ON EULER'S CRITERION FOR CUBIC NONRESIDUES1

KENNETH S. WILLIAMS

ABSTRACT. If p is a prime $\equiv 1 \pmod 3$ there are integers L and M such that $4p = L^2 + 27M^2$, $L \equiv 1 \pmod 3$. Indeed L and M^2 are unique. If D is a cubic nonresidue (mod p) it is shown how to choose the sign of M so that

$$D^{(p-1)/3} = (L + 9M)/(L - 9M) \pmod{p}$$

The case D=2 has been treated by Emma Lehmer.

1. Introduction. If p is a prime $\equiv 1 \pmod{3}$ there are integers L and M such that

(1.1)
$$4p = L^2 + 27M^2, \qquad L \equiv 1 \pmod{3}.$$

Indeed L and M^2 are unique. Moreover, L, $M \not\equiv 0 \pmod{p}$ so that 1, (L+9M)/(L-9M) and (L-9M)/(L+9M) are the three distinct cube roots of unity (mod p). Thus, if D is an integer not divisible by p, by Euler's criterion we have

$$D^{(p-1)/3} \equiv \begin{cases} 1, & \text{if } D \text{ is a cubic residue (mod } p), \\ (L \pm 9M)/(L \mp 9M), & \text{if } D \text{ is a cubic nonresidue (mod } p). \end{cases}$$

It is the purpose of this paper to show how the sign of M in (1.1) should be chosen so that if D is a cubic nonresidue (mod p) then

(1.2)
$$D^{(p-1)/3} \equiv (L + 9M)/(L - 9M) \pmod{p}.$$

Clearly there is no loss of generality in restricting D to be a prime ≥ 2 , and we consider two cases according as D=2, 3 or $D\geq 5$.

The case D=2, 3 is treated in $\S 2$ using the theory of cyclotomy. In this case it is well known that D is a cubic residue (mod p) if and only if

Received by the editors December 28, 1973 and, in revised form, April 2, 1974. AMS (MOS) subject classifications (1970). Primary 10A15; Secondary 12C20.

Key words and phrases. Euler's criterion, cyclotomy, cyclotomic numbers, root of unity modulo p, cubic residues and nonresidues.

¹This research was supported by grant no. A-7233 from the National Research Council of Canada.

 $M \equiv 0 \pmod{D}$. In Lemma 1 explicit expressions are given for the cyclotomic numbers of order 3 (compare [2, p. 397]). These are used in conjunction with known results in the theory of cyclotomy (see Lemma 2) to show how M must be specified uniquely so that (1.2) holds (Theorem 1). In Theorem 1, (a) is due to Emma Lehmer [5], and (b) is new. Her approach is different to ours.

The case $D \ge 5$ is treated in §3. In this case it is well known that if D is a cubic nonresidue (mod p) then $LM \not\equiv 0 \pmod{D}$, and use of this fact is made from time to time in the proofs. A congruence modulo D (see (3.1)) for the cubic Gauss sum proved by Ankeny [1], and a criterion for cubic residuacity given by Lehmer [4], are used to show how M must be specified uniquely in terms of a certain set $\mathcal{L}_1(D)$ (see (3.6) and Lemma 5) so that (1.2) holds (Theorem 2). The set $\mathcal{L}_1(D)$ is easy to calculate for any particular value of D and the values of $\mathcal{L}_1(D)$ are given for D = 5, 7, 11, 13, 17, 19.

2. D=2, 3. Let $w=\exp(2\pi i/3)=\frac{1}{2}(-1+\sqrt{-3})$, so that $1+w+w^2=0$. If p is a prime $\equiv 1 \pmod{3}$ we set, for any L, M satisfying (1.1), $\pi=\frac{1}{2}(L+3M)+3Mw,$

so that π is a prime factor of p in the Eisenstein domain Z[w]. We define a cubic residue character χ_{π} (mod π) by setting for any $\alpha \in Z[w]$,

$$\chi_{\pi}(\alpha) = \begin{cases} w^{r}, & \text{if } \alpha \neq 0 \pmod{\pi} \text{ and } \alpha^{(p-1)/3} \equiv w^{r} \pmod{\pi}, \ 0 \leq r \leq 2, \\ 0, & \text{if } \alpha \equiv 0 \pmod{\pi}. \end{cases}$$

