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ASYMPTOTIC BEHAVIOUR OF THE »* TERM
OF CERTAIN SUBSEQUENCES OF THE
NATURAL NUMBERS

KENNETH' S. WILLIAMS
(Carleton University, Ottawa)

Let 4 = {a(l), «(2), ..., a(n), ...} be an infinite subse-
yuenee of the natural numbers. Number theory provides us
with a wealth of examples of such subsequences A for which
the asymptotic behaviour is known (as z -+~ + o0} of the number
wal®) of elements in 4, which are less than or equal to the
real number w.  (For a few such examples see [2]—[12]). For
example [3] if 4 is the subsequence of squarefree integers it is

known that

6 i
7=a(®) = mr0@ ). asx —» +oo.
2
Hence as  wa(¢(n)) = », we have

n o= fz a('n)—}-O((a(n))é),

from which we deduce
i) = U(/z),
6 3 .
and so nom —pa(n)+ O™ ), that is,

[

6

3
n+0(n ), as 1 —» +00.

a(uy =
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Thus we bave deduced the asymptotic behaviour of a(n)
from the known asymptotic behaviour of ma(z). It is the
purpose of this paper to do this for a general subsequence A
for which the asymptotic behaviour of w4(z) is known. We
suppose that an asymptotlc formula for T:A(x) is known of the
followmg type

(1) ) = f@)+0(g(z)), a8 z >+ oo,

where the constant implied by the O-symbol is independent
of z. It will always be understood that such an expression
a8 (1) is a genuine asymptotic formula, that is, f(z) is the
“main term”, so that wa(r) ~ f(2), a8 z - 400, and O(g(z)) is
the.“error term’’. This is guaranteed by

g()
1i = 0.
Crote J@ T

We prove

Theorem. Let A = {a(l), a(Z), ...} be an infinite subse-
quence of the natural numbers for which an asymptotxc
formula (1) is known, where for all sufficiently large z, f'(x)
and ¢'(x) both exist, and satisfy

, . f® (=) 1y
@ @ >0, 0@ > 0, Ho - 0@, LE=0( )

as z — -4o00.

Then if (k(z), A{x)) is a pair of real-valued functions with
h(z) = o(z), a8 x — +o0, such that for &ll sufficiently large x
we have

(3 Jik(z)) = =+ O(h(z)),
then

(4) a(n) = k(n)+0 ( kS?) max (g(k(n)), h(n))),

as n — -} oo.
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We note that (2) implies the existence of f }(z) for all
sufficiently large = and so there is always a pair (k(z), A(z))
satisfying (3), namely (k(x), i(z)) = (f-(*), 0). With this choice
the theorem gives

5 a(n) = fYn)+ 0( S g;f () ), a8 7 — ©0.

However as we shall see in the examples concluding this
paper, it is often more convenient to apply (4) with
k(x) # f~}(x) rather than (3). : '

In the proof of the thebrem we make use of the following
theorem due to Entringer [1], namely, if r(z}) - +o0 and
7(z) ~ 8(z) a8 ¢ —» +oo, and {(z) is monotonic and

t'(x) -0 (L)
i) T
for all sufficiently large z, then t(r(z)) ~ t(s(z)), as.z -» +'m‘

Proof of Theorem, As f'(z) > 0, for all sufficiently large
z, f-U(z) exists and is differentiable with positive derivative

, for all sufficiently large z. Moreover as

) = L
@ = TFrey
A is an infinite subsequenpe we have ma(z) - + 00, a8 2 - +00.
But ma(x) ~ flz), 88 2 — +o0, 80 we must have f(z) > + oo,
as z - +oo. Thus f-}(z) > +o0, 88 2 - + o0, and so choosing

y = fY=) in _;,(z/_)). = O(y), as ¥ —» 400, we obtain

o U@ 1 Je)
O T T e T
| P |
= ?f:i'(';)—-o(f (=) = 0( = ),
as z - +oo. Now from (3), as A(x) = o(z), a8 z - o0,
we have

M flk(z)) ~ x, as - +o0.



Thus for all sufficiently large z, we have

(8) Jik@) > 5 .

P4

From (6) and (7) by Entringer’s theorem we have

9 k(z) = ["N(S(k(z))) ~ f*1(x), as & > +oo, and so
for all sufficiently large = we have

3
10) ko) SS9 < 5 Ma

" From (9) we deduce k(z) - +o0,88 z — oo, and 80 as
f(z) is monotonic increasing we have from (10) for all sufficiently
large x

(11) x < (5 k=)

Hence from (8) and (11) we have for all sufficiently large z

x

1 (2) max (@ (@) < J (ok(z) min (2, f(kE) >

5
-

Now by the mean value theorem there exists ¢c(z) satisfying
min (z, f(k(z)) < ¢(z) < max (z, f(k(z))) and such that
(13) | [ Nz)—k(x) | = lf'l(a:)~j"1(f(k(:v))) |
= [ (ST (@)@ - fik@)) | -

From (12) we deduce that

(14) < o) < f( k().

and so as ~}(z) is monotonic increasing for all sufficiently large
z, we have

[elE) < - k)



