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RATIONALS BY SQUARE ROOTS

. KENNETH S. WILLIAMS
Qarleton Unsverssty, Ouawa, Canada

Let Q déhote the ﬁeld of ratxonal numbers. In a recent
gote Roth [4] proved the followm.g theorem.

. 'rlnorm Let p,,....p.be n(>1) distinct positive primes
and let & be asguarefree integer >1 with pifs (4 = 1,. .,n)
Then 8 & Q (YD1,e:1¥Ps)-

Using this theorem we prove .

Théonm L. Lot &ty be n(>1) distinct squarefree
integers > 1. Then 1, y/&,...,V/4 are linearly inde_pcndent
over Q. . )

. Theavem 2. Let 3;,...,8. ben{ > l)squarcﬁ'ee integers
> 1 and let 1 ,..., Pm be the m( > 1) distinct pnmes dmdmg
8 e ”tha'tforjwl.gnn"WQhaw S .

o Gy m
4 =D .-Pm

where each ay ($==1,..,m ;) =1, ..., %) is 1 or 0 according
as p; divides 8, or not. Regarding the a,, as elements. of GF(2)
we sct ' : . .

- 78y 1oy 89) = rankarm(Ge) -
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Then

[Q(\/sl, vevy \/3,.) : Q] — 2'(51, weny 8y) R

Proof of Theorem 1. Let m be the number of distinct
primes dividing 8; ... 8n. If m = 1, then clearly n = 1, and
8, is prime. In this case it is well-known that 1, 4¢, are linearly
independent over @. Thus the theorem is true whenm =1
and we proceed by induction on m, assuming m >2.

Let p be any prime dividing s; ... s,. By relabelling 8;, ..., 84
if necessary we can assume without loss of generality that p-
divides the first # of the 8; (where 1 7 € n) and does not
divide the remaining 8;. Forj = 1, ..., r we set 8; = pt,. Now
let ‘ '

(4) Ao -+ A1\/31 ++ An\/sn = 0,
where Ag, ..., As € @ In order to prove that 1, /38y, ..., 8,
are linearly independent over @ ‘it suffices to show that (4)
implies Ay = A; =...= A, = 0, Using the notation above we
can rewrite (4) as ‘

(5) ¥Pavh + oo F+ AViE) =— A — A1V 8
—vve— Ap/ 8.
If v/t +...+ At 54 0, then (5) implies ¥ 2 € Q(+/P1;- -,
+ Px_1), where Py, ..., Px-y are thek — 1 (> 1) primes £ p
which divide 8, ... 8,. This is impossible by Roth’s theorem
and so we must have

(6) AWt F oo At = O,
and so from (5) we deduce
Ao + A9‘+1\/‘91'4-1 +...+ '\n\/sn = 0.

Now at most k£ —1 primes (namely those in the set {p,, ..., Pk-1})



13

divide ¢, ...t, and ¢y, ..., ¢, are distinct square free integers and
50 4/ty, ..., 4t, are linearly independent over @. Hence from (6)
we have A} =...= A, = 0. Similarly at most ¥ — 1 primes
divide 8, ... 3; and (7) shows that A; = A, =...= Ay = O.
This completes the proof of the theorem.

Proof of Theorem 2. We begin by showing that vs, € @
(V81 .+es /Sn_1), where n > 2, if and only if (s, ..., 854) =7
(81,.-., 8). Let t, ..., & be the distinct maximal squarefree
divisors of the products 81 e 81 wherel 4 <...< 4

n—land k=1, .., n—1 Then @+/8, ..., ¥8s_;) considered
as a vectorspace over @ has {I, +¢, ..., ¥} as a
basis. Thus /8, € Q(1/81, +.-sv/Sn-1) ifand only if /8, is a
linear combination of 1,y/%;, ..., ¥ with coefficientsin . Hence
L4/ty, ..., ¥ts,/8, are linearly dependent over € and since the
t; are distinct, by theorem 1 we must have 8, = {; for some j.
Thus we have 83, = 84 o 81, for some ¢4 0 and integers

k oy e tewith l kS r—land 1 <6 <y <n —1 Now
forl =1, ..., n — 1 we define

{l,ifl=i,.forsome1'withl<r<k,
X =

0, otherwise,

. & L.
and the condition t2s, = 81y oo Sy becomes % sp=9; "} n-1

that is

...8,,_1

2 = p, %% Feiet Gn.1Tn. 1014 ...pmaml"’l +oot CmaaZn.1—0t g,
which is soluble for zy, ..., Z»_; and ¢ if and if only 7(3y, ..., 8x.1)
=¥ (81, ++s 8n)-

We can now prove the theorem by induction. Ifzn = 1 the
result is clearly true as

1
r(sy) = rankgp(g) l] =1, [Q(Jsl) : Q] =2.
1
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For n > 2 we assume that

[Q(Vsl) sty V'sn-l) : Q] =2r(81, e ”“1).

Then we have

[@W S, .-y V/84): Q) = [@(V81, ...,\/s,,) QW .o V/'8s-1)]
[Q Vo1 e v/5n-1) Q]
{2.2’(81: s 8no1), if 4/ 8y @& QW31 oery \/8”_1),
2’("1: --"s ;9”—1): 1f \/80! E Q(V"gls ey V.G”_l),_

2181 oo )+ L, I 78y, oui 8noy) FE 7(S1y veey Sp),
42’(81.---, 8a-1) , iIf 7(8), ...,80_1) = 7(8,) ..\y 8p),

: ‘ S S
Y - -
= (81 n),

as (81, ---) 8p) =7 (81, ..., 8n-1) + 1 when r(sy, ..., 85.1): "]
= (81 +ves 8p).
The theorem now follows by induction.

. ) X . ©T [
We remark that the results of this note are well known . (see.

for example [2]). More general results have been gwen by A. S ‘
Besicovich [1] and L.J. Mordell [3]. /
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