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ASYMPTOTIC BEHAVIOUR OF THE nt IL  TERM 
OF CERTAIN SUBSEQUENCES OF THE 
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(Curleton Unzve~sity. O t l n z ~ ~ ~ )  

Let  -4 = : a ( l ) ,  ( ~ ( 2 ) ,  ..., ( ~ ( T L ) ,  ...) be irifinite eubsc- 
cluenee of the  natural  11~11nhers. Number tlieory provides us: 
\I-itli a, woaltli of e x n m ~ ~ l e s  of sucli s~tbseyue~ices A fbr \vllicll 
the  asylnptotic hehariour is l<llo\rm (as z -- + oo) of the  number 
TA(:t,) of ele~nent,~* i l l  *4. whicll n1.r less t11a11 or equal t o  tlie 
real nuinbor .c. (For :r few J U C I I  cxaml~lrs  see [2]-[l"). For 
esaml~Io [3] if A is the  subsequence of scluarefree integers i t  is 
kno\rn that, 

Hence as x ~ ( u ( ? L ) )  = / I . ,  we hare  

ti + 
11 = , l (~(tO -t ~ ( I L -  ). t ha t  is, 



Thus we have deduced the asymptotic behaviour of a ( n )  
from the known asymptotic behaviour of x A ( z ) .  It is the 
purpose of this paper to do this for a general subsequence A 
for which the asymptotic behaviour of x A ( x )  is known. We 
suppose that  an asyinptotic formula for x A ( z )  is known of the 
following type : . 

(1) X A ( X )  = f ( x ) + O ( g ( x ) ) ,  as 2 -++ 00, 

where the conetant implied by the O-symbol is independent 
of z .  It will a l w ~ y s  be understood that such an expression 
as (1) is a genuine asymptotic formula, tha t  is, f ( x )  is the 
&'main term", so that x a ( x )  - f i x ) ,  as x  -+ +m, a d  O ( g ( z ) )  is 
the '(error term". This is guaranteed by 

g ( 4  lim -=0. 
z - + + -  f (4 

Theorem. Let A = {a(l), a ( 2 ) ,  ...} be an infinite subse- 
quence of the natural numbers for which an asymptotic 
formula (1) is known, where for all sufficiently large x ,  j ' ( x )  
and g l ( z )  both exist, a ~ i d  satisfy , 

Then if ( k ( x ) ,  I&(%)) in o, pair of real-valued functions with 
h ( x )  = ~ ( x ) ,  as x  + +w, such tha t  for a11 sufficiently large x  
we have 

then 



We note that (2) implies the existence of f l(z) for all 
sufficiently large e and so there is always a pair (k(z),  h(x)) 
satisfying (3), namely (k(z), h(z)) = ( f - I ( % ) ,  0 ) .  With this choice 
the theorem gives 

However as we shall see in the exampl&s concluding this 
paper, i t  is often more convenient to apply (4) with 
k(z) # f-](z)  rather than (6) .  

In  the proof of the theorem we make use of the following 
theorem due to Entringer [l], namely, if r(z) -t +w and 
r(z) N ~ ( z )  as z  3 +w, and t (z)  is monotonic and 

for all sufficiently large z ,  the11 t(r(z)) - t(s(z)), as x -+ + W .  

Proof of Theorem, Asf'(z) > 0, for all sufficiently largo 
z, f - l (z)  exists and is differentiable with positive derivative 

, for all sufficiently large z .  Moreover as ( f -  ' ) '(z) = f'( f - 1 , x ) )  

A is an infinite subsequenoe we have rA(z)  + + 00, as x + + =. 
But ~ ~ ( 5 )  'V f ( x ) ,  a8 x -+ +w, so we must have f ( z )  -+ +-, 
as z  + +w. Thus f - ] ( z )  + +a, as z -, +oo, and so choosing 

as z  -+ +oo. NOW from (3), as h(z) = o(z), as z -;t + - ,  

we have 

(7) f(k(z)) 1-2 ,  as s -+ +oo. 



Thus for all sufficiently large z, we have 

From (6) find (7 )  Ily Entringer's theorem we have 

(9) k ( z )  = j"l( f ' ( k ( 2 ) ) )  - ./'-I(%), us  2 -> +ao, and so 
for all sufficiently large z we have 

From (9) we deduce k ( x )  -+ tee, as r + +oo, and so as 
f ( x )  is monotonic increasing we have from ( 1 0 )  for all sufficiently 
large x  

Hence from (8) ancl ( 1  1) we have for all ~utficiently large x  

3 2 
( 1 2 )  max (2, f ( k ( x ) ) )  ,< 1' ( ?-k-(z)) mill (2 ,  f ( k ( z ) ) )  >:,- 

d .. 
Xow by the  mean value tlieorem there exists c jx )  satisfying 

min ( x ,  f ( k ( z ) )  < c ( x )  < max (2: f ( k ( z ) ) )  and such that  

( 1 3 )  1 f - l ( x )  -k(%) 1 = 1 f - l ( ~ )  - f - l ( J ( k ( : c ) ) )  1 
= I ( j - l ) ' ( c ( z ) ) ( z -  j ( k ( x ) ) )  1 . 