If g is a primitive root (mod p), so that $\chi_{\pi}(g) = w$ or w^2 , for any integers h and k ($0 \le h$, $k \le 2$) the cyclotomic number $(h, k)_3$ of order 3 is defined to be the number of solutions (r, s) of $g^{3r+h} + 1 \equiv g^{3s+k} \pmod{p}$ with $0 \le r$, s < (p-1)/3. Our first lemma, which is well known, gives expressions for these cyclotomic numbers in terms of g, L, M and π .

Lemma 1.

$$9(0, 0)_{3} = p - 8 + L,$$

$$18(0, 1)_{3} = 18(1, 0)_{3} = 18(2, 2)_{3} = \begin{cases} 2p - 4 - L + 9M, & \text{if } \chi_{\pi}(g) = w, \\ 2p - 4 - L - 9M, & \text{if } \chi_{\pi}(g) = w^{2}, \end{cases}$$

$$18(0, 2)_{3} = 18(2, 0)_{3} = 18(1, 1)_{3} = \begin{cases} 2p - 4 - L - 9M, & \text{if } \chi_{\pi}(g) = w, \\ 2p - 4 - L + 9M, & \text{if } \chi_{\pi}(g) = w^{2}, \end{cases}$$

$$9(1, 2)_{3} = 9(2, 1)_{3} = p + 1 + L.$$

For any integer $a \not\equiv 0 \pmod{p}$ we define the index of a with respect to g, written ind g(a), to be the unique integer b such that $a \equiv g^b \pmod{p}$, $0 \le b \le p - 2$.

The next lemma consists of well-known results from the theory of cyclotomy (see for example [7, Lemma 4, p. 26], and [6, Theorem 1 (e = 3), p. 257]).

Lemma 2. (a) Let h = 0, 1, 2. Then $\operatorname{ind}_{g}(2) \equiv h \pmod{3}$ if and only if $(0, h)_{g} \equiv 1 \pmod{2}$.

(b)
$$\operatorname{ind}_{3}(3) \equiv (0, 2)_{3} - (0, 1)_{3} \pmod{3}$$
.

As D is a cubic residue (mod p) if and only if $\operatorname{ind}_g(D) \equiv 0 \pmod 3$, we obtain immediately from Lemmas 1, 2 and (1.1) that, for D=2, 3, D is a cubic residue (mod p) if and only if $M\equiv 0 \pmod D$. Thus if D (= 2 or 3) is not a cubic residue (mod p) we can distinguish between the two solutions $(L, \pm M)$ of (1.1) as follows: (a) if 2 is not a cubic residue (mod p) then (1.1) has a unique solution (L, M) satisfying $L\equiv M\pmod 4$, and (b) if 3 is not a cubic residue (mod p) then (1.1) has a unique solution (L, M) satisfying $M\equiv -1\pmod 3$.

We can now prove Theorem 1.

Theorem 1. (a) If 2 is not a cubic residue (mod p) and (L, M) is the unique solution of (1.1) satisfying $L \equiv M \pmod{4}$ then

$$2^{(p-1)/3} \equiv (L + 9M)/(L - 9M) \pmod{p}$$
.

(b) If 3 is not a cubic residue (mod p) and (L, M) is the unique solution of (1.1) satisfying $M \equiv -1 \pmod{3}$ then

$$3^{(p-1)/3} \equiv (L + 9M)/(L - 9M) \pmod{p}$$
.

