REPRESENTATION OF A BINARY QUADRATIC FORM AS A SUM OF TWO SQUARES

KENNETH S. WILLIAMS

ABSTRACT. Let $\phi(x, y)$ be an integral binary quadratic form. A short proof is given of Pall's formula for the number of representations of $\phi(x, y)$ as the sum of squares of two integral linear forms.

Let $\phi(x, y)$ be an integral binary quadratic form. If $\phi(x, y)$ is expressible as the sum of squares of two integral linear forms then $\phi(x, y)$ must be positive definite or semidefinite, have an even coefficient of xy, and be of square determinant. Mordell [1] has proved that a binary quadratic form $\phi(x, y) = hx^2 + 2kxy + ly^2$ with these properties is the sum of squares of two integral linear forms if and only if $r_2(d_1) > 0$, where $r_2(d_1)$ denotes the number of representations of $d_1 = G.C.D.(h, 2k, l)$ as the sum of two squares. Pall [2], using properties of Hermite-matrices, has shown that when $\phi(x, y)$ is representable in this way, the number of such representations is $2r_2(d_1)$, if $\det(\phi) = hl - k^2 = m^2 \neq 0$, and is $r_2(d_1)$, if $\det(\phi) = hl - k^2 = m^2 = 0$. In this note we give a very simple proof of this result.

Since $hx^2+2kxy+ly^2$ can be expressed as the sum of squares of two integral linear forms there exist integers a_1 , a_2 , b_1 , b_2 , such that

(1)
$$hx^2 + 2kxy + ly^2 = (a_1x + b_1y)^2 + (a_2x + b_2y)^2.$$

If we write α , β for the gaussian integers $a_1 + ia_2$, $b_1 + ib_2$ respectively, (1) becomes

$$(2) hx^2 + 2kxy + ly^2 = (\alpha x + \beta y)(\bar{\alpha}x + \bar{\beta}y),$$

so that

(3)
$$h = \alpha \bar{\alpha}, \qquad 2k = \alpha \bar{\beta} + \bar{\alpha}\beta, \qquad l = \beta \bar{\beta}.$$

The domain of all gaussian integers is denoted by Z(i). It is a unique factorization domain. We let $\gamma \in Z(i)$ denote one of the four associated greatest common divisors of α and β and write $\alpha = \gamma \alpha_1$, $\beta = \gamma \beta_1$, so that the only common factors of α_1 and β_1 are the units ± 1 , $\pm i$. Hence from

Received by the editors December 23, 1970.

AMS 1970 subject classifications. Primary 10C05, 10J05; Secondary 10E25.

Key words and phrases. Binary quadratic form, sum of squares.

(2) we have

$$d_1 = \text{G.C.D.}(h, 2k, l) = \text{G.C.D.}(\alpha \bar{\alpha}, \alpha \bar{\beta} + \bar{\alpha} \beta, \beta \bar{\beta})$$

= $\gamma \bar{\gamma} \text{ G.C.D.}(\alpha_1 \bar{\alpha}_1, \alpha_1 \bar{\beta}_1 + \bar{\alpha}_1 \beta_1, \beta_1 \bar{\beta}_1),$

that is

$$d_1 = \gamma \bar{\gamma},$$

and so (2) becomes

(5)
$$hx^2 + 2kxy + ly^2 = d_1(\alpha_1 x + \beta_1 y)(\bar{\alpha}_1 x + \bar{\beta}_1 y).$$

Moreover we have

$$m^{2} = \det(hx^{2} + 2kxy + ly^{2}) = hl - k^{2}$$

$$= (\alpha\bar{\alpha})(\beta\bar{\beta}) - \left(\frac{\alpha\bar{\beta} + \bar{\alpha}\beta}{2}\right)^{2} \quad \text{(from (3))}$$

$$= -\left(\frac{\alpha\bar{\beta} - \bar{\alpha}\beta}{2}\right)^{2} = -(\gamma\bar{\gamma})^{2} \left(\frac{\alpha_{1}\bar{\beta}_{1} - \bar{\alpha}_{1}\beta_{1}}{2}\right)^{2}$$

$$= -d_{1}^{2} \left(\frac{\alpha_{1}\bar{\beta}_{1} - \bar{\alpha}_{1}\beta_{1}}{2}\right)^{2} \quad \text{(from (4))},$$

that is,

(6)
$$m = \pm d_1 i \left(\frac{\alpha_1 \bar{\beta}_1 - \bar{\alpha}_1 \beta_1}{2} \right).$$

Now the required number of representations is just the number of distinct 4-tuples of integers (a'_1, a'_2, b'_1, b'_2) such that

$$hx^2 + 2kxy + ly^2 = (a_1'x + b_1'y)^2 + (a_2'x + b_2'y)^2,$$

that is, on writing $\alpha' = a_1' + ib_1' \in Z(i)$, $\beta' = a_2' + ib_2' \in Z(i)$ and using (5), the number of distinct pairs of gaussian integers (α', β') such that

$$(\alpha' x + \beta' y)(\bar{\alpha}' x + \bar{\beta}' y) = d_1(\alpha_1 x + \beta_1 y)(\bar{\alpha}_1 x + \bar{\beta}_1 y).$$

As $\alpha_1 x + \beta_1 y$ is a primitive irreducible element in the unique factorization domain Z(i)[x, y] we have

$$\alpha_1 x + \beta_1 y \mid \alpha' x + \beta' y \quad \text{or} \quad \alpha_1 x + \beta_1 y \mid \bar{\alpha}' x + \bar{\beta}' y.$$

If $\alpha_1 x + \beta_1 y | \alpha' x + \beta' y$ then $\alpha' x + \beta' y = \delta(\alpha_1 x + \beta_1 y)$ for some $\delta \in Z(i)$, and so we have

(7)
$$(\alpha', \beta') = (\delta \alpha_1, \delta \beta_1), \text{ where } \delta \overline{\delta} = d_1.$$

Similarly if $\alpha_1 x + \beta_1 y |\bar{\alpha}' x + \bar{\beta}' y$ we have

(8)
$$(\alpha', \beta') = (\delta'\bar{\alpha}_1, \delta'\bar{\beta}_1), \text{ where } \delta'\bar{\delta}' = d_1.$$

370 K. S. WILLIAMS

If $m \neq 0$, so that from (6) we have $\alpha_1 \bar{\beta}_1 \neq \bar{\alpha}_1 \beta_1$, then $(\delta \alpha_1, \delta \beta_1) \neq (\delta' \bar{\alpha}_1, \delta' \bar{\beta}_1)$ and so (7) and (8) give $2r_2(d_1)$ distinct pairs (α', β') as required. If m = 0, so that from (6) we have $\alpha_1 \bar{\beta}_1 = \bar{\alpha}_1 \beta_1$, then $\bar{\alpha}_1 \sim \alpha_1$, $\bar{\beta}_1 \sim \beta_1$ and the set of ordered pairs given by (7) coincides with that given by (8), thus giving only $r_2(d_1)$ distinct pairs (α', β') as required.

REFERENCES

- 1. L. J. Mordell, On the representation of a binary quadratic form as a sum of squares of linear forms, Math. Z. 35 (1932), 1–15.
- 2. G. Pall, Sums of two squares in a quadratic field, Duke Math. J. 18 (1951), 399-409. MR 12, 676.

DEPARTMENT OF MATHEMATICS, CARLETON UNIVERSITY, OTTAWA, ONTARIO, CANADA