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FORMS REPRESENTABLE BY AN INTEGRAL
POSITIVE-DEFINITE BINARY QUADRATIC FORM

KENNETH S. WILLIAMS

1. Introduction.

Let 9(X,Y)=1X2+mXY +nY? be an integral, positive-definite, bi-
nary quadratic form of discriminant —D, so that >0, n>0, and
D=4Iln—m?>0. Thus D=0 or 3 (mod4) and we let

D, = 1D , if D=0 (mod4),
= }(D+1), if D=3 (mod4).

We say that a binary quadratic form f(X,Y)=aX2+bXY +cY? is rep-
resentable by g(X, Y) if there exist integers a,, a,, b;, b, with a, b, —a,b, + 0
such that

fX,Y) =g(a, X+b,Y,a,X+b,7).

We are interested in giving necessary and sufficient conditions for a
binary quadratic form f(X,Y) to be representable by ¢g(X,Y). Clearly
any such f(X,Y) must be integral and positive-definite, with

diserim (f(X, Y)) = discrim(g(a, X +b, Y, a, X +b,Y))
= (ayby—ayb,)? discrim (¢(X,Y)) = —Dk?,

where k is a non-zero integer. Throughout this paper it will be assumed
that f(X,Y) satisfies these conditions. If f(X,Y) is representable by
9(X,Y), then f(X,Y) is representable by any binary quadratic form
(properly or improperly) equivalent to g(X,Y). Conversely, if f(X,Y)
is representable by some binary quadratic form equivalent to g(X,Y),
then f(X,Y) is representable by g(X,Y). Now the class of forms equiv-
alent to g(X,Y) contains one and only one reduced form. Thus, with-
out any loss of generality, we can suppose that g(X,Y) is reduced, that
is, I, m, n, satisfy —l<m=<l, nzl, with m20 if I=n. It is known that
there is only a finite number of integral, positive-definite, reduced forms
with discriminant —D. We make the assumption throughout this
paper that this number is exactly one. From the classical work of Gauss
and a recent result of Stark [5] we know that this occurs precisely for
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(1.1) D = 3,4,7,8,11,19, 43, 67,163 .
In this case the single reduced form is the principal form so that we have

9(X,Y) =9,(X,Y) = X2+D, Y2 , if D=0 (mod4),
= X2+ XY+D,Y? if D=3 (mod4).

When D =4 representability of f(X,Y)=aX2+bXY +cY?2 by g,(X,Y)=
X2+ Y2 has been considered by Mordell [2]. (An omission in his proof
has been corrected by Niven [3].) If we write r,(h) for the number of
representations of the positive integer 2 by any integral, positive-
definite, binary quadratic form of discriminant —D (equivalently the
number of ordered pairs of integers (u,v) such that h=gp(u,v)), we can
state Mordell’s theorem as follows:

TaEOREM (Mordell). Let f(X,Y)=aX2+bXY +cY? be an integral,
positive-definite, binary quadratic form of discriminant — 4k2, where k is
a non-zero integer, so that b is an even integer. Then f(X,Y) is representable
by any integral, positive-definite, binary quadratic form of discriminant
— D, if and only if r,(d)>0, where, here and throughout this paper, d=
G.C.D.(a,b,c).

In Section 2 we determine the value of r,(%) for all D given by (1.1).
In Section 3 we prove two lemmas which are used in Section 4, where
we prove the following generalization of Mordell’s theorem.

THEOREM 1. Let f(X,Y)=aX2+bXY +cY? be an integral, positive-
definite, binary quadratic form of discriminant — Dk2, where k is a non-
zero tnteger and D is given by (1.1). Then f(X,Y) is representable by any
integral, positive-definite, binary quadratic form of discriminant —D if
and only if rp(d)>0.

As regards the number of representations of f(X,Y) by a form of
discriminant — D, Pall [4] has proved the following theorem for the case
D=4.

TaEOREM (Pall). Let f(X,Y)=aX24+0XY +cY? be an integral, posi-
tive-definite, binary quadratic form of discriminant — 4k?, where k is a
non-zero integer. Then the number of representations of f(X,Y) by any
integral, positive-definite, binary quadratic form of discriminant —4 is
2r4(d).