Proof. (a) Let (L, M) be the unique solution of (1.1) satisfying $L \equiv M \pmod{4}$ and define π by (2.1). Let g be a primitive root (mod p), such that $\chi_{\pi}(g) = w$. Thus for this primitive root g we have, by Lemma 1, $18(0, 1)_3 = 2p - 4 - L + 9M$, so that, as $L \equiv M \pmod{4}$, we have $(0, 1)_3 \equiv 1 \pmod{2}$. Thus by Lemma 2(a) we have $\inf_{g}(2) \equiv 1 \pmod{3}$, which gives

(2.3)
$$2^{(p-1)/3} \equiv w \pmod{\pi}.$$

It follows from (2.1) that

(2.4)
$$(L + 9M)/(L - 9M) \equiv w \pmod{\pi}.$$

Putting (2.3) and (2.4) together we obtain

$$2^{(p-1)/3} \equiv (L + 9M)/(L - 9M) \pmod{\pi}$$

and the required result follows as both sides are real.

(b) Let (L, M) be the unique solution of (1.1) satisfying $M \equiv -1 \pmod 3$ and define π by (2.1). Again we choose g to be a primitive root $\pmod p$ such that $\chi_{\pi}(g) = w$, and for this primitive root we have by Lemma 1, $(0, 2)_3 - (0, 1)_3 = -M$, so that, as $M = -1 \pmod 3$, we have by Lemma 2(b), $\inf_g(3) \equiv (0, 2)_3 - (0, 1)_3 \equiv 1 \pmod 3$, which gives $3^{(p-1)/3} \equiv w \pmod \pi$. The rest of the proof is now the same as in (a).

Example 1. Let p = 37 so that $4p = 148 = 11^2 + 27.1^2$. The unique solution given by Lemma 3(a) is L = -11, M = 1, and the one given by Lemma 3(b) is L = -11, M = -1. Thus by Theorem 1 we have

$$2^{12} \equiv \frac{(-11) + 9(1)}{(-11) - 9(1)} = \frac{1}{10} \equiv 26 \pmod{37}$$

and

$$3^{12} \equiv \frac{(-11) + 9(-1)}{(-11) - 9(-1)} = 10 \pmod{37}$$
.

3. $D \ge 5$. Let D be a prime ≥ 5 . The Gauss sum $G(\chi_{\pi})$ is defined by

$$G(\chi_{\pi}) = \sum_{n=1}^{p-1} \chi_{\pi}(n) \exp(2\pi i n/p),$$

and Ankeny [1] has shown that, if $D \neq p$, $G(\chi_{\pi})$ satisfies the congruence

(3.1)
$$G(\chi_{\pi})^{D^{f}-1} \equiv \chi_{\pi}(D)^{-f} \pmod{D},$$

where f is the least positive integer such that $D^f \equiv 1 \pmod{3}$. Using (3.1) and the well-known result $G(\chi_{\pi})^3 = p\pi$ (see for example [3, p. 116]) we obtain modulo D

(3.2)
$$\chi_{\pi}(D) \equiv \begin{cases} p^{2(D-1)/3} \pi^{2(D-1)/3}, & \text{if } D \equiv 1 \pmod{3}, \\ p^{(D-2)/3} \pi^{(D+1)/3}, & \text{if } D \equiv 2 \pmod{3}. \end{cases}$$

We next define for any integer k

(3.3)
$$F_D(k) = \begin{cases} (k^2 + 27)^{2(D-1)/3} (k+3+6w)^{2(D-1)/3}, & \text{if } D \equiv 1 \pmod{3}, \\ (k^2 + 27)^{(D-2)/3} (k+3+6w)^{(D+1)/3}, & \text{if } D \equiv 2 \pmod{3}. \end{cases}$$

Now Emma Lehmer [4] has shown that for any prime $p \equiv 1 \pmod{3}$ with $LM \not\equiv$

0 (mod D), there is a set $\mathfrak{L}(D)$ depending on D, such that D is a cubic nonresidue (mod p) if and only if $L^2 \equiv k^2 M^2$ (mod D) for some $k \in \mathfrak{L}(D)$. Clearly $\mathfrak{L}(D)$ may be taken as a subset of $\{\pm 1, \pm 2, \cdots, \pm \frac{1}{2}(D-1)\}$ and to have the property that if $k \in \mathfrak{L}(D)$ then $-k \in \mathfrak{L}(D)$. Further we may assume that for each $k \in \mathfrak{L}(D)$ there is some prime $p \equiv 1 \pmod{3}$ with $LM \not\equiv 0$ (mod D) for which $L^2 \equiv k^2 M^2$ (mod D). We also remark that $\pm h \not\in \mathfrak{L}(D)$, where $b^2 + 27 \equiv 0 \pmod{D}$ when $D \equiv 1 \pmod{3}$.

