x3 (mod 4) and using this in (2.4) we obtain
| 2(x1 + x4 X34 X¢ + %) =0 (mod 4),
that is
X, + X3 + X3 4 X + x4=0 (mod 2). 2.5)
Now reducing the second equation in (1.2) modulo 8 we get
X3 — X3 — 2x,x, + 4x1x3 + 2x1x5 — 2XgX3 + 2X3Xy — 2XgXg + 4XyX¢ —
‘ 2x5%5 + dx3Xg — 2x4X5 4 2x,x, =0 (mod 8). (2.6)
By (2.3) we may define an integcr t by xy=x;+ 2f and substituting
this in (2.6) yields
'(x1+xa+x4+x5+x.)+t’+xa (3 + x¢ + x5 + x5 =0 (mOd 2),
which appealing to (2.3) and (2.5) gives
t1=xy(mod 2), that is, }(x; —x;)=2x, (mod 2) or x; + 2x5 + 3x;=0
(mod 4), which is the assertion of (2.2). Finally reducing the third
equatiqn in (1.2) modulo 4 we get using (2.3)
(> + xc) (*z +2x4 + xs) =0 (mod 4),
 that is- .
(x + Xg) (% + xa+ x5) _(x1 + xg) (¢ +x4 + x)=0 (mod 2), @.7n
sothat . .
o xl +x..__x,,+x4+x,_..0 (mod 2), 0

follows from (2 3), (2.5) and 2.7), completmg the —preef ef {he rest of ~
the assertion of 2.1).
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3. A Theorem of Dickson. Our results depend upon the following
result of Dickson ([2] Theorem 3, p. 193).

THEOREM 1 (DIC_KSON) Let p be a prime=1 (mod 9). The triple of
diophantine equations
=3+ 1+ + G + €L+ €5 — CoCy — €104 — CaCy
€oCy + €103 + €4C3 + CaC4 + €405 — €€ — 15— CoC5 =0, G.1
CoCa + €163 + C3Cq + €3C5 — CoCy — €103 — €45 =0,
has exactly six integral solutions (cq, Cy, Cqy Cay Co» C5) F (B(L4=3M),
0,0, 4- 3M, 0, 0) (upper signs together or lower signs together) satisfying
=-—1, cIEc,=—c‘=-—c5.caEO(mod 3) 3.2)
If (¢ €35 Cq» €35 € Cp) is Ome of these six solutions, the other five' are
given by
(Co — €3 €5, €, — Co» — €3, €2y — €,
(Cor —Cur €5 — €, €35 €1 — Ci» —€3)s
(Co— €3 — €35 — €1, —Cg, €5 — Cqy €4 — €1)s (3.3
(Co» Ca = €1y — €5y €y —C1, €3 —C)s
(Co — €3, €3 — Cgs C4» — C3, — Cp, €1).
Moreover, if g is a primitive root (modp), then for some solution
(Cor €1 €3y €35 €4 €5) F (ML £3M), 0,0, :l: 3M,0,0) of (3.1) ‘and (3.2)
we have
P — 26 4 L 4 54¢cy — 27¢,, if ind, (3) = 0 (mod 3),
81(0,0)g= & p—26 4 L—27¢,, ifind, (3)=1 (mod 3), (3.9
P —26 4+ L+ 27¢,if ind, (3)=2 (mod 3),
where (h, k), denotes the cyclotomic number of order nine, that is, the
number of solutions (s, #) of g¥+* 4 1=g%+* (mod p), and ind, () (/ 3£ 0)
(mod p)) denotes the unique integer m such that /=g™ (mod p),
os<m<p—2. )

‘Diagonalizing the first equation in (3.1) and absorbing the conditions
/(3.2) into the-equations in (3.1) we obtain

COROLLARY. Let p be a prime=1 (mod 9). The triple of diogphantine

- equations (1.2) has exactly six solutions (x,, Xg, X3, X, X5 X¢) 7 (L, 0,0,0,

0, &+ M) satisfying x,=1 (mod 3). If (x,, Xs, X5, X¢, X5, Xg) i5 ome of
these solutions, the other five solutions are given by
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1 0 0 0 0 o\ £
"0 -3} % 0 3} o0
0 0 0 1 0o 0 '
(xl' xvi' xa,'xu xs! xo) 0 N g_ _* . 0 * 0 ’ c (3'5)
o —% -3 0 3 0
0 0 0 0 0 -1

where k=0, 1, 2, 3, 4, 5, so that x;=1 (mod 3) is uniquely determined

by (1.2). Moreover, if g is a primitive root (mod p), then for some.