In Section 5 we generalize this result by proving the following:

THEOREM 2. Let f(X,Y)=aX2+bXY +cY?2 be an integral, positive-
definite, binary quadratic form of discriminant — Dk?, where k is a non-
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zero integer and D is given by (1.1). Then the number of representations of
f(X,Y) by any integral, positive-definite, binary quadratic form of discrim-
inant —D is 2rp(d).

We remark that our proof of theorem 2 is much simpler than the one
given by Pall [4] for the case D=4.

We conclude this introduction by noting that we write, throughout
this paper, p(D) for the unique prime dividing D, where D is given by
(1.1), so that

pD) =2, if D=4,8,
D, if D=3,7,11,19, 43, 67, 163 .

2. The value of rp(h).

We calculate the value of rp(h), for h a positive integer and D=
3,4,17,8,11, 19,43, 67, 163, from an old result of Dirichlet (see for
example [1]). We shall use the Kronecker symbol (-/-)

TaeoreEM (Dirichlet). For D=3, 4,7, 8, 11, 19, 43, 67, 163 we let

wp =2, if D=17,8,11,19,43, 67,163,
=4, if D=4,
=6, if D=3,
and set
(2.1) h = pD)y2op™...p g .. qf,

where the p; are r (2 0) distinct odd primes == p(D) such that (—D[p;)= +1;
the q; are s (=0) distinct odd primes +p(D) such that (—D[g;)= ~1;
x;>0, ¢=1,...,r; §;>0, j=1,...,8; a20; %20 with x,=0 if D=4
or 8. Then

rp(h) = wDH (0, +1) H1(1+(—1)57)

=0 J=1

if D=4,7o0r 8, and

rph) = wpd (14 (—1)%) IT (x;+1) 1‘[ L1+ (—1)%),
=1 j=1
if D=3, 11, 19, 43, 67, 163.

(2.2)

Proor. We begin by showing that for any positive integer £ we have

We set Sp(k) = {(x y) | =,y integers with gp(x,y)=k} .
If D=4 (so that p(D)=2) the mapping A : 8,(2k) - Sy(k) defined by

N@y) = (3x+y),3=-y))
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is a bijection, so that |S,(2k)|=|S,(k)|, that is, r,(2k)=r. (k). If D=8
(so that p(D)=2), the mapping 4 : Sg(2k) — Sg(k) defined by
N(x,9)) = (v,32)
is a bijection, so that |Sg(2k)|=|Ss(k)|, that is, r4(2k)=rg(k). For D4
or 8 (so that p(D)=D) the mapping A : 8p(Dk) — Sp(k) defined by
—2x+(D-1)y 2x+y
is a bijection, so that |S,(Dk)|=|Sp(k)|, that is, r,(Dk)=rp(k). Thus
for all D we have (2.3). Hence from (2.1) and (2.3) we have rp(h)=
rp(h,), where
hy =2%p™...p2qgf...qf and G.C.D.(h,D) =1,
recalling that «,=0 when D=4 or 8. Now, for D=3, 4,7, 8,11, 19, 43,
67, 163 the class number of discriminant — D is one, so that by a theo-
rem of Dirichlet [1] we have
rp(hy) = wp Ze[h,(—D/e) .
Since the Kronecker symbol (—D/e) is (completely) multiplicative with
respect to e, 3,5, (— Dfe) is multiplicative with respect to %, and we have

o) = wp| 3 (~0jol T ( 5 (o) T ( 5 (~Dpa)}-

e|2%0 i=1 \e|p*i J=1 e[qjﬁi
Now as
(-DJ2) = +1, if D=1,
= 0, if D=4,8,
= —1, if D=3,11,19,43,67, 163,
we have
o9 a0
> (=Dfe) = 3 (=D[2) = 3 (—DJ2)
3[2"‘0 1=0 =0
o+ 1, if D=4,17,8,
3(1+(=1)%), if D=3,11,19,43,67,163.
Also for :=1,...,r we have
o o
> (=Dfe) = > (=D|p}) = 2 (=D|p)} = ay+1,
elp‘at. l'ﬂo l=0

and for j=1,...,8 we have
Bi B
3 (=Dje) = 3.(~Dfgp) = 3 (~Djg;} = (1+(~14).
el 1=0 1=0

This completes the proof of (2.2).
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As immediate consequences of Dirichlet’s theorem we have:

CorOLLARY 1. If h is a positive integer then rp(R)=0 if and only if
there exists some prime q (possibly ¢=2 if D=3, 11,19, 43, 67 or 163)
with (—D[q)= —1, which divides h to an odd power.

