SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

NOTE ON SALIÉ'S SUM

KENNETH S. WILLIAMS

ABSTRACT. It is shown in a very simple way that an exponential sum (involving the Legendre symbol) considered by Salié is the sum of two Gauss sums.

Let p denote an odd prime. Whenever we write \sum_x the summation is taken over all x in a complete residue system modulo p. If we write \sum_x' the summation is over all x in a reduced residue system modulo p. For x in a reduced residue system \bar{x} denotes its inverse modulo p. For integers a and b such that $ab \not\equiv 0$ (all congruences are modulo p), Salié's sum $S_p(a, b)$ is defined by

(1)
$$S_p(a,b) = \sum_{x} \left(\frac{x}{p}\right) \exp(2\pi i (ax + b\bar{x})/p),$$

where (x/p) is Legendre's symbol of quadratic residuacity modulo p. If (ab/p) = -1 applying the mapping $x \to \bar{a}b\bar{x}$ to Salié's sum (1) gives $S_p(a, b) = -S_p(a, b)$, so that $S_p(a, b) = 0$. If (ab/p) = +1, say $ab \equiv c^2 \pmod{p}$, applying the mapping $x \to \bar{a}cx$ gives $S_p(a, b) = (ac/p)S_p(c, c)$. In 1931 Salié [3] showed that $S_p(c, c)$ can be evaluated explicitly. He proved that

$$S_p(c,c) = 2\left(\frac{c}{p}\right)i^{((p-1)/2)^2}p^{1/2}\cos(4\pi c/p).$$

The author [4], [5] was the first to explain why $S_p(c, c)$ can be evaluated explicitly by showing that it is the sum of two Gaussian sums. (Other evaluations have been given by Mordell [1], [2].) The following is perhaps the simplest known proof of this result.

For $y \not\equiv 2$ we have

⁻ Received by the editors March 9, 1971.

AMS 1970 subject classifications. Primary 10G05.

Key words and phrases. Exponential sum, Legendre symbol, Salié's sum, Gauss sum.

so that

(2)
$$\sum_{x: x+\bar{x}=y}' \left(\frac{x}{p}\right) = \left(\frac{y-2}{p}\right) + \left(\frac{y+2}{p}\right).$$

Clearly (2) is also true if $y \equiv 2 \pmod{p}$, and so we have

$$S_{p}(c,c) = \sum_{y} \left\{ \sum_{x; x+\bar{x}\equiv y} \left(\frac{x}{p}\right) \right\} e(cy)$$
$$= \sum_{y} \left(\frac{y-2}{p}\right) e(cy) + \sum_{y} \left(\frac{y+2}{p}\right) e(cy).$$

This gives $S_p(c, c)$ as the sum of the two Gauss sums

$$\sum_{y} \left(\frac{y \pm 2}{p} \right) e(cy) = \left(\frac{c}{p} \right) i^{((p-1)/2)^{3}} p^{1/2} e(\mp 2c),$$

as required.

References

- 1. L. J. Mordell, On some exponential sums related to Kloosterman sums (submitted for publication).
 - 2. ——, On Salié's sum (submitted for publication).
- 3. H. Salié, Über die Kloostermanschen Summen S(u, v; q), Math. Z. 34 (1931), 91-109.
- 4. K. S. Williams, Finite transformation formulae involving the Legendre symbol, Pacific J. Math. 34 (1970), 559-568.
 - 5. —, On Salié's sum, J. Number Theory 3 (1971).

CARLETON UNIVERSITY, OTTAWA, CANADA