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The numbers 1, 2, ..., n include exactly {m/p] multiplés
of the prime p, [m/p?] multiples of p? and so on. Hence we
have the well-known result (see for example [2], page 342)
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It is perhaps not so well-known that one can do a similar thing
for polynomials over the finite field GF(q). We consider

M, where the product is over all monic polynomials 3
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over GF(q) of degree m. For any (monic) irreducible polynomial
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I over GF(g), H 3 contains exactly ¢ multiples of I,
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multiples of I%, and so on. Hence we have
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where
: m—as deg I
Q) B(m, I) = q .
el
Since 3(m, I) depends only on m and deg 7, writing
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we can rewrite (i) as
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This formula leads quickly to the well-known expression
(see for example [1]) for the number =,(m) of monic irreducible
polynomials of degree m over GF(q). Equating degrees on both
sides of (4) and using (3) we have
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Collecting together the terms in (5) with the same value j for &1
we obtain.
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that is

(6) = im )
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 Applying the Mobius inversion formula (see for example [2],
page 236) to (6) we obtain
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