CorOLLARY 2. If h is a positive infeger then rp(h) >0 if and only if
every prime q|h, with (—D|q)= — 1, divides h to an even power.

3. Two lemmas.

In this section we prove two lemmas which will be needed in the proof
of theorem 1.

Lemma 1. Let q be a prime such that (—D/q)= —1, where D is given
by (1.1). If k is @ non-negative integer and x,y integers such that g*|g p(z,y),
then ¢*1|x and ¢*t|y, where ky=[4(k+1)].

Proor. If k=0 the result is trivial so we can suppose k2 1. We con-
sider three cases.

Case (i). ¢*+2, D=4 or 8.

As g2 we have (—D,/q)=(—4D,/q)=(—D|q)=1. Now ¢*|z*+ D,y?
and so as k=1 we have g|x?2+ D,y If q|y there exists an integer z
such that yz=1 (modgq) and so (22)*= —D, (modgq), which contradicts
(—D,/q)=—1. Hence we have gy, and so q|z, say x=qx,, y=qy,.
Moreover we have ¢*|q¢%(x,2+D;y,?) and so if k=2, ¢*~2%|x2+ D,y,2
If k=3 we can continue in this way obtaining successively

xy=q%xy, Y1=9Ys, q¥4| w2 + Dyt
ZTo=qx3, Y2=1qY3, q* 8|22+ Dy ys? 5

Tar-1=2yry  Yiyrl-1= Y g—HH | x?m +D, ?/[Zycj .

If k is even the procedure terminates at this step and we have

= ¢y, oy =qMyy,,

that is, ¢*|x, ¢*1y. If k is odd we can do one more step and obtain

Ty = g+ Y =9Yygea
that is, a1
T = q“"‘“m[*k],d, y = gkt Yar+r»
or "z, ¢M|y.
Case (ii). ¢+2, D=3, 1, 11, 19, 43, 67 ,163.
Now ¢* |22+ zy + D, y? and so we have ¢*|(2x+y)2+ Dy% If gty there
exists an integer z such that yz=1 (modg) and so {(2x +y)z}*= — D (modg),
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which contradicts (—D/g)= —1. Hence ¢|y and so we have q|z, say
x=qx,, y=qy,. Moreover if k=2 we have ¢*%|x,2+x,y,+D,y% The
proof can now be completed in a similar way to case (i).

Case (iii). ¢=2.

As (—D|2)=—-1 we must have D=3,11,19, 43, 67,163, and so
9p(x,y)=2*+2xy+ D,y? where D;=1(D+1) is an odd integer. Now
2k |22+ xy + D, y? so that we have 2|z?+xy +y2. If 21y then 2|22 +x+1,
which is impossible as 2|22+x. Hence 2|y and so we have 2|z, say
x=2x,, y=2y,. Moreover if k=2 we have 2%-2|x,%2+z,y, + D,y,2, and
again the proof can be completed as in cases (i) and (ii).

This completes the proof of lemma 1.

Lemma 2. Let f(X,Y)=aX?2+bXY +cY? be an integral, positive-defi-
nite, binary quadratic form of discriminant — Dk?, where D is given by
(1.1) and k is a non-zero integer. Then f'(X,Y)=d1f(X,Y), where
d=G.C.D.(a,b,c), is a primitive, positive-definite, binary quadratic form
of discriminant — Dk'2, where k' is a non-zero integer.