We prove

Lemma 3. If $k \in \mathcal{L}(D)$ then

$$F_D(k) \equiv w \pmod{D}, \qquad F_D(-k) \equiv w^2 \pmod{D},$$

or

$$F_D(k) \equiv w^2 \pmod{D}$$
, $F_D(-k) \equiv w \pmod{D}$.

Proof. As $(k+3+6w)(-k+3+6w) = -(k^2+27)$ we have

$$F_D(k)F_D(-k) = \begin{cases} (k^2 + 27)^{2(D-1)}, & \text{if } D \equiv 1 \pmod{3}, \\ (-1)^{(D+1)/3} (k^2 + 27)^{D-1}, & \text{if } D \equiv 2 \pmod{3}. \end{cases}$$

Since D is prime, we have $(D+1)/3 \equiv 0 \pmod{2}$ when $D \equiv 2 \pmod{3}$. Also as $k^2 + 27 \not\equiv 0 \pmod{D}$ for $k \in \mathfrak{L}(D)$, we have $(k^2 + 27)^{D-1} \equiv 1 \pmod{D}$. Hence we have

(3.4)
$$F_D(k)F_D(-k) \equiv 1 \pmod{D}$$
.

Further since $k \in \mathfrak{L}(D)$ there exists a prime p for which D is a cubic nonresidue (mod p) and such that $LM \not\equiv 0 \pmod{D}$ and $L \equiv kM \pmod{D}$. Hence we have

$$4p \equiv (k^2 + 27)M^2$$
, $2\pi \equiv (k + 3 + 6w)M \pmod{D}$,

and so

$$F_D(k) \equiv \begin{cases} (4p/M^2)^{2(D-1)/3} (2\pi/M)^{2(D-1)/3}, & \text{if } D \equiv 1 \pmod{3}, \\ (4p/M^2)^{(D-2)/3} (2\pi/M)^{(D+1)/3}, & \text{if } D \equiv 2 \pmod{3}, \end{cases}$$

$$\equiv \begin{cases} p^{2(D-1)/3} \pi^{2(D-1)/3}, & \text{if } D \equiv 1 \pmod{3}, \\ p^{(D-2)/3} \pi^{(D+1)/3}, & \text{if } D \equiv 2 \pmod{3}, \end{cases}$$

that is

$$(3.5) F_D(k) \equiv \chi_{\pi}(D) \pmod{D}.$$

The result now follows as $\chi_{\pi}(D) = w$ or w^2 since D is a cubic nonresidue (mod p).

Lemma 3 enables us to define for i = 1, 2

so that

$$\mathcal{Q}_1(D) \cup \mathcal{Q}_2(D) = \mathcal{Q}(D), \qquad \mathcal{Q}_1(D) \cap \mathcal{Q}_2(D) = \emptyset.$$

Lemma 4. Let D be a prime ≥ 5 . If p is a prime $\equiv 1 \pmod{3}$, for which D is a cubic nonresidue (mod p), then we can define M uniquely by requiring it to satisfy $L \equiv kM \pmod{D}$ for some $k \in \mathcal{Q}_1(D)$.

Proof. As D is a cubic nonresidue (mod p) by Lehmer's criterion, $L^2 \equiv k^2 M^2 \pmod{D}$ for some $k \in \mathcal{Q}(D)$ and some solution (L, M) of (1.1). By replacing k by -k if necessary we may assume that $k \in \mathcal{Q}_1(D)$. Now $L \equiv \pm k M \pmod{D}$ with $k \in \mathcal{Q}_1(D)$, and as L cannot satisfy both these congruences we may choose M uniquely so that $L \equiv k M \pmod{D}$.

We can now prove Theorem 2.