* solution (x,, Xgy X3, X4y X %) (L, 0,0, 0,0, & M) of (1.2) with x,=1

(mod 3) we have |
p—26+ L+ 27y, if ind, (3) =0 (mod 3),

81(0, 0), = { p —26 + L — 81x,, if ind, (3)==1 (mod 3), (3.6)
P —26 4+ L + 8lx,, if ind, (3)=2 (mod 3),

Proor. For any solution (co, €15 Cgs €35 €45 C5) Of (3.1) and (3.2) we
obtain a solution (x;, Xy, X3, X¢» X5 Xg) Of (1.2) by setting
xl == 20" — C,, ]

Xy =C+Cp : :
3x,=2c17—c4, : (3.7)
3xy=2¢c; — ¢y, ' r -

Ixg = ¢4 — €5 |
3xq=c5- J
with x; =1 (mod 3). Conversely if (x;, x5, X3, x,; X5, x,) is a solution
of (1.2) with x,=1 (mod 3) then, by the Lemma, we may define a
solution (cq, ¢, €y, 3, Cu» Cg) Of (3.1) by setting
2C0 =X;+ 3x.»
4c; = xg3 + 6x5 + 3x,
4cy = x5 + 6x — 3x;, . (3.8)
Cy = 3xg:
" 2¢y =Xy + 3x5,
2c; = X3 — 3x;, j
which satisfies (3.2). Clearly the excluded solutions (}(L 4 3M), 0, 0,
+3M, 0, 0) and (L, 0,0, 0, 0, + M), (3.3) and (3.5), (3.4) and (3.6),
correspond under the transformations (3.7) and (3.8). This completes
the proof of the corollary. -~

4. Necessary and sufficient condition for 2 to be A Ninth power
(mod p). We are now in a position to prove the main result of this

paper.
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THEOREM 2. Let p be a prime=1 (mod 9) for which 2 is a cube
(mod p). Let x, =1 (mod 3) be the unique integer determined by the system
(1.2) (see corollary). Then 2 is a ninth power (mod p) if and only if
x,=0 (mod 2). ’

Proor. Using a well-known result (see for example [4] or [7]) 2 is
a ninth power (mod p) if and only if (0, 0);=1 (mod 2), that is, by the
corollary if and only if x, =0 (mod 2), since L=0 (mod 2) as 2 is acube
(mod p).

5. Numerical Examples. The only primes p < 1000, p=1 (mod 9),
for which 2 is a cube (mod p) are .
p =109, 127, 307, 397, 433, 739, 811, 919. , 5.1)
Mr. Barry Lowe, using Carleton University’s Sigma-9 computer, found
solutions of (1.2) for these values of p as follows:

P X, Xq X X, X Xq
109 -5 10 4 2 2 | —1
127 4 ~8 | =2 2 | - —2
307 7 24 | -2 2 4 | —1
397 —14 2 4 6 | —6 4
433 —23 4| =2 2 8 3
79 | =5 4 | —4 6 | —4 3
811 —41 16 10 2| —4 1
919 - 0| 10| —14| —4| 5

Thus, by Theorem 2, of these primes only p = 127 and 397 have 2 as a
ninth power (mod p). Indeed it is easy to check directly that

2=1284° (mod 127), 2= 32* (mod 397).
We close by remarking that elsewhere [8] the author has obtained a
similar negessary and sufficient condition for 3 to be a ninth power (mod p).
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