Hence from (6) and (14) we have

(18) (fY(e(@) = O (f"‘c"i)—) —o(H9),

c(x) a

as ¥ -» 400,

Thus from (3), (13) and (15) we deduce‘
16) | fHe)=kw [ = 0 (D) sz too

Now taking ¢ = a(n), » — 400, in (1) we obtain

(17) n = ma(@(n) = f(a(n))+0(g(a(n))),
as n —+ oo, that is,
(18) n ~ f(a(n)), as n —++w,
and so in particular for all sufficiently large » we have

(19) fam) > 5

From (18) by Entringer’s theorem we have
(20) fYn) ~ a(n), as n - ov,
and so in particular for all sufficiently large » we have

L

@) 5

. 3
a(n) < [Hn) < 5 a(n).
Thus as f(z) is increasing for all sufficiently large z, and

a(n) -+ 4 oo, as n —> 4 oo, We deduce from (21) that for all
sufficiently large »,

(22) ’ nLf (%— a{n) )

Hence from (19) and (22) we have for all sufficiently
large «



max (n, f(a(n))) < f ( %a( n)),
(23)

min (n, f(a(n))) > -

Now by the mean value theorem there exists d(n) satisfying
mip (2, fla(n))) < d(n) < ma.x_(n,f(a(n))) such that
(24) | a@)—fYn) | = | Y fla(m)—f* (n) |

= (Y @) fla)—n) | -
Frqm (23) we deduce that for all sufficiently large n

(25) Y o<dm <7 {5 am ),

and so as f~!(z) is monotonic increasing for ail sufficiently large
z, we have

fidm) < g— a{n).

Hence from (6) and (25) we have

' d
(26) (f (M) = 0(%) = O(a—(::l ), as 7 -—»--00.
Moreover from (9) and (20) we have
(27) a(n) ~ f-3(n) ~ k(n), asn -> + oo,

so that (26) becomes
(28) (f1(@n) = 0(]%?—)- ), as W —> + oo.

From (2), g(x) satisfies the conditions of Entringer’s theorem
and so by (27) we can deduce
(29) gla(n)) ~ g(k(n)), as n > 4 oo,

so that from (17), (24), (28), (29) we obtain



1

30y Jam)-frmy| =0 (AL”).O_(M ), as N —> 4 oo.

"
(4) now follows from (16) and (30) in view of the inequality
| a@y=k@) [ < | a)—f200 | + | f7H)—k@) | .
We remark that (4) is a genuine asymptotic formula as
h(n) = o(n) and g(k(n) = o( f(k(n)) = o(n), as n— + oo.
We conclude this paper with two examples.

Example 1. Let a(n) = nt* integer which is the sum of
two squares. Then it is known [3] (p. 261) that

Ta(Z) =~—-§;—» +0 ( :_ ), as ¥ -> -+ o0,
log? « log? x

" _ 1 ) 1 y-4
where B = 72 H (1—- 7?)
f=1

Thus we may take

Jx) = Bz and g(x) = d
logt log

LY

X

It is easily verified that the conditions given in (2) are satisfied.
Further as (sec below)

. g log%x z log log a
(31) j( v ) = x+o0 (—Jo—g_:v—- ) , as £ —> 4+ 0o,

we can choose

3
[z logr =z loglogx
(k(), h{z)) = ( B th)
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Then by the theorem we have

3
w(n) = n J;g_ "

+0 (n log}

Proof of (31). For x > exp (B?2).

3
80 that log*x

we have

z lo
z—f( _Bg

n). as n > 4 oo.

l

:‘1 ] '.ly

ol [ L otk
0g (B—xlog'x

z 3/ 1 :
] 1 {]og' (-B x logi
ogT

N

)
" ) - log*x}

3.\ 1
log (AlOgBm ) ¢
= 1+ log —1



log (log;x )

X
ST Tlgm

_0 (xlog logx)

log =
as required.

Example 2. Let a(n) = nt* prime number. Itis well-
known [3] (p. 250) that one form of the prime number theorem
with error term is

, a8 £ = + oo,

where ¢ is a positive constant and lix) is the logarithmic
integral

V‘ dt
32 lng ‘

Thus we may take f(z) = li(z) and g(x) = ze=V logz. Itis
casily verified that the conditions given in (2) are satisfied.
TFurther as (see below).

- w log log =

(32) bz log z) = 240 ( of = ), as T - 4+ oo,

we can choose

z log log «

(k(x), h(z)) = (x log «, —l—o-g--;-——)

Then by the theovem we have
a(u) = » log n4+0 (nlog logn), as n - 4 oco.
Proof of (32). We have on integrating by parts

, ) z log ¢ (it
li (x log v)—x = S'-? m—

X
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+0(1)

=

_ —xzloglogw _S$1°8= dt

= Tog (z log ) 2
log (x log ) 2 log'¢

=0 \ " Toz s ) ,

log x
z log x dt R VA v logz dt
as Sz logtt { }2 +J\/,u ) log® {
B i zlogr—yr
= O(y2)+ O ( Togf vz |
xr
= (log x
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