Theorem 2. Let D be a prime ≥ 5 . If p is a prime $\equiv 1 \pmod{3}$ for which D is a cubic nonresidue \pmod{p} and M is defined uniquely by $L \equiv k \pmod{D}$ for some $k \in \mathcal{Q}_1(D)$ then (1.2) holds.

Proof. It follows from (2.1) that (2.4) holds. Further as $L \equiv kM \pmod D$ with $k \in \mathcal{Q}_1(D)$, we have $F_D(k) \equiv w \pmod D$ and so $\chi_{\pi}(D) \equiv w \pmod D$, that is, $\chi_{\pi}(D) = w$. Hence we have

$$D^{(p-1)/3} \equiv (L + 9M)/(L - 9M) \pmod{\pi}$$

and the result follows as both sides are real.

Example 2. From Lehmer's criterion for cubic residuacity [4] we deduce that

$$\mathcal{Q}(5) = \{\pm 1, \pm 2\}, \qquad \mathcal{Q}(7) = \{\pm 2, \pm 3\}, \\
\mathcal{Q}(11) = \{\pm 1, \pm 2, \pm 3, \pm 5\}, \qquad \mathcal{Q}(13) = \{\pm 2, \pm 3, \pm 4, \pm 6\}, \\
\mathcal{Q}(17) = \{\pm 1, \pm 2, \pm 4, \pm 5, \pm 6, \pm 7\}, \\
\mathcal{Q}(19) = \{\pm 1, \pm 2, \pm 4, \pm 5, \pm 6, \pm 8\}.$$

Using (3.3) and (3.6) we obtain

Thus Theorem 2 gives as a particular case: let D denote one of 5, 7, 11, 13, 17, 19. If p is a prime $\equiv 1 \pmod{3}$ for which D is a cubic nonresidue \pmod{p} and M is defined uniquely by $L \equiv kM \pmod{D}$ where

$$k = \begin{cases} 1 \text{ or } -2, & \text{if } D = 5, \\ 2 \text{ or } -3, & \text{if } D = 7, \\ -1, -2, -3 \text{ or } 5, & \text{if } D = 11, \\ -2, 3, 4 \text{ or } -6, & \text{if } D = 13, \\ -1, 2, 4, -5, 6 \text{ or } -7, & \text{if } D = 17, \\ 1, 2, -4, -5, -6 \text{ or } -8, & \text{if } D = 19, \end{cases}$$

then (1.2) holds.

Thus if p = 61 and D = 19 the required unique solution is L = 1, M = 3, so that

$$19^{20} \equiv \frac{1+9\cdot 3}{1-9\cdot 3} \equiv \frac{-14}{13} \equiv 13 \pmod{61}$$
.

It is interesting to note that the sum of the elements in each of the sets $\mathcal{L}_1(D)$ $(D = 5, 7, \dots, 19)$ is congruent to $-1 \pmod{D}$!

4. Acknowledgement. The author would like to acknowledge his indebtedness to the referee whose extremely valuable suggestions enabled the author to greatly extend and improve the original version of this paper.

REFERENCES

- 1. N. C. Ankeny, Criterion for rth power residuacity, Pacific J. Math. 10 (1960), 1115-1124. MR 22 # 9479.
- 2. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424.
- 3. K. Ireland and M. Rosen, Elements of number theory: Including an introduction to equations over finite fields, Bogden and Quigley, Belmont, Calif., 1972.
- 4. Emma Lehmer, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29. MR 20 # 1668.
- 5. ——, On Euler's criterion, J. Austral. Math. Soc. 1 (1959/61), part 1, 64-70. MR 21 #7191.
- 6. J. B. Muskat, On the solvability of $x^e \equiv e \pmod{p}$, Pacific J. Math. 14 (1964), 257-260. MR 28 #2997.
- 7. T. Storer, Cyclotomy and difference sets, Lectures in Advanced Math., no. 2, Markham, Chicago, Ill., 1967. MR 36 #128.

DEPARTMENT OF MATHEMATICS, CARLETON UNIVERSITY, OTTAWA, ONTARIO, CANADA