Proor. Clearly f'(X,Y) is a primitive, positive-definite binary quad-
ratic form. Further, if it has discriminant — DEk'?, where k' is an integer,
then it is clear that k' must be non-zero. Hence it suffices to show that
the discriminant of f'(X,Y) is of the form —Dk'?, for some integer k'.
But the discriminant of f'(X,Y) is the integer — Dk?/d?, so that it suf-
fices to prove that d|k. If D=3,7, 11,19, 43, 67, 163, this is clear, as
in this case D is prime, and so d?|Dk? implies d|k. This leaves the cases
D=4 and D=8. We let d=2%,, where x>0 and d, is odd. From
b%?—4ac= — Dk? we deduce that b must be even, say b=2¢. Thus we have
ac=e2+ D, k2. Now 2*|d so that 22*|ac=e2+ D, k?, which implies that
2*|e and 2¢|k, since D;=1 or 2. Thus the discriminant of f'(X,Y) is
the integer — Dk,?/d,%, where k=2*k,. But d, is odd so that as D=4
or 8 we must have d, | k,, say k; =d,k’. Then the discriminant of f'(X, Y)
is —Dk'2, as required.

4. Necessary and sufficient conditions for representability.

This section is devoted to proving theorem 1. Since all positive-
definite, binary quadratic forms of discriminant — D are equivalent for
D=3,4,7,8,11, 19, 43, 67, 163, it suffices to show that f(X,Y) is rep-
resentable by g,(X,Y) if and only if r,(d) > 0.

We begin by showing that if f(X, Y) is representable by g,(X,Y) then
rp(d) > 0. For suppose not, that is r,(d)=0. Then by corollary 1 there
exists a prime ¢, with (—D/q)= —1, which divides ¢ to an odd power,
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say q2*+1||d. Thus we have ¢%s+l|q, ¢2+1|b, ¢25+1|c. Now as f(X,Y) is
representable by g,(X, Y), there exist integers a,, @y, by, b, with a,b, —
a,b; 40 and such that

(4.1) JX,Y) =gp(@, X+b,Y,0,X+b,Y) .
Hence we have
(4.2) a = gplag,a,),

2a:b,+ 2D a5b,, if D=0 (mod4),
2a,b, + ayby + agh, + 2Dja5h,, if D=3 (mod4),
c = gD(bly b2) )

and so ¢?+1|g,(a,,a,) and ¢25+1|g,(b;,b,). Thus by lemma 1 we have
g*tlay, ¢**tla,, ¢St by, ¢5t1|b,, and so from (4.2) we deduce that
q**2|a, g*$+2|b, ¢*$1+2%|c, that is, ¢?$+2|d, which contradicts ¢2s+!||d. Thus
we must have r,(d) > 0 if f(X, Y) is representable by ¢,(X, Y).

Conversely, we show that if r,(d) >0, then f(X,Y) is representable
by gp(X,Y). We let

f(X,Y) = dY(X,Y) = a’ X2+ XY +¢ Y2,

so that o' =a/d, b’ =b/d, ¢’ =c[d. Thus by lemma 2 f'(X,Y) is a primitive,
positive-definite, binary quadratic form with

diserim (f'(X,Y)) = —Dk'2,
where £’ is a non-zero integer. Hence we have
b'?—4a’'c’ = —Dk'?, thatis d4a’c’ = b'2+DEk'2.
If D=0 (mod4) then b’ is even so that

(4.3)(a) b= 20", a'c’ =gpb' k).
If D=3 (mod4) then b'—%’ is even so that
(4.3)(b) b =20"+k, a'c =gpd’Ek).

Hence from (4.3)(a) and (4.3)(b) we have rp(a’c’)>0. Now let ¢ be a
prime (possibly ¢=2) dividing a’c’, which is such that (—D/g)= —1.
Then by corollary 2 the highest power of ¢ dividing a’c’ is even, say
g**||a’¢’, and so from (4.3)(a)(b), by lemma 1, we have ¢*|b", ¢*|k’. Now

1 = G.C.D.(a',b',¢") = G.C.D.(¢/,20",¢'), if D=0 (mod4),
= G.C.D.(a/, 20" +K',¢'), if D=3 (mod4),
so that we have ¢2||a’, gt ¢’ or gt a’, ¢?*||c’. Treating every prime factor

q of a’c’, which is such that (—D/g)= —1, in this way, we see that we
may write
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(44) o = P24, b =PQB, ¢ =@, k =PQK,

where P,Q} are coprime integers all of whose prime factors ¢ are such

that (—D/q)= —1, and moreover 4 and C are free of such factors. From
(4.3)(a)(b) and (4.4) we have
(4.5) AC = g,(B,K) .

