A CLASS OF CHARACTER SUMS

KENNETH S. WILLIAMS

1. Introduction

Let p denote an odd prime, χ a multiplicative character modulo p,

$$e(t)=\exp\left(\frac{2\pi it}{p}\right),$$

(t real) and $r_1(x)$, $r_2(x)$ rational functions of x with integral coefficients. The character sum $\sum_{x=0}^{p-1} \chi(r_1(x)) e(r_2(x))$ has been estimated by Perel'muter [3]. (The asterisk (*) means that the singularities (mod p) of r_1 and r_2 are excluded and in the sum 1/v ($v \neq 0 \pmod{p}$) is to be interpreted as the unique integer w (mod p) such that $vw \equiv 1 \pmod{p}$). Perel'muter has given conditions under which this sum is $O(p^{\frac{1}{2}})$, thus generalizing the earlier deep work of Weil [4] and Carlitz and Uchiyama [2]. It is the purpose of this note to show that Perel'muter's work can be applied to estimate the character sum

$$S_p(k, r_1, r_2, \chi) = \sum_{x=0}^{p-1} x^k \chi(r_1(x)) e(r_2(x)), \qquad (1.1)$$

where k = 1, 2, 3, ... To do this we introduce

$$S_p(r_1, r_2, \chi) = \sum_{x=1}^{p-1} \chi(r_1(x)) e(r_2(x)), \qquad (1.2)$$

and for any integer m we let \overline{m} denote the function defined by $\overline{m}(x) = mx$. Then we set

$$\Phi_p = \Phi_p(r_1, r_2, \chi) = \max_m |S_p(r_1, r_2 + \overline{m}, \chi)|$$
(1.3)

and

$$L_p(k, r_1, r_2, \chi) = \sum_{m=-\infty}^{+\infty} \frac{S_p(r_1, r_2 + \overline{m}, \chi)}{m^k}, \quad k = 1, 2, 3, ..., \quad (1.4)$$

where the maximum in (1.3) is taken over all integers m (or in view of the periodicity in m of $S_p(r_1, r_2 + \overline{m}, \chi)$ over those satisfying $0 \le m \le p-1$), the sum $\sum_{m=-\infty}^{+\infty} is$ taken in the narrow sense, that is as $\lim_{t \to +\infty} \sum_{m=-t}^{+t}$ and the dash (') means that the term m = 0is omitted. If r_1 , $r_2 + \overline{m}$ (m = 0, 1, ..., p-1) satisfy the conditions given by Perel'muter [3] we know that $\Phi_p = O(p^{\pm})$. Trivially $\Phi_p < p$ so that $L_p(k, r_1, r_2, \chi)$

Received 27 August, 1969. This research was supported by a National Research Council of Canada Grant (No. A7233).

is well-defined for $k \ge 2$ and in this case the sum can be taken in the wide sense, that is, as $\lim_{\substack{t_1, t_2 \to \infty \\ m=-t_2}} \sum_{m=-t_2}^{+t_1}$. However when k = 1 it is not obvious that the sum exists, that it does is shown in Lemma 1. Lemmas 2, 3, 4, 5 are devoted to estimating $L_p(k, r_1, r_2, \chi), k \ge 1$. Lemma 6 gives the relationship between $S_p(k, r_1, r_2, \chi)$ and $S_p(r_1, r_2, \chi)$ and $L_p(n, r_1, r_2, \chi)$ (n = 1, 2, ..., k) from which the final estimate $S_p(k, r_1, r_2, \chi) = O(\Phi_p p^k \log p)$ can be deduced.

2. Existence of
$$L_p(1, r_1, r_2, \chi)$$

We prove

LEMMA 1. $L_p(1, r_1, r_2, \chi)$ exists.

Proof. For any positive integer t we have

$$\sum_{m=-t}^{+t} \frac{S_p(r_1, r_2 + \overline{m}, \chi)}{m} = \sum_{m=1}^t \frac{S_p(r_1, r_2 + \overline{m}, \chi)}{m} - \sum_{m=1}^t \frac{S_p(r_1, r_2 - \overline{m}, \chi)}{m}$$
$$= 2i \sum_{m=1}^t \frac{1}{m} \left\{ \sum_{x=1}^{p-1} \chi(r_1(x)) e(r_2(x)) \sin \frac{2\pi m x}{p} \right\}$$
$$= 2i \sum_{x=1}^{p-1} \chi(r_1(x)) e(r_2(x)) \sum_{m=1}^t \frac{\sin (2\pi m x/p)}{m}.$$

Now for x = 1, 2, ..., p-1 we have

$$\lim_{t \to +\infty} \sum_{m=1}^{t} \frac{\sin(2\pi m x/p)}{m} = \sum_{m=1}^{\infty} \frac{\sin(2\pi m x/p)}{m} = \frac{\pi}{2} - \frac{\pi x}{p}, \qquad (2.1)$$

so that

$$\sum_{m=-\infty}^{+\infty} \frac{S_p(r_1, r_2 + \overline{m}, \chi)}{m} = \frac{\pi i}{p} \sum_{x=1}^{p-1} (p - 2x) \chi(r_1(x)) e(r_2(x)), \qquad (2.2)$$

which proves the result.

