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DISTINCT VALUES OF A POLYNOMIAL 
IN SUBSETS OF A FINITE FIELD 

KENNETH S. \\iILLI.4hIS 

1. Introduction. If A is a set with only ;I finite number of elements, we 
write JAl for the number of elements in A. Let 9 be a large prime and let 
m be a positive integer fixed independently of 9. We \\.rite [pm]  for the finite 
field with 9"' elements and [pm]' for [pm] - ( 0 ) .  We consider in this paper only 
subsets H of [$"I for which JHl  = h satisfies 

(1.1)  
pm l2 lim --- = 0 .  

D + u 3  1~ 

I f f  ( x )  E [ p ,  x ]  we let N ( f ;  H) denote the number of distinct values of y  in H 
for \\xllich a t  least one of the roots off (r) = y  is in [pm] .  IVe write d (d 2 1 )  for 
the degree o f f  and suppose throughout that d is fixed and that  p 2 po(d ) ,  
for some priine P o ,  depending only on d ,  wl~icll is greater than d. I17e call f  ( x )  
primary if  the coefficient of x q s  1 and f ( 0 )  = 0 .  There are pm("-" primary 
polynomials of degree d over [ p m ]