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FINITE TRANSFORMATION FORMULAE
INVOLVING THE LEGENDRE SYMBOL

KENNETH S. WILLIAMS

Let p denote an odd prime, The following three identities
(transformation formulae) involving the Legendre symbol (7)

are known to be valid for any complex-valued function F’ de-
fined on the integers, which is periodic with period p:

SF@+ S (S )Fw=5F6,
ZF(x)+Z<x— )F().—ZF<x+ > a % 0 (mod p) ,
zmoﬁi( >F<x) ZIF<90+2+%>.

We consider a general class of transformation formulae,
which includes the above examples.

Let p denote a fixed odd prime and let GF(p) denote the Galois
field with p elements. If X denotes an indeterminate we let

) X+ bX + ¢
6[X ={0X =4 ,b, ¢, A, B, Cc GF(p),
K=& = Bxrclv™° € GF(p)

@C — ¢cA) — (aB — bA)®C — ¢B) = 0}
and
O[X] = {p(X) = ¢X* + rX + s|q, v, se GF(p), »* — 4gs # 0} .

Corresponding to any element 6(X)e 6[X] (often just written 6 c @)
we define
0*(X) =DX*+ 4X + d,

where

D = B*—4AC, 4 = 4aC — 2bB + 4¢cA, d = b* — 4ac .
It is clear that 6*(X) e @[X] as

4 — 4Dd = 16{(aC — cA)* — (aB — bA)(bC — ¢B)} # 0 .

For any element ¢(X)e @[X] (often just written ¢ € @) its value

at xeGF(p) is just 4(x) = gx* + r& + se GF(p). For any element

6(X)eP[X], 6(x) will be defined provided Axz* + Bx + C =+ 0 and its
value is

b(w) = X; :_“ Z”; J-; ©- = (@ + bo + (47" + By + C)” e GF(p) .
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Throughout this paper whenever we write >, the summation is taken
over all xe GF(p). If we write >} the summation is over all « € GF(p)

for which the summand is defined.

Further we let & denote the complex number field and we denote:
by % the set of all functions with domain GF(p) and range & <.
The particular function y e & defined for any xe GF(p) by

0, if x =0,
L) = 1, if © = 0 and there exists y € GF(p) such that y* = =,
—1, if 2 = 0 and no such y exists,
plays a special role in what we do. y is the Legendre symbol on GF(p).
Finally for (F, 0)e % x 6 we define
F(a/A), if A=0,

oF 0 =1, if A=0

We are now in a position to define what we mean by the trans-
formation formula T4, ¢).

DEFINITION. If (0, 9)€® x @ is such that
S F@) + SA6@)F@) = 5 FO@) + 6(F, 0) ,

for all Fec. &, we say that the transformation formula T(6,¢) is
valid. If on the other hand there is some F,e .5 such that

2L Fo@) + X 7(s(@) @) # 3 Fo(0(x) + (F, 0))

then we say that 79, ¢) is not valid.
In some special cases it is well-known that T(0, ¢) is valid. For
example ([1; p. 1569], [4; p. 101]) it is known that 79, ¢) is valid if

(1.1 0(X) = X% ¢(X) =X
or
1.2) 0(X) = X;  H(X) = X* — 4o (c+0).

(We identify the elements of GF(p) with the residues modulo p and
the elements of .# with functions defined on the integers which are
periodic with period p). The name transformation formula is justified
as (1.1) (resp. (1.2)) gives the well-known transformation property of
the Gauss (resp. Kloosterman) sum, if we take F(x) = exp (2miz/p), [3],
[4]. Both examples mentioned above have 6(F, ) = 0. An example
with 6(F, 6) = 0 in general, is given by the following



FINITE TRANSFORMATION FORMULAE 561

(13)  SF@E+ S1de + DF@) = 3 F(m + 1) + F() .

x2

Here

8(X) = X}:le and 6(X) = 4X + 1.

The main objective of this paper is to give necessary and sufficient
conditions for T(6,¢) to be valid. We prove in §4 that if (4, ¢) e
O x @ then T(0, ¢) is valid if and only if there exists e¢(+#0)ec GF(p)
such that ¢ = ¢?60*. (We note that in (1.1) 6*(X) = 4X = 44(X), in
(1.2) 6*(X) = X? — 4¢ = ¢(X) and in (1.3) 6*(X) = 14X + 1 = ¢(X)).
The proof of these necessary and sufficient conditions requires a useful
lemma concerning quadratic polynomials possessing the same quadratic
nature. This lemma is proved in §3. In §2 a number of properties
of #[X] and @[X] are noted, which together with the main theorem
enable us to deduce that there are only two essentially different trans-
formation formulae T(4, ¢).

