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NOTE ON A PAPER OF S. UCHIYAMA

BY
B. C. MORTIMER AND K. S. WILLIAMS

Let p be a rational prime and # a positive integer >2. We denote by a,(p) the
least positive integral value of a for which the polynomial x"+x+a is irreducible
(mod p), and set

1) a, = lim inf a,(p).

P+ 0

One of us (K. S. W. [4]) conjectured that a,=1 for all n2>2. As has been pointed
out by Uchiyama (and others) this is not true when n=2 (mod 3) and n>2, since
then x*+x+1 has the factor x2+x+1 in Z[x] and so a,>2 in this case. However,
it was proved in [4] that a,=a,=1 and Uchiyama [3] has considered a,, for n<10.
Implicit in Uchiyama’s paper is the following theorem:

THEOREM 1. Let a}; be the least positive integer a such that there exists some prime
Pn for which x*+x+a is irreducible mod p,,. Then a,=a..
Using this theorem Uchiyama deduced that

A, =a3=a, =43 =0a; =dy = a3, = 1, as =3, ag = 2.
However, doubt is cast on two of these values as Uchiyama’s paper contains two
errors. First of all x®+x+2 is not irreducible (mod 3) as claimed by him since

X x+2 = (P+2x2 4+ 2x+2)(x°* + x* +2x*+ x*+ x+1) (mod 3),
thus ag=2 is not established. Secondly x°+x+1 is not irreducible (mod 2) since
x4 x+1 = (P x+ D+ X+ x4+ XP+1) (mod 2),
thus a,o=1 is not established. In this note we review a, for 2<n<10 and also
consider a, for 11<n<20.
The following lemma eliminates cases where x"+x-+a is reducible in Z[x].
LeMMA.
ar > 2, if n = 2 (mod 6), n>2,
a¥>3, ifn=5(mod6).

Proof. This is clear for if n=2 (mod 6), n>>2, then x*+x+1 is divisible by
x2+x+1 in Z[x]; and if #=5 (mod 6) then x"+x-+1 is divisible by x24+x+1 in
Z[x] and x4 x+2 is divisible by x+1 in Z[x].

Factorizations of x"+x-+4a modulo a prime were accomplished using an algor-
ithm due to Berlekamp [1]. In this algorithm, in order to factor x"+x+a (mod p),
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a polynomial g(x) is determined such that (g(x))*=g(x) (modulo x"+x+a). It is
shown in [1] that for such a polynomial g(x) we have

x"+x+a = [ G.CD.(x"+x+a, g(x) — s),

0<s<p

and this factorization is non-trivial if and only if deg(g(x))>0. The coefficients of

all such possible polynomials g(x) arise as the eigenvectors of the nxn matrix

whose ith row consists of the coefficients of x~1? reduced modulo x"+x+a.

Calculations were performed on Carleton University’s Xerox Data Systems Sigma

6 computer and the following table gives the resulting values of a}; for 2<n<20.
From this table, the lemma and theorem 1, we obtain

THEOREM 2.

a,=1, forn=2,3,4,6,7,9, 10, 12,13, 15, 16, 18, 19,
a,=2, forn=38,14,20,

a,=3, forn=>511,17.
This suggests the following possible modification of the original ill-fated conjecture
of [4] (the first line of which has been conjectured by Uchiyama):
CoNJECTURE. For >3,
a,=1, ifn=0,1(mod3),
2, ifn=2 (mod§),
3, fn=S5 (mod®6).

The work of Uchiyama [3] shows that this conjecture is true whenever n is an odd
prime. From the work of Zierler [2] we see that it is also true for

n = 22, 28, 30, 46, 60, 63, 153, 172, 303, 471, 532, 865, 900,
1366, 2380, 3310, 4495, 6321, 7447, 10198, 11425, 21846,
24369, 27286, 28713.