The only possible prime factors of A and C are the prime p(D) or primes
p such that (—D/p)=+1. We let p,,...,p; denote the primes % p(D)
which divide both 4 and C; p.q,.. .,p; the primes = p(D) which divide
A but not C; pyyy,. . .,p,, the primes =% p(D) which divide C but not 4.
Thus we have

(4.6) (=D[p;) = +1, i=1,...,m.
Hence we can set

(4.7) 4 = pD)y*pi...pe vkt 0%,
and

(4.8) O = pDYepft...plpls. .. e,

where 0<k<I<m and
%20, Bo20, &;>0,i=1,...0; B> 0,j=1,...kl+1,...,m.

Now let @ denote the rational number field and let @((— D)) (resp.
Q((—D,)}) denote the quadratic extension of @ formed by adjoining
(— D)t (resp. (—D;)}). We let

4p = Q(( —D1)})’

if D mod4) ,
= Q((-D)), if D

=0 (
=3 (mod4),

so that discrim (4,)= —D. The domain of all integers of A4;, is denoted
by I(4p). Factorization of elements of I(4,) into prime (equivalently
irreducible) elements of I(4,) is unique for D=3, 4, 7, 8, 11, 19, 43, 67,
163 [5]. From (4.6) and corollary 2 we see that rp(p;)>0, i=1,...,m.
Thus there exist integers u; and v; such that

p; = gp(uyv;), 1=1,...,m.
Hence we have
Py = Ty, i=1,...,m,
where
7y = u+v,(— Dy}, if D=0 (mod4),

= u;+3v;+3v,(— D)}, if D=3 (mod4),

is an element of I(4,). Moreover n; and 7; are conjugate, non-associated
primes of I(4,). Also by corollary 2 there exist integers u, and v, such
that p(D)=gp(ue,7,); in fact we can take
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(19,7) = (1,1), if D=4,
= (0,1), if D=8,
= (=1,+2), if D=3,7,11,19,43, 67,163 .
We set
(D) = uy+vy(—D,)}, if D=0 (mod4),
= Uy+ 3+ 3vo(—D)t, if D=3 (mod4),
so that

a(D) = 14 (=1}, if D=4,
(—2)*’ ﬁD:S,

= (= D)t if D=3,7, 11,19, 43, 67, 163 .

As n(D)a(D)=p(D), n(D) is a prime in I(4,). Moreover its conjugate
7(D) is the associate ¢(D)n(D) of n(D), where ¢(D) is the unit —(—1)},
if D=4, and —1, otherwise. Hence the factorizations of A and C into
primes in I(A4,) are given by

A = g(Dy°n(D)* aPRP . . . AP A PAEL .. APAP,
and
= 2 B1 = Bk 7Bk Bl+1 7B Bm =B
C = e(DYon(D)?Po a1 a7fr . . . a7k a1 afhyr . . almalm

Thus from (4.5) we have

(4.9) gp(B,K) = E(D)ao+ﬂon(D)2ao+2ﬂo ﬂ‘f“’ﬁlﬁ“ﬁﬂ‘ .

ok+Bk Zok+Bl o 0k+1 70K+ ol =ol o Bl41 =Bl41 Bm =B
T PR A R DAY AR A A

Now let
(4.10) hp(B,K) = B+ K(—D,)}, if D=0 (mod4),

= B+1K+3K(—D), if D=3 (mod4),
so that kp(B,K) is an element of I(4,) such that
(4.11) hp(B,K)hp(B,K) = gp(B,K) .
Hence from (4.9) and (4.11) we have
(4.12)  hy(B,K) = nu(D)™oPe grastbrn | gk gekfi

n%ﬁjil ﬁzlfil.yk“ . 7'[}" ﬁi‘l—w nﬁ-cix ﬁﬁ?—’ﬂﬂ . n‘;'nm ﬁfnm—';'m ,

where 7 is a unit of I(4,) and yy,. . .,y,, are integers such that

o‘i+ﬂi’ i=1,...,k,
Y 10 1=k+1,...,1,
ﬁi’ i=l+l,..-,m.

