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ON EULER’S CRITERION FOR CUBIC NONRESIDUES!

KENNETH S. WILLIAMS

ABSTRACT. If p is a prime =1 (mod 3) there are integers L and M
such that 4p = L%+ 27M2, L =1 (mod 3). Indeed L and M? are unique.
If D is a cubic nonresidue (mod p) it is shown how to choose the sign of
M so that

p@=D73 _ (1 4 oL - 9M) (mod p).

The case D =2 has been treated by Emma Lehmer.

1. Introduction. If p is a prime =1 (mod 3) there are integers L and
M such that

(L) 4p=1L% 4+ 27M%, L =1 (mod 3).

Indeed L and M? are unique. Moreover, L, M # 0 (mod p) so that 1,
(L + 9M)/(L - 9M) and (L - 9M)/(L + 9M) are the three distinct cube roots
of unity (mod p). Thus, if D is an integer not divisible by p, by Euler’s

criterion we have

1, if D is a cubic residue (mod p),
D(p-l)/3 =

(L £ OM)AL ¥ 9M), if D is a cubic nonresidue (mod p).

It is the purpose of this paper to show how the sign of M in (1.1) should be

chosen so that if D is a cubic nonresidue (mod p) then
1.2) p®=13 _ (L + IMAL - 9M) (mod p).

Clearly there is no loss of generality in restricting D to be a prime > 2, and

we consider two cases according as D=2, 3 or D >5.

The case D =2, 3 is treated in $2 using the theory of cyclotomy. In
this case it is well known that D is a cubic residue (mod p) if and only if
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M =0 (mod D). In Lemma 1 explicit expressions are given for the cyclotomic
numbers of order 3 (compare [2, p. 397]). These are used in conjunction with
known results in the theory of cyclotomy (see Lemma 2) to show how M must
be specified uniquely so that (1.2) holds (Theorem 1). In Theorem 1, (a) is
due to Emma Lehmer [5], and (b) is new. Her approach is different to ours.
The case D > 5 is treated in $3. In this case it is well known that if
D is a cubic nonresidue (mod p) then LM £ 0 (mod D), and use of this fact
is made from time to time in the proofs. A congruence modulo D (see (3.1))
for the cubic Gauss sum proved by Ankeny [1], and a criterion for cubic resi-
duacity given by Lehmer [4], are used to show how M must be specified
uniquely in terms of a certain set Sil(D) (see (3.6) and Lemma 5) so that (1.2)
holds (Theorem 2). The set gé(D) is easy to calculate for any particular

value of D and the values of 1(D) are given for D =5, 7, 11, 13, 17, 19.

2. D=2,3. Let w=exp(2mi/3) =%(=1+V-~3), sothat 1 +w+w? =
0. If p is a prime =1 (mod 3) we set, for any L, M satisfying (1.1),
2.1) 7=%(L + 3M) + 3Mw,
so that 7 is a prime factor of p in the Eisenstein domain Z[w]. We define

a cubic residue character ¥, (mod 7) by setting for any a € Z[w],

w', ifa 0 (modn)and a®"13 = W (mod m), 0<r< 2,
(2-2) X"(CL) =

0, if a =0 (mod 7).
If g is a primitive root (mod p), so that x”(g) =w or w?, for any integers
b and k(0 < b, k < 2)the cyclotomic number (b, k)3 of order 3 is defined to
be the number of solutions (r, s) of gaf*b +1 Eg3s"k (mod p) with-0 <7, s.
<(p -1)/3. Our first lemma, which is well known, gives expressions for

these cyclotomic numbers in terms of g, L, M and =.
Lemma 1.
90, 0); =p -8+ L,

20-4-L+9M, if x (g)=w,
18(0, 1), = 18(1, 0), = 182, 2),

1

2 -4-L-9M, ifx (g =1’

2-4-L-9M, ifx,()=w,

18(0, 2), = 18(2, 0), = 18(1, 1),
2 -4-L+9oM, if x(g)=w?

91, 2); =92, 1), =p+1+L.
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For any integer a £ 0 (mod p) we define the index of a with respect
to g, written indg(a). to be the unique integer b such that a sgb (mod p),
0<b<p-2.

The next lemma consists of well-known results from the theory of
cyclotomy (see for example [7, Lemma 4, p. 26, and [6, Theorem 1 (e = 3),
p. 257).

Lemma 2. (a) Let h =0, 1, 2. Then indg(Z) = b (mod 3) if and only
if (0, b)g =1 (mod 2).
(b) ind;(3) = (0, 2); - (O, 1)3 (mod 3).