From ( 1 2 )  ure deduce tha t  

clll~l so n , s i - l ( x )  is monotonic increasing for fill sufficiently large 
2;  ~ v a  have 



Hence from (ti) and (14)  we have 

as z -+ +oo. 

Thus from (31, (13)  and (15)  we deduce 

Now taking x = u , ( I ~ ) ,  tt -+ +ao, in ( 1 )  we obtain 

(17)  I L  = X A ( ~ ( I ~ )  = f ( ~ ( 7 4 )  I- O ( Y ( ~ ( ~ L ) ) ) ,  

as  n -t +oo, tha t  is, 

(18)  I L  N j'(a(iz)), as iz + + oo, 
and so in particular for all sufficiently large it we have 

From (18)  by Entringer's theorem we have 

(20) f - l ( j z )  N a(n) ,  as  71 + m, 

and so in particular for all sufficiently large ?L we have 

Thus as f ( z )  is increasing for all sufficiently large x, and 
a(n)  -+ + w, a s  rz + + 00, we deciuce from (21) t h a t  for all 
suficielltly large a ,  

Hence from (19)  and (22) we have for all sufficielltly 
large rt 



Now by the mean value theorem there exists d(u)  satisfying 

min (12, f ( a ( n ) ) )  < d(n)  < max ( n ,  J(a(7~)) )  such that  

(24) I a ( 4 - f  - l ( n )  I = I f - - l ( f (a (n ) ) ) - f - l  ( n )  I 
= I ( f - l ) ' (d (n ) ) (  f(+)) - n )  I . 

Prqm (23) we deduce tha t  for a11 sufficiently large ?L 

and so as f l ( x )  is monotonic increasing for all sufficiently large 
x, we have 

Hence from (6) and (25) we have 

Moreover from ( 9 )  and (20) we have 

(27) a(%) N f - l ( n )  - ~ ( I L ) ,  as n + + 00, 
so th?t (26) becomes 

From ( 2 ) ,  g(x)  satisfies the conditions of Entringer's theorem 
and so by (27) we can deduce 

(29)  g(fl(n)) g(k(n))* as n -.-+ i- 00, 

so tha t  from (17) ,  (24),  (28),  (29)  we obtain 



(4) now follows from (16) a'ntl (30) in vie\\. of ' the  inequality 

1 ( ! ( , ) I , )  - ~C(.IZ,) 1 < 1 (t(n.1 -f-I(,rt) 1 + 1 f -  l ( 7 1 )  - k(./l) 1 
We rernarli t h a t  (4) is R gellui~le asymptotic formula a s  

h(71)  = o(n) ant1 g(k(1~)) - o( f(k(1~)) = o(rlj, as . r r +  + m. 

We conclude this paper with t \ \ ~  ox-a,mples. 

Example 1. Let U(?L) = l r t h  integer \vhicl~ is the sum of' 
two squares. Then i t  is known [ B ]  (11. 261) t h a t  

Thus we lnay take  

Bx f (.c) =; 
x 

and ~ ( n : )  = - . 
logs s log; n: 

It is easily verified t h a t  the  rontlitions given in (2)  are satisfied. 
Further as (sec below) 

x l o g L  x ~ o g  lea 7. 
(:31, = X+Y (- ) ; a s  x -+ + m. 

log z 

\ve can choose 

(k(x); h(x)) :- 
lop z 
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Then hy the theorem me have 

, I  1og4/1 
( ~ ( 1 1 )  F. t 

- B -  
+0 ( / I  log 1 1 ) .  as 11 i i- OO 

Proof of (31). For x exp (B2).  

so t h a t  
a log z 

B 2 1, 

a x log-x log x 
f ( )  = - (  ( 1 

d 
- B 1: logi x )) 

log x 
> x-x (-)? log " 0, 

i 2: log 2: .r log d x ; z-j(.-B-.-)i = x - - . f ( T  ) 

1 ! 
{ lug i (B  o - 0  

.- - 1: 
lop- 

x 1 < bog (x N log I - log Z 
log - :,. " ' 1  

3 
log j ,% ) 

=.[(I+ log x )L] 



5 ' h log z 

log x = (x log log x, 

as recluiretl. 

Example 2. Let a(n) = ?ath prime number. It is well- 
know~l [5]  (p. 2,50) t ha t  one farm of tile prime number theorem 
117ith error term is 

where c is positive constant and li{z) is the logarithmic 
integral 

- 
Thus we may take f(z) = li(z) and y(x) = ze-'d log z . It, is 
easily verified tha t  the contlitioils given in (2) arv satisfied. 
Pul.tller as (set- 1,elow). 

.2. log log z 
(32) l i(z  lug C )  = z + 0 i log r 

),as x -+ + m, 

we can choose 

x log log a 
log z 

The11 by thc theorem we have 

a(?[) -; 71. log n+O (,I% log log n),  as PL + + 00. 
Proof of (32). We have on integrating by parts 

li (X log n) - x = 



- - x l o g l o g z  % l o g 2  dt - 
'3 log ( I  log 2) + 1s log t 0(1) 

r log log r 
= 0 \ -Gci--- 

x log 2- 4. \ o ( J ~ )  + 0 ( l o p  jr , 
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