3. Estimation of $L_p(k, r_1, r_2, \chi), k \ge 1$

We require a number of lemmas.

LEMMA 2. For x = 0, 1, 2, ..., p-1 we have

$$x = \frac{p-1}{2} + \sum_{m=1}^{p-1} \frac{e(mx)}{e(-m)-1}.$$

Proof. The polynomial $(z+i)^p - (z-i)^p$ is of degree p-1, its coefficient of z^{p-2} is 0 and it has the p-1 roots $\cot \frac{m\pi}{p}$ (m = 1, 2, ..., p-1). Hence $\sum_{m=1}^{p-1} \cot \frac{m\pi}{p} = 0$,

and as cot
$$\frac{m\pi}{p} = -2i\left\{\frac{1}{2} + \frac{1}{e(-m)-1}\right\}$$
, we have
$$\frac{p-1}{2} + \sum_{m=1}^{p-1} \frac{1}{e(-m)-1} = 0,$$

which proves the result for x = 0. For x = 1, 2, ..., p-1

$$\sum_{m=1}^{p-1} \frac{e(mx) - e(m(x-1))}{e(-m) - 1} = -\sum_{m=1}^{p-1} e(mx) = 1,$$

so that

$$\sum_{m=1}^{p-1} \frac{e(mx)}{e(-m)-1} = 1 + \sum_{m=1}^{p-1} \frac{e(m(x-1))}{e(-m)-1}$$
$$= 2 + \sum_{m=1}^{p-1} \frac{e(m(x-2))}{e(-m)-1}$$
$$= \dots$$
$$= x + \sum_{m=1}^{p-1} \frac{1}{e(-m)-1}$$
$$= x - \frac{p-1}{2},$$

as required.

Lemma 3. $|S_p(1, r_1, r_2, \chi)| \leq \Phi_p p \log p$.

Proof. We have by Lemma 2

$$S_{p}(1, r_{1}, r_{2}, \chi) = \sum_{x=1}^{p-1} x \chi(r_{1}(x)) e(r_{2}(x))$$

$$= \sum_{x=1}^{p-1} \left\{ \frac{p-1}{2} + \sum_{m=1}^{p-1} \frac{e(mx)}{e(-m)-1} \right\} \chi(r_{1}(x)) e(r_{2}(x))$$

$$= \frac{p-1}{2} S_{p}(r_{1}, r_{2}, \chi) + \sum_{m=1}^{p-1} \frac{1}{e(-m)-1} S_{p}(r_{1}, r_{2}+\overline{m}, \chi)$$

so that

$$|S_p(1, r_1, r_2, \chi)| \leq \Phi_p \left\{ \frac{p-1}{2} + \sum_{m=1}^{p-1} \frac{1}{|e(-m)-1|} \right\}.$$

$$\sum_{m=1}^{p-1} \frac{1}{|e(-m)-1|} = \frac{1}{2} \sum_{m=1}^{p-1} \frac{1}{\sin(m\pi/p)}$$
$$= \sum_{m=1}^{\frac{1}{2}(p-1)} \frac{1}{\sin(m\pi/p)}$$
$$< \frac{p}{2} \sum_{m=1}^{\frac{1}{2}(p-1)} \frac{1}{m}$$
$$< \frac{p}{2} \log p,$$

giving

$$|S_p(1, r_1, r_2, \chi)| \leq \Phi_p p \log p.$$

LEMMA 4. $L_p(1, r_1, r_2, \chi) = O(\Phi_p \log p)$, where the constant implied by the O-symbol is absolute.

Proof. From the proof of Lemma 1 (2.2)

$$L_p(1, r_1, r_2, \chi) = \pi i S_p(r_1, r_2, \chi) - \frac{2\pi i}{p} S_p(1, r_1, r_2, \chi),$$

so that by Lemma 3

$$\begin{aligned} |L_p(1, r_1, r_2, \chi)| &\leq \pi \Phi_p + 2\pi \Phi_p \log p \\ &= O(\Phi_p \log p). \end{aligned}$$

LEMMA 5. For $n \ge 2$, $L_p(n, r_1, r_2, \chi) = O(\Phi_p)$, where the constant implied by the O-symbol is absolute.