As D is a cubic residue (mod p) if and only if indg(D) =0 (mod 3), we
obtain immediately from Lemmas 1, 2 and (1.1) that, for D =2, 3,D isa
cubic residue (mod p) if and only if M =0 (mod D). Thus if D (=2 or 3) is
not a cubic residue (mod p) we can distinguish between the two solutions
(L, *M) of (1.1) as follows: (a) if 2 is not a cubic residue (mod p) then
(1.1) has a unique solution (L, M) satisfying L =M (mod 4), and (b) if 3
is not a cubic residue (mod p) then (1.1) has a unique solution (L, M)
satisfying M =~ 1 (mod 3).

We can now prove Theorem 1.
Theorem 1. (a) If 2 is not a cubic residue (mod p) and (L, M) is the
unique solution of (1.1) satisfying L = M (mod 4) then
2@=173 _ (L 4 9M)AL - 9M) (mod p).
(b) If 3 is not a cubic residue (mod p) and (L, M) is the unique solution
of (1.1) satisfying M =—-1 (mod 3) then
30=13 _ (L 1 9MAL ~ 9M) (mod p).

Proof. (a) Let (L, M) be the unique solution of (1.1) satisfying L =M
(mod 4) and define 7 by (2.1). Let g be a primitive root (mod p), such that
X&) =w. Thus for this primitive root g we have, by Lemma 1, 18(0, 1); =
2p -4 - L + 9M, so that, as L =M (mod 4), we have (0, 1)3 =1 (mod 2).
Thus by Lemma 2(a) we have indg(Z) =1 (mod 3), which gives

(2.3) 2(""1)/3 = w (mod 7).
It follows from (2.1) that

(2.4) (L +9M) /AL - 9M) = w (mod 7).
Putting (2.3) and (2.4) together we obtain
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2@=173 _ (L 1 9M)AL - 9M) (mod 7),

and the required result follows as both sides are real.

(b) Let (L, M) be the unique solution of (1.1) satisfying M=- 1 (mod 3)
and define 7 by (2.1). Again we choose g to be a primitive root (mod p)
such that X, (g) = w, and for this primitive root we have by Lemma 1, (0, 2); -
(0, 1); =~ M, so that, as M =~ 1 (mod 3), we have by Lemma 2(b), indg(3)5
(o, 2)3 - (0, 1)3 =1 (mod 3), which gives 30=1/3 4 (mod 7). The rest
of the proof is now the same as in (a). .
‘ Example 1. Let p =37 so that 4p =148 = 112 +27.1%. The unique
solution given by Lemma 3(a) is L =~11, M =1, and the one given by
Lemma 3(b)is L =~ 11, M=~ 1. Thus by Theorem 1 we have

12 _ (- 11) + 9(1) L 26 (mod 37)

B GETIIETT) IET

and

312 =£_—_E)+ 9(-1)
C(=11)-9(-1)

3.D>5. Let D be a prime > 5. The Gauss sum G(x,) is defined by

=10 (mod 37).

p-1
G(xn)= Z x"(n) exp(27in/p),
n=1
and Ankeny [1] has shown that, if D # p, G(xﬂ) satisfies the congruence

/
(3.1) Glx,)” =1 = x, (D)~ (mod D),

where [ is the least positive integer such that D/ =1 (mod 3). Using (3.1)
and the well-known result G(xﬂ)3 = prm (see for example [3, p. 116]) we
obtain modulo D

pZ(D—l)/Bﬂz(D—l)/3, ifDEl(mOd 3)’
(3.2) X”(D) =

p(D—Z)/3”(D+1)/3’ if D =2 (mod 3).
We next define for any integer k

&2+ 27)2P=D3G 1 34 )@=V 6D =1 (mod 3),

(3.3) F, k)= |
G2 +27)P-234 4 34 6w)P+D/3 D =2 (mod 3).

Now Emma Lehmer [4] has shown that for any prime p =1 (mod 3) with LM #
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0 (mod D), there is a set £(D) depending only on D, such that D is a cubic
nonresidue (mod p) if and only if L2 = k2M? (mod D) for some & € g(D)
Clearly £(D) may be taken as a subset of {+1, 2, ... , %4(D - 1)} and to
have the property that if & € £(D) then -k € £(D). Further we may assume
that for each & € £(D) there is some prime p =1 (mod 3) with LM #0

(mod D) for which L2 = £2M? (mod D). We also remark that +h ¢ £(D), where
h2 +27 =0 (mod D) when D =1 (mod 3).