2. Properties of O[X] and ®[X]. We first consider §[X]. The
elements §(X) = aX?® + bX + ¢/AX* + BX + C of O[X] are well-defined,
as A, B, C cannot all be zero. Further they do not reduce to the
form X + m/LX + M, as not both of a, A are zero and aX* + bX + ¢
and AX* 4+ BX 4+ C do not have a nonunit common factor.

Any element of #[X] gives rise to another element of #[X] in
the following way. If ¢, u, v, w, k, [, m, n ¢ GF(p) are such that

tw—uv = 0,kn —Im=+=0,
and if 6(X)e @[X] then so does

Wit )
i

(2.1) 0,(X) = .
) + w
The proof of this just consists of showing that

aX*+ b0,X + ¢
AX*+BX+C,’

0.(X) =

where

a, = (ta + uA)k* + (tb + uB)km + (tc + uC)m?®,

b, = 2(ta + wA)kl + (tb + uB)(kn + Im) + 2(tc + uC)mn ,
¢, = (ta + wA)l* + (b + uB)In + (be + uC)n®,

A, = (va + wAk* + (vb + wB)km + (ve + wC)m? ,
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B, = 2(va + wA)kl + (vb + wB)(kn + Im) + 2(ve + wC)mn ,
C, = (va + wA)l + (vb + wB)In + (v¢ + wC)n*,

and noting that

(alcl - 01A1)2 - (a/le - blAl)(blcl - clBl)
2.2) = (tw — wv)(kn — Im)*(aC — cA)* — (aB — bA)(BC — ¢B)}
=0.

We can thus define on equivalence relation on #[X] by saying that
9(X), 6(X)eO[X] are equivalent if there exist k, I, m, n, t, u, v, we
GF(p) with kn — lm # 0, tw — uv = 0 and such that (2.1) holds. We
write 6, ~ 6.

Let ¢, and ¢, be fixed elements of GF(p) such that y(c) = +1,
x(c;) = —1, so that there exists d,(+#0)e GF(p) with ¢, = di. Then
any element

0X= aX.2+bX+C @X
X) =X 1 Bx o <ol

is either equivalent to ¢,(X) = X + (¢/X) or 6.(X) = X + (c/X).
More precisely we have

0 ~8,, if y((@aC — cA)* — (aB — bA)(bC — ¢B)) = +1
and
6 ~ 6., if y((@aC — cA)* — (aB — bA)(bC — cB)) = —1.
This is clear as we have
wﬁ(%) +u

EX +1
g, | —————
Y 1<mX—I—n

’

)+ w

where

(i) t=ah,u=b—2ag,v=Ah,w=B—24g,k=1,l=9,m=
0,n = h, if y(aC — cA)* — (aB — bA)(bC — ¢B)) = +1, aB — bA + 0,
and g and h(+#0) e GF(p) are defined by

o= 5= = (Grmia) ~(G=ia)

(ii) ¢t =aAd — d), u = 20Ad,(1 + d), v = A* — ’D, w = 2d,(A* +
a’D), k=2ad, l =(b+1)d, m=2a, n = (b —1), if x((aC — cA)
— (aB — bA)(bC — ¢B)) = +1,aB — bA =0, a4 # 0;

(iii) t = a*C* —d, u = 2d,(a*C* + d), v = 4aC, w = —8d,aC, k =
2ad,, I = d,(b + aC), m = 2a,n = b — aC, if x((@C — cA)* — (aB — bA)
®C —¢B)) = +1,aB—bA =0,A = 0;
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(iv) t=4A4c, u = —8d,Ac, v = A’ — D, w = 2d,(A*¢ + D), k =
2d,A,1 = d(B + Ac), m = 24, n = B — A, if 3((aC — cA)* — (aB — bA)
®C —¢B)) = +1,aB —bA =0,a = 0;

and
EX 41
o A
EX +1 ’
wcz(mX + n) tw
where

(v) t=ah,u=0b—2ag9,v=Ah,w =B — 249, k=1,1l=9,m=
0,n = h, if x((@C — cA)* — (@B — bA)(bC — ¢B)) = —1 and g, h are
defined by

— — 2 —
_aC CA,c2h2= (aC cA) __(bC cB>'

Y= eB _ba aB —bA aB — bA

This shows that there are atmost two equivalence classes in #[X].
We show that there are exactly two by proving that 6, (X) +»+ 6,,(X).
For suppose that 6, (x) ~ 6.,(x) then there exist k, 1, m, n,t, u, v, we
GF(p) with

kn —Im +#0,tw —uv = 0
and such that

EX +1
w0 (AE+L
6,(X) = mX + n

EX 41 )
tf, | ———
2mX+n)+w

)+ u

Thus from (2.2) we have
—e¢, = (tw — uv)(kn — lm)’(—c,) ,

which contradicts that y(c,) = +1, x(c.) = —1.