(Added in proof) Prof. M. Sato (Kyoto University) and Prof. M. Yorinaga
(Okayama University) have now verified our conjecture for the remaining values
of n<40.
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n polynomial P reducibility (mod p) a,
2 xi+x+1 2 irreducible 1
3 x3+x+1 2 irreducible 1
4 xit+x+1 2 irreducible 1
5 x3+x+3 2 factor x*+x+1

3 factor x

5 factor x+4

7 irreducible 3
6 x8+x+1 2 irreducible 1
7 X"+x+1 2 irreducible 1
8 x84x42 2 factor x

3 factor x%+2x242x+2

5 factor x+3

7 factor x+4
11 factor x+6
13 factor x+11

17 irreducible 2
9 x*+x+1 2 irreducible 1
10 x04+x+1 2 factor x*+x+1
3 factor x+42
) factor x®+4x+2

7 factor x2+6x+6
11 factor x+2
13 factor x+11
17 factor x®+13x2+8x+11
19 factor x+10
23 factor x2+13x+20
29 factor x+15
31 factor x+2
37 factor x+22
41 factor x*+2xt+x2—~5x2—2x+12*
43 factor x+18
47 factor x2+3x+30
53 factor x+5
59 factor x*+37x%+36x+1
61 factor x2+54x+5
67 factor x+50
71 factor x2+50x+23
73 irreducible 1

* (Added in proof) Inadvertently the authors overlooked the reducibility of x*+x-+1
(mod 41). The given factor was obtained by Mr. M. Andd in Nagoya and kindly communicated
to us by Prof. M. Sato of Kyoto University.
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n polynomial y. reducibility (mod p) a,
11 x14x+43 2 factor x*+4x+1

3 factor x
5 factor x+4-4
7 irreducible 3
12 x134x4-1 2 factor x5 4x4x24x+1
3 factor x+4-2
5 factor x42
7 factor x4-2
11 factor x34x%2+4+9x+4-10
13 factor x+42
17 factor x+5
19 irreducible 1
13 xB4-x+41 2 factor x®+4-x44-x34-x+1
3 factor x+4-2
5 factor x+3
7 factor x4-4
11 factor x+4-9
13 factor x+7
17 factor x+411
19 irreducible 1
14 x4 x42 2 factor x
3 irreducible 2
15 x4x+1 2 irreducible 1
16 x104x+41 2 factor x8-4-x8+4x%4-x3+41
3 factor x+42
5 factor x+2
7 factor x¢4-6x2+4x2+5x+43
11 factor x+6
13 factor x2+4-12x+412
17 factor x+2
19 factor x*4-9x3+43x24-12
23 factor x+49
29 factor x*4-16x%+8x2+49x 423
31 factor x*4-15x3+19x2+17x+6
37 factor x+17
41 factor x4-11
43 factor x*+15x+35
47 factor x+17
53 factor x24-33x+7
59 factor x-+49
61 factor x76x%4-18x5437x%4-38x3+ 8x%4+43x-50
67 factor x®+4-21x2+54x+55
71 factor x24-37x+463
73 factor x+33
79 irreducible 1
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n polynomial P reducibility (mod p) a,
17 xV4x43 2 factor x24+x+1

3 factor x
5 factor x+4
7 irreducible 3
18 x¥4+x41 2 factor x®+x%+41
3 factor x+42
5 irreducible 1
19 x¥4x+1 2 factor x*+x+1
3 factor x+2
5 factor x*+3x2+2x+3
7 factor x3+3x%*+3x+4
11 factor x"+4x®+x°+8x*+10x*+10x2+2x+5
13 factor x44+7x*+7x+4
17 factor x+6
19 factor x+10
23 factor x+6
29 factor x+427
31 factor x®+421x*+26x°+13x24+20x+15
37 factor x?+5x?+6x+1
41 factor x+7
43 factor x+426
47 factor x2+41x+21
53 factor x+44
59 irreducible 1
20 x04x+4+2 2 factor x
3 factor x*+2x*+x*+x+2
5 factor x+3
7 factor x+4
11 factor x+3
13 factor x+411
17 factor x+6
19 irreducible 2