0

IIA

Now let s;,=min (;,%;), t=1,...,k, so that s;, a;—8;, y;—8;, Bi+8;—v;
are all non-negative integers, and set

Math, Scand. — 6
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= 0 81 Fo1-81 8k ZOk—Sk fyVkA1 ZOR+1VEAL o1
0, = na(D)™ @ . . . agFagk akpagky T

and

0, = n( D)ﬂ%’l"_"‘ ﬁgﬁn-—w oo LT ﬁZH"?k—Wc n}'ﬁ‘ ﬁ{ﬁry’“ ...qm ﬁf’:n—?’m .
The numbers 0, and 0, are elements of I(4,) such that
(4.13) 0102 = hD(‘B"K)’ 0161 = A, 6262 = O .

Now as 0,, 0, are elements of I(4,) there exist rational integers R,,
R,, 8;, S, such that for i=1,2,
(4.14) 6, = B, +8,(—-Dy)}, 0y = Ry+8,(—Dy)},
if D=0 (mod4),
0, = By +38,+ 38,(= D)}, 0, = R,—38,+ 1S, (- D),
if D=3 (mod4).
Hence from (4.10), (4.13) and (£.14) we have

(4.15) .B = “RIRz—‘DISlS2’ .K = R1S2+R2S1 )
if D=0 (mod4),
B = R,R,—R,8,-D,8,8, K = R,8,+R,8,,

if D=3 (mod4).
From (4.13) and (4.14) we obtain
(4.16) A = gp(Ry,8,), C = gp(Ry —8,).
Now let

(417) a, = PR,, a, =PS;, b' =0QR, b' = —-Q8,.
Then from (4.3)(a)(b), (4.4), (4.15), (4.16) and (4.17) we obtain
(4.18) a' = gp(a,’,a,’),
b = 2a,"b," +2D,a,'b,’, if D=0 (mod4),
2a,'b," +a,'b,’ +a,'b,' +2D,a,’'b,’, if D=3 (mod4),
¢’ = gp(by,by) .
Thus from (4.18) we deduce that
J(X,Y) =a'X24+0' XY +c' Y2 = gpla, X+, Y,a,’ X +b, 7).

Now as r,(d) >0, there exist integers % and v such that d=gp(u,v), so
that
[(X,Y) =df'(X,Y) = gp(w,v)gp(a, X +b," Y, ay’ X +b,' Y)
=gp(@; X+b,Y,a,X+b,Y),
where

a, = ua,’ —Dyva,, a, = ua, +va,’,
ubI'—Dlvbz', bz = ub2I+’vb1' N

o
=
]
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if D=0 (mod4), and

a, = ua,' —Dyva,, a, = ua, +va,"+vay,
b, = ub,/ —Dyvb,, b, = ub, +vb,’ +vb, ,

if D=3 (mod4). We note that

a1by—ayby = (ay' by —ay'by")gp(u,v)
(@', —ay'by")d
= —PQ(R,S,+R,8,)d = —PQKd = —k'd + 0.

This completes the proof of theorem 1.

It

5. Number of representations.

This section is devoted to proving theorem 2. It suffices to count the
number of representations of f(X,Y) by gp(X,Y). If f(X,Y) is not
representable by g,(X, Y) then by theorem 1 7,(d) =0 and so the number
of representations =0=2r,(d), as required. Hence we may suppose
that f(X,Y) is representable by g,(X,Y) (so that r;(d) > 0). Thus there
exist integers a,, a,, by, by (With a,b,—a,b,%0) such that

(5.1) f(X,Y) = gpa, X+b,Y,a,X+b,Y) .
Now let

« = a;+a,(— D), if D=0 (mod4),
a;+ $a,+ 3a,(— D), if D=3 (mod4),

I

and
B = by+by(—Dy)t, if D=0 (mod4),
= b+ 3by+3b,(— D)}, if D=3 (mod4),

so that « and § are elements of I(4,) such that
(5.2) fX,Y) = («X+BY)aX+8Y).