We now consider @[X]. The elements ¢(X) = ¢X® 4+ rX + s of
@[X] are either genuinely quadratic or linear, as ¢, are not both
zero. Moreover they are not of the form q(X + k)%, for any ke GF(p).
Corresponding to (2.1) we have

05(X) = (kn — Im)(—vX + t)%*(%-i—tﬂ) cO[X].

3. A useful lemma. We prove the following lemma which is
needed in the proof of our theorem.

LeMMA. If ¢X*+ rX +s5,¢X*+ X + ' e @[X] are such that
x(@x* + rx + s) = x(@'** + r'x + '), for all xe GF(p), then there exists
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e(#0) e GF(p) such that
X'+ rX+s=e@X*+rXP+rX+¢8).

Proof. As ¢X*®+ rX 4+ se@[X] it is not of the form ¢(X + k)*
and not both of ¢,r are zero, similarly for ¢'X®* + X + s'. The
condition y(gx* + rx + s) = y(¢'x* + r'x + s’) implies that a zero of
qx* + rx + s is a zero of ¢'2* + r’x + s’ and vice-versa. Thus, unless
both ¢X* + rX + s and ¢'X* + "X + s’ are irreducible in GF(p)[X],

that is, unless yx(r* — 4¢s) = y(+" — 4¢’s’) = —1, we have for some
e, e, c GF(p)(e, # ¢,) either

gX*+rX+s=qX—e)(X—e), ¢ X+ X+ =¢X—e)(X—e),
.9 +0,
or

X! +rX +s=rX—e),¢X '+ X+ =7(X—e)qg=¢=0.
In the former case taking = # ¢, ¢, in
x(q@* + rx + 8) = x(¢'a* + 'z + §)

we obtain %(g) = 3(¢'), so that there exists e(+0)c GF(p) such that
q = é*¢’. Hence

r= —qle, + e) = —eq (e, + ¢,) = ', s = qgee, = e’q'ee, = €°s’
and so we have
P+ rX+s=e@X*+rX+59).

In the latter case taking « £ e, in y(qx® + rx + s) = x(¢'x* + r'x + &)
we obtain y(r) = y(»'), so that there exists ¢(s0) ¢ GF(p) such that
r = ¢e*'. Hence s = —re, = ¢’r'e, = ¢’s’ and we have

g X?+rX+s=e(@X*+7rX+5).

If x(r* — rgs) = x(v"" — rq's’) = —1 then q, ¢', r* — 4qs, r"* — 4¢'s’
are all nonzero and

Su(er + 1o+ 8) = 2@ + e+ 8)

gives y(q¢) = x(¢’). Hence there exists e(0) ¢ GF(p) such that ¢ = ¢%'.
Now as gq' = (eq’)* # 0 we have

; x((xz + %x + %)(xz + Z—:x + Z—’,))
= S @@ + 10 + 9@ + 75 + )



FINITE TRANSFORMATION FORMULAE 565

= > x((gx* + ra + 8)°)

and so

@D So(e+ Lo+ D)o+ La+ L)) = .

If X+ (r/Q)X + (s/q) = X* + ('/¢)X + (s'/q’) then by a deep result
of Perel’muter [2] we have

Bx((e s Zos 2o s Lo D)) on.

For p =5 this clearly contradicts (3.1). Thus for » =5 we have
X+ (/)X + (s/9) = X* + ('[¢)X + (s'/q), that is as ¢ = €’¢,

¢ X+ rX+s=e@X*+rX+1t),

as required. When p = 3 the theorem is easily verified by examining
the values of ga* + rx + s for x e GF(p) (see table).

When p = 3, #[X] consists of all polynomials of GF(3)[X] of degree
atmost 2 except the 9 polynomials ¢(X + k)% g, k€ GF(3), which have
diseriminant equal to zero. The table shows that there do not exist
2 elements of @[X], say 4(X), ¢"(X) with x(¢(@)) = %(¢'(x)), for all
ze GF(3).

TABLE.
H(X)EDX] | Xg(0)) | A1) | XH(2))
X 0 1 -1
X+1 1 -1 0
X+2| -1 0 1
2X 0 -1 1
2X +1 1 0 -1
2X+2 | —1 1 0
Xz +1 1 -1 -1
Xz +2| -1 0 0
X2+ X 0 -1 0
X2+ X+2| -1 1 -1
Xz 42X 0 0 -1
X24+2X+2 | -1 -1 1
2X2 +1 1 0 0
2X2 +2| -1 1 1
2X2+ X 0 0 1
2X24+ X+1 1 1 -1
2X2 42X 0 1 0
2X2+2X +1 1 -1 1
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4. Main result. We prove

THEOREM. If (0,4)€® x @ then T(0, ¢) is valid if and only if
there exists e(s+0) e GF(p) such that

4.1) 6 = 0" .