Proof. This is clear as

$$|L_p(n,r_1,r_2,\chi)| \leq \Phi_p \sum_{m=-\infty}^{+\infty'} \frac{1}{m^n} = O(\Phi_p).$$

4. Estimation of $S_p(k, r_1, r_2, \chi)$.

We begin by relating $S_p(k, r_1, r_2, \chi)$ to $S_p(r_1, r_2, \chi)$ and $L_p(n, r_1, r_2, \chi)$ (n = 1, 2, ..., k),

(Lemma 6). This lemma was suggested by [1]. (Note that the 2 appearing in the expression $\frac{p^3 \sqrt{p}}{2\pi}$ (last line, p. 153) should be omitted).

LEMMA 6. For $k \ge 1$

$$S_p(k, r_1, r_2, \chi) = \frac{p^k}{k+1} S_p(r_1, r_2, \chi) - p^k \sum_{n=1}^k \frac{k(k-1)\dots(k-(n-2))}{(2\pi i)^n} L_p(n, r_1, r_2, \chi).$$

Proof. By Jordan's test x^k has a convergent Fourier series for 0 < x < p, say

$$x^{k} = \sum_{m=-\infty}^{+\infty} w_{m} e(mx),$$

where the sum is taken in the narrow sense and the coefficients are given by

$$w_m = \frac{1}{p} \int_0^p x^k e(-mx) dx \quad (m = 0, \pm 1, \pm 2, ...).$$

Taking m = 0 we have

$$w_0 = \frac{p^k}{k+1}$$

and for $m \neq 0$ we have

$$w_m = -p^k \sum_{r=1}^k \frac{k(k-1)...(k-(r-2))}{(2\pi i m)^r}.$$

Thus

$$-p^{k} \sum_{r=1}^{k} \frac{k(k-1)...(k-(r-2))}{(2\pi i)^{r}} L_{p}(r, r_{1}, r_{2}, \chi)$$

$$= -p^{k} \sum_{r=1}^{k} \frac{k(k-1)...(k-(r-2))}{(2\pi i)^{r}} \sum_{m=-\infty}^{+\infty} \frac{S_{p}(r_{1}, r_{2}+\overline{m}, \chi)}{m^{r}}$$

$$= \sum_{m=-\infty}^{+\infty} w_{m} S_{p}(r_{1}, r_{2}+\overline{m}, \chi)$$

$$= \sum_{m=-\infty}^{+\infty} w_{m} \sum_{x=1}^{p-1} \chi(r_{1}(x)) e(r_{2}(x) + mx)$$

$$= \sum_{x=1}^{p-1} \chi(r_{1}(x)) e(r_{2}(x)) \sum_{m=-\infty}^{+\infty} w_{m} e(mx)$$

$$= \sum_{x=1}^{p-1} \chi(r_{1}(x)) e(r_{2}(x)) \{x^{k} - w_{0}\}$$

$$= S_{p}(k, r_{1}, r_{2}, \chi) - \frac{p^{k}}{k+1} S_{p}(r_{1}, r_{2}, \chi),$$

as required.

THEOREM 1. $S_p(k, r_1, r_2, \chi) = O(\Phi_p p^k \log p)$, where the implied constant depends only on k.

Proof. This is immediate from Lemmas 4, 5, 6.

5. An example

We finish by giving one simple application of Theorem 1.

THEOREM 2.

$$\sum_{x=1}^{p-1} x^k \left(\frac{x}{p}\right) = O(p^{k+\frac{1}{2}} \log p),$$

 $k = 1, 2, \ldots$

Proof. Here
$$r_1(x) = x$$
, $r_2(x) = 0$, $\chi(x) = \left(\frac{x}{p}\right)$ so that

$$S_p(r_1, r_2 + \overline{m}, \chi) = \sum_{x=1}^{p-1} \left(\frac{x}{p}\right) e(mx) = \left(\frac{m}{p}\right) i^{\frac{1}{2}(p-1)^2} p^{\frac{1}{2}},$$

giving

$$\Phi_p = \max_m \left| \left(\frac{m}{p} \right) i^{\frac{1}{2}(p-1)^2} p^{\frac{1}{2}} \right| = p^{\frac{1}{2}},$$

as required.

References

- 1. R. Ayoub, S. Chowla and H. Walum, "On sums involving quadratic characters", J. London Math. Soc., 42 (1967), 152-154.
- 2. L. Carlitz and S. Uchiyama, "Bounds for exponential sums", Duke Math, J., 24 (1957), 37-41.

3. G. I. Perel'muter, "On certain sums of characters", Uspehi Mat. Nauk, 18 (1963), 145-149.

4. A. Weil, "On some exponential sums", Proc. Nat. Acad. Sci. (U.S.A.), 34 (1948), 204-207.

Carleton University, Ottawa, Canada.