Hence the number of representations of f(X,Y) by g,(X,Y) is just the
number of ordered pairs («,f) of elements of I(4,) satisfying (5.2). Let
(o, 8) = (g, Bo) be a particular solution of (5.2) — we know at least one
such solution exists. Since I(4,) is a unique factorization domain we
can let y,=G.C.D.(xy,0,) and write ag=vyx, Bo=70fs, S0 that
G.C.D.(xy',8,")=1. Hence we have
G.C.D.(xg' &', &g’ Bo’ + &' Bo’s Bo' Bo') = 1,
and so
d = G.C.D.(a,b,¢) = G.C.D.(xg &g, xoBo+ & Bos BoBo) = VoTo -
Thus
Ao’ X+ B0 Y)(&' X +B0' Y) = (aX +pY)(aX +Y)
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and so as oy’ X + 8, Y is a primitive, irreducible element of the unique
factorization domain I(4,)[X, Y] we have

o’ X+B) Y|aX+BY or oyfX+B,/Y|aX+8Y.
If oy’ X+, Y|aX+BY there exists 6 € I(4p) such that
aX +BY = 8(oy X+8,'Y),

that is,
(0‘7ﬂ) = (60‘0’yaﬂol), where §d=d .

Similarly if «y’ X + 8, Y|aX +8Y we deduce that there exists & € I(4)
such that
(x,8) = (edy’,eBy’), where eé=d.

Thus there are 2r,(d) choices for («,8), as required, unless
(O, 0B0') = (8&0':550')’

for some 6,¢ in I(4,;) with 6d=cz=d.
However, this is impossible, for otherwise

—Dk?* = b®—4dac (“o@o"' &g B)2 — 4(oxg &) (BoBo)
(x0Bo— o Bo)?

= (o' B0’ — ' By )22 = (g By — xy' By)26%82 = 0O,

contradicting D =3, k+0. This completes the proof of theorem 2.

6. Example.

We conclude this paper with a numerical example which illustrates
theorems 1 and 2. We let

fUX,Y) = X24+3XY+4Y2 and fy(X,Y) = 4X2+4XY +8Y2.

Thus fi(X, Y) and fo(X, Y) are integral, positive-definite binary quadratic
forms of discriminants —7 and — 7-42 respectively. The greatest com-
mon divisor of the coefficients of f,(X,Y) is 4. By Dirichlet’s theorem
7,(4)=6 so, by theorem 1, f,(X,Y) is representable by f,(X,Y). More-
over by theorem 2 there are 12 such representations. Now g,(X,Y)=
X2+ XY +2Y?2 and we have
fl(X’Y) =g7(X+Y3Y)’ fz(X,Y) = 97(2X’2Y)1
f2(X’ Y) = f1(2X—2Y,2Y) .
We seek all 4-tuples of integers (a,,a,,b;,b,) With a,b, —a,b, & 0 such that

fo(X,Y) = fi(a; X+b,Y,a,X+5b,Y),
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that is, such that,

fia X+b,Y,0,X+b,Y) = f,(2X —2Y, 2Y),

or

g7((@1+ ) X + (b1 +,) Y, 0, X +8,Y) = g5(2X,2Y) .
Let
(6.1) & = @ +3as+3a,(=7)}, B = by+5by+ 40 (—T)H,

so that we want all ordered paris («,f) of elements of I (Q(( - 7)*)) such
that

(X +BY)(aX +8Y)

(2X +(L+ (=) Y)(2X +(1— (-7} Y)

X+ 1+ (-DHY)(X+ 31— (- T).

Since 7(Q((—7)))[X, Y] is a unique factorization domain we have
X+31+ (=Y |aX+BY or X+31+(-TY|aX+fY.

Thus we have f=4(1+(—7)})«, where xa=4. All six solutions of this
latter equation are given by

x= 42, Y£3£(=T)).
Hence from (6.1) we have

(a’liambl’bZ) = (2:0: _2:2)’ ("2’0’27 _2)7 (210’4’ _2): (_2,0: _4:2) ’
(0,1, —4,2), (0, — 1,4, —2), (0,1,4, — 1), (0, -1, —4,1),
(3) '_1’1’1)7 (_391’ '_1’ _l)a (3y _1,2, —'2)) (—3,1’ —2’2)

and so
X, Y) = fi(2X —27,27) = fi(—2X +2Y, —27),
= £(2X +4Y,-2Y) = f(—2X —4Y,2Y),
= fi(—4Y,X +27) = fi4Y, -X-27),
= f,(4Y,X-7) = fi(—4Y,-X+7),
= f1BX+Y,-X+Y) =f(-83X-Y,X-7),
= fi(8X+2Y,-X-2Y) = fi(-3X—-2Y,X+2Y),
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