Proof. (i) We let ¢ = e°6*, where e(+0) e GF(p) and

X* 4 bX + ¢
H(X) = 2 0[X] ,
X) =% Bx s ool

and prove that T(6, ¢) is valid. For all FFe & we have
2V F(O() = ; Z," F(0(x)

0(z)=y

=§,F(y)zz’ 1.

0(z)=y

Thus for given y € GF(p) we require the number of solutions x € GF(p)
of 6(x) = y, that is of

4.2) (Ay —a)a* + By —b)x + (Cy —¢) =0.
This is a genuine quadratic in & unless Ay — a = 0. Thus we must

consider two cases according as A =0 or 4 = 0.

Case (@). A =0, (so that o(F, 6) = 0).
In this case a # 0 so that Ay — a # 0, for all y e GF(p). Thus
the number of solutions of (4.2) is

1+ x((By — b)* — 4(Ay — a)(Cy — ¢))
=1+ y(Dy* + 4y + d)
=1+ x(4®), as e+ 0.

Hence we have
3 Fo@) = S F@) + S 16@)F@) .

proving that T, ¢) is valid in the case.

Case (b). A # 0, (so that o(F, ) = F(a/A)).

In this case, for all ye GF(p) except a/4, (4.2) is a genuine
quadratic and the number of solutions of it, for such ¥, is as in case
(a). For y = a/A, (4.2) becomes

(@B — bA)x + (aC — cA) =0,
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which since aB — bA and aC — ¢A cannot both be zero, has one solu-
tion if aB — bA = 0 and no solutions if aB — bA = 0. This number
is expressible as y((@B — bA)?). Hence

SV F0@) + o(F, 0)
= F(a/A)2((@B — b4)) + 2, {l + x(Dy* + dy + d}F(y) + Fla/A4)
=3 {1 + 2" W)

as required, since

Az(D(%)z + A(%) + d> — (@B — bA).

(ii) Conversely we show that if (4, ¢)e® x @ is such that T(4, ¢)
is valid then ¢(X) = ¢*0*(X). For all Fe &, as T(9, ¢) is valid, we
have

“.3) 3V F(0() + o(F, 0) = 3, F(2) + X 1(p@)F () .
From (i) we know that T(0, 6*) is valid, so that also for all Fe &
we have

(4.4) Zx‘" FO(x)) + o(F, 0) = zz‘, F(x) + ‘E“‘ x(Dx* + dx + d)F(z) .
Hence form (4.3) and (4.4) we have
4.5) 2 pg@)F@) = 3 (Da* + dv + d)F(@) ,

for all Fe #. In particular taking F = F,(r e GF(p)) in (4.5) where
F', is defined for z ¢ GF(p) by

Fa=""""
0, x=7r,
we have
1) = x(Dr* + 4dr + d) ,

for all »e GF(p). By lemma as ¢(X), DX® + 4X + de @[X], we have,
for some e(£0) € GF(p),

$(X) = &(DX? + 4X + d) = ¢%0*(X) ,
which is (4.1).

5. An application. We use the theorem to evaluate the Salié
sum [4]. Let 6(X) = (X + 1)’ X so that 6*(X) = X* — 4X. By the
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theorem we know that T(¢, 6*) is valid. If Ge & so does yG. Taking
F(x) = x(x)G(x) in T(6, 6*) we obtain

3 @G @) + 3yt — 4)G@) = X X( (2 -io-c 1)® )G( (x + 1) )

X

that is,

Gl SrE@6E) + D@ - H60) = N a@6(s + 2+ ) .

Taking G(x) = exp (2wikx/p) and noting that this choice makes the
two sums on the left hand side of (5.1) Gaussian sums we obtain
Salié’s result [4]

10 (5o + 1)) =o{ (1),

6. Conclusion. The properties of @[X] indicated in §2 and
the theorem of §4 show that there are only two essentially different
transformation formulae T(0, ¢) given by (@, ¢) = (0., 0}) and (4., 67),
where we have identified 76, 6*) and T(9, ¢*6*). It would be inter-
esting to know if this work could be generalized to give results
concerning identities of a type similar to 7(6, ¢) but where 6, ¢
are elements of larger sets than @, @ respectively and/or where y is
replaced by a more general character.

I would like to finish by thanking an unknown referee for a number
of valuable suggestions. In particular he suggested the proof of the
lemma given in § 8, which considerably shortened my original proof.
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