We prove
Lemma 3. If & € £(D) then
Fp(k) = w (mod D),  Fp (k) =w? (mod D),
or
Fp) =w? (mod D),  F(~k)=w (mod D).
Proof. As (k +3 + 6w)- & + 3 + 6w) = — (k% + 27) we have

(k2 + 27)2(D'1), if D =1 (mod 3),
Fp(R)F (k) =
DPHEDBG2 L 7P =1 it D = 2 (mod 3).

Since D is prime, we have (D +1)/3 =0 (mod 2) when D =2 (mod 3). Also
as k2 +27 £0 (mod D) for & € £(D), we have (k% +27)°=1 =1 (mod D).

Hence we have

(3.4) FD(k)FD(—k) =1 (mod D).

Further since & ES‘Z(D) there exists a prime p for which D is a cubic
nonresidue (mod p) and such that LM £ 0 (mod D) and L = kM (mod D). Hence we

have

4p = &% + 27)M%, 27 =(k + 3 + 6w)M (mod D),

and so

(4p/M?Y2 P =130 )2 =173 16D _ 1 (mod 3),

Il

F (k)
(4p/M>)P=DB30am)PHD3 D = 2 (mod 3),

p?®P-D3720=D/3 g D =1 (mod 3),

I

pPP=2Y3,P* 13 4D = 2 (mod 3),
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that is
(3.5) Fp (&) = x, (D) (mod D).

2 since D is a cubic nonresidue

The result now follows as XW(D) =w or w

(mod p).

Lemma 3 enables us to define for i =1, 2

(3.6) £.(D) =1k € £(D): F (k) = w’ (mod D)},

so that

LU 0=820), E£0®nED-2.

Lemma 4. Let D be a prime > 5. If p is a prime = 1 (mod 3), for which
D is a cubic nonresidue (mod p), thenwe can define M uniquely by requiring
it to satisfy L = kM (mod D) for some k € QI(D).

Proof. As D is a cubic nonresidue (mod p) by Lehmer’s criterion, L? =
k2M? (mod D) for some k € £(D) and some solution (L, M) of (1.1). By
replacing k by — & if necessary we may assume that k € QI(D). Now L =
tkM-(mod D) with k € QI(D), and as L cannot satisfy both these congruences
we may choose M uniquely so that L = kM (mod D).

We can now prove Theorem 2.

Theorem 2. Let D be a prime>5. If p is a prime = 1 (mod 3) for
which D is a cubic nonresidue (mod p) and M is defined uniquely by L =
kM (mod D) for some k € gl(D) then (1.2) holds.

Proof. It follows from (2.1) that (2.4) holds. Further as L = kM (mod D)
with & € QI(D), we have F (k) = w (mod D) and so X,(D) = w (mod D),

that is, xﬂ(D) = w. Hence we have
p@®=1)/3 _ (L + 9M)/AL - 9M) (mod ),

and the result follows as both sides are real.

Example 2. From Lehmer’s criterion for cubic residuacity [4] we deduce

that
£6) =1{t1, 2}, L) =1£2, * 34,
211)=1£1, 42, +3, 5, f13)=1{+2,£3,+4, 26},
L(17)={+1,+2,+4,%5,+6, + 74,
£(19)={+1,+2,+4,%5,+6, +8}.

Using (3.3) and (3.6) we obtain
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2,6) =t+1,-2}, LN =1+2,-3}
LD =t-1,-2,-3,+5} £,(3)=t-2,+3,+4,-6},
£1(17)= =1,+2,+4,-5,+6,-7},
£,09)=t+1,+2,-4,-5,-6,-8.
Thus Theorem 2 gives as a particular case: let D denote one of 5, 7, 11, 13,
17, 19. If p is a prime = 1 (mod 3) for which D is a cubic nonresidue (mod p)
and M is defined uniquely by L = kM (mod D) where

1 or-2, ifD=75,
2or-3, if D=7,
E={-1-2,-3o0r5, if D =11,
-2,3,4o0r -6, if D = 13,

-1,2,4,-5,60r -7, ifD=17,
1,2,-4,-5,-6o0r -8, ifD=19,
then (1.2) holds.
Thus if p = 61 and D = 19 the required unique solution is L = 1, M= 3, so that
20_1+9-3 -14
T1-9-3 13
It is interesting to note that the sum of the elements in each of the sets
L(D)(D=5,7, -+, 19) is congruent to - 1 (mod D)!

= 13 (mod 61).

19
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