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NOTE ON DICKSON’S PERMUTATION POLYNOMIALS

By KenNETH S. WILLIAMS

1. Introduction. Let p be a prime and let m be an integer > 1. The finite
field with p™ elements is denoted by GF(p™) and its algebraic closure by GF(p™).
If X denotes an indeterminate, a polynomial F(X) ¢ GF(p™)[X] is called a
permutation polynomial if the associated polynomial funetion is a bijection
on GF(p™). Recently Hayes [5] has suggested an approach which might lead to
a systematic theory of permutation polynomials, at least when »™ > k(n), where
k(n) is a constant depending only on 7, the degree of F. Appealing to a deep
theorem of Lang and Weil [6] he notes (for p™ > k(n)) that

x, v = TR =D opgryx, v)

must factor in GF(p™[X, Y] if F(X) e GF(p™)[X] is to be a permutation poly-
nomial. It is the purpose of this note to show that Hayes’ approach works for
Dickson’s polynomials [3] [4]

_ hd 1y 2n + 1 (2n + 1 - S) sy2n+l—2s
(1°1) Dn.a(X) - Z( 1) 2n + 1 — 3 8 aX ’

=0

where n > 1 and a(# 0) e GF(p™). We note that
2n + 1 (2n+ l—s)

2n+1 — s $

is an integer fors = 0,1, 2, -+ - , n as it is just

2(211, +1-— s) _ (2n — s).
$ s

It is shown by factoring D* ,(X, ¥) in GF(p™)[X, Y] that if G.C.D. (»*™ — 1,
2n + 1) = 1, then Dickson’s polynomials D, ,(X) are permutation polynomials.
This result is not new, in fact Dickson [3] [4] proved that the D, (X) are per-
mutation polynomials under this condition by showing that the equation
D, .(z) = bhas a unique solution ze GF(p™) for any be GF(p™). (The equation
D, .(x) = b considered as an equation over the complex field is solvable alge-
braically by a generalization of Cardan’s solution of the cubie D, ,(z) = b—this
has been rediscovered a number of times, see for example [7]—and Dickson’s
argument is just the finite field analogue of this.) What is new is the explicit
form of the factorization of D¥ ,(X, Y) in GF(p™)[X, Y]. The author was led to
the form of the factors through a study of a recent paper by Chowla [2].
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660 KENNETH §. WILLIAMS

2. The quantities «; and 8;. We let p*(k > 0) denote the largest power of p
dividing 2n + 1 so that

.1) 2n+1=p'Cu+1, pit @+l
As G.C.D. (p, 2n, + 1) = 1 the quantity
sam+D _ q

7= 2n, +1

where ¢ denotes Euler’s function, is an integer. Hence if « is a primitive element
of GF(p**™*"?), that is a generator of the cyclic (multiplicative) group of
GF (p*®~*"), the quantity o ¢ GF(p*®™*V) C GF(p™*~*") C GF(p™) is a
primitive (2n, + 1)-th root of unity over GF(p™). Denoting such a primitive
root by 6, so that

@2 et =1, 61 i=12---,2n,,

wesetfort =1,2, ---,m
2.3) o = 'S + 0"""'1-"’ B = o — gPmri~

We note that «; and 8; are not independent as o — 87 = 4. We require a
number of simple results concerning the «, and 8; so that for convenience we
put them together in a lemma.

LemMa 1. Fori=1,2, --- , n, we have a; # £2, 8; # 0, and for 1, j =
1,2, .-+, n, withi 5 j we have 83 = £; .

Proof. If a; = +£2then ¢ + 6°° = %2, thatis, 8° = +1, or 6* = 1, which
contradicts (2.2) as 1 < 2¢ < 2n,. Thus we have a; # +2, and 8; # 0 follows
from o? — B2 = 4.

Finally if 82 = 82,4 # j, then 6* + 67* = ¢* + 67, so that on multiplying
both sides of this by 6°° we obtain 6* + 1 = *** + ¢*~*, or equivalently
(0*** — 1)(6*~* — 1) = 0. Thus we have 8?“*” = 1. Hence there exists an
integer ¢ such that 2(7 &= j) = {(2n, + 1). Now 0 < |¢ & j| < 2n, , so that

4n,
2n, + 1

which is clearly impossible as 2(7 & j) is even and +(2n, + 1) is odd.

0< |t < < 2 giving t = =1,

3. The factorization of D, ,(X). In this section we prove
TeeoreM 1. For n > 1 and a(7%0) e GF(p™) we have
D...(X) = X* I (X* + glo)"".
f=1

Proof. We write GF(p™)(X) for the field of rational functions in the indeter-
minate X over the field GF(p™) . The algebraic extension field of GF(p™)(X)
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formed by adjoining the elementv/X”> — 4a (a(>40) e GF(p™)) is denoted by
GF(p™) (X, VX® — 4a). Now if R is any commutative ring with identity
and «, 8 ¢ R, the following identity is readily established by induction on n

3.1) s + B2n+l — i (-1)* _22i|‘i_ (2n +1 - 3)(a + ﬁ)hﬂ_z'(aﬁ)'.

prerd mn+1—s 8

Applying (3.1) with

2 2
R=GF(P")(X,\/X’—4G),Q=X+W, X - VX - 4a

B = 2 ’

we obtain

Nowas p Y (2n, + 1) we have seen that there exists a primitive (2n, + 1)-th
root of unity over GF(p™), namely §. Moreover 6” is also a primitive (2n, + 1)-th
root of unity over GF(p™), so that if X, , X, are indeterminates we have the
following factorization in GF(p™)[X, , X.]

2ny
X';‘n.-vl _ :u|+l = H (X]. - 02|X2).
=0
Hence we have
X:'H-l _ X:n-i-l = X¥.(2ﬁ:+l) — Yr'(ﬂﬁl*'l)

= (Xiu,+1 - qu|+l)»'

= H (X, — 6*X,)"".

Replacing X, , X, by the elements

X+ VX' —4a VX'—-4a—-X
2 ’ 2

(respectively) of the field GF(p™)(X, v/ X* — 4a) we obtain

(F+ VE=day _ (VE == x)"
2 2

x I {(X + W) _ 6)2..(\/3"’——240; — X)}
. {[(X + VX' =40 _ ozi(m ~ X)]
2 2

f=1

=1

+
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— X’p' ﬁ {Xz — 2a + (021' + 02(2n1+1)—-2i)a}7.

{=1

— Xpﬁ ﬁ {Xz + (ai — 02n,+l—i)2a}7.

i=]1

= x* [[ (X* + 80"

i=1

The theorem now follows on appealing to (3.2).
As immediate consequences of Theorem 1 we have

CoroLLARY 1. For n > 1 and a(#0) e GF(p™) we have
D,.o(X) = {Dn.(XD)}".
Cororrary 2. [[%, 82 = (—1)"(@2n, + 1).
4. The factorization of D* (X, ¥Y). We are now in a position to prove the
main result of this paper, namely the factorization of D¥ (X, Y) in GF(p™)[X, Y].
TueEorEM 2. Forn > 1 and a(7%0) e GF(p™) we have

@) DX, V)=X-Y"]]X —aXY+ Y+ g

where each quadratic factor is irreducible in GF(p™)[X, Y].
Proof. Appealing to Corollary 1 we have
(X - Y)D*.(X,Y) = D, .(X) — D, (Y)

= (Deo@}™ — (Dn, (D)}
= {Dr.o@) = Do (VY
= {X - V) DX, D)}

giving

(4.2) DX, Y) = (X — V)" {D}, (X, )}

Thus it suffices to factor D* (X, Y). To do this we apply (3.1) with =,
replacing n, R = GF(p™[X, Y],
.= X —Y g = - X+ Y
B: ’ B:

so that

a+ B8 =2X, aB=—(X_c;?XY+Y2),

obtaining
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1

2n,+1
i

_ < 2n, + 1 (2nl +1 - s) 2».+1—2.<X2 — aiXY + Yz)'_
N g 2n, + 1 —s S X ﬁf

(43) {(0-X _ Y)2M+l + (_02n,+1—|‘X + Y)znu-]}

Similarly choosing

po =X+ Y g=X= [ 4
B: ’ B: !

8o that

a+ﬁ=Y aﬁ=_(X2—a.~XY+Y2)
we obtain
(4.4) 62'ﬂ];+1 {(_X + 0iy)2n|+l + (X _ 02n|+l—iY)2n,+1}

= 3 M (an +1-— s)an.u—za(Xz — ai)gY + Yz)"

io2m+1—s 8 B3

Now

(—X + oiY)2m+1 = (_02n1+1—iX + Y)2n,+l,
(X _ 02n1+l—"Y)2n.+1 = (0|X _ Y)2n,+l'
so that from (4.3) and (4.4) we have

< 2n, + 1 <2n1 +1- s) 2n1+1-2¢ __ yr2na+l—2e (X2 —a. XY + Yz)' _
,;, on, +1—s s X Y ) : = 0.

Hence the equation

< 2n, + 1 <2n1 +1-— 3)( 2ri+1-20 _ p2natl-2eyge
“om +1—3 s X Y =0

has the n, distinet roots

.X2 —a,XY-I— Y2

t = G=1,2 - ,n) in GF@VX, Y].

[
Thus
& o +1 (2n, +1- s) 2matlo2s __ yEeati-deye
=0 2n1 + 1 — 8 8 (X Y )t

= (@n, + )X - ) H(t x = a..X.Y + Yz))

i=1 i

=X - N[ (X - XY + ¥ — &),

=1
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appealing to Corollary 2. Taking { = —a we have

< [} 2 1 2 1 — Xﬂn.-pl—z. — Y2Ha+l—2' .
Dy (X, Y) = 2 (-1 ___211.17:--'1_ = 8( o +s s) =T .

=0

= [I (& — aXY + Y* + Bla),
i=1
and the required factorization of D¥* (X, Y) follows from (4.2).
If X* — o, XY + Y? + Bla is reducible in GF(p™)[X, Y], then there exist
7, 8, t, u e GF(p™) such that

X —a XY+ Y+ Ba=X+rY + )X +tY + w.
As B, # 0 (Lemma 1) and a £ 0 we have 8 % 0, u % 0. Thus equating coefli-
cients of X and Y we obtain 4 = —sandt = r. Next equating coefficients of ¥*

and XY we have ¥’ = 1 and 2r = —a, , that is, @; = =42, which contradicts
Lemma 1. Hence X* — a,XY + Y? + Bla is irreducible in GF(p™)[X, Y].

5. Dickson’s theorem. We show how Dickson’s theorem [3], [4] can be
deduced from Theorem 1 if G.C.D. (p*™ — 1, 2n + 1) = 1. We first prove
a lemma concerning the non-vanishing of the quadratic factors of D¥ (X, Y)
in GF(p™).

Lemma 2. If G.C.D. (p*" — 1,2n + 1) = 1 and a(40) e GF(p™), then for
1=12 ---, n, there do not exist z, y ¢ GF(p™) such that

5.1) 2 —axy+ 9+ Ba=0.
Proof. Writing ¢ for 6°(1 < © < n,) (5.1) becomes

o Dt -2
z (¢+¢xy+y+ 3@ 0,

that is,

2

6.2 ¢‘—%¢’+(%l—2)¢’—%¢+1=0.

Now it can be deduced immediately from the work of Carlitz [1] that the recip-
tocal quartic X* + AX® + BX® + AX + 1 e GF(p™)[X], where p > 2, is
irreducible in GF(p™)[X] if and only if both of A> — 4B + 8 and (B + 2)* — 44’
are non-squares in GF(p™). It is easy to check that if X* + AX® 4+ BX* +
AX + lisreducible, it has only linear or quadratic factors. Wehave A = —zy/a
and

2 2 2 — 2\ 2
B=£—'Z—y—2 so that (B+2)”—4A’=(’” ay)-
Hence the quartic (5.2) is reducible into linear and/or quadratic factors over
GF(p™). This implies that ¢ e GF(p®™). Thus, as ¢ = 0, ¢*""' = 1. As
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G.C.D. (p*™ — 1, 2n + 1) = 1 there exist integers a and b such that a(p*™ — 1)
+ b(2n + 1) = 1. Hence

g a(p*®=1)+b(2n+1) __
=4¢ - 1:

which is the required contradiction.
Hence from Theorem 2 and Lemma 2 we have

Treorem 3 (Dickson). If G.C.D. (p™™ — 1, 2n + 1) = 1 then D, . (X),
where a(7£0) e GF(p™), is a permutation polynomial in GF(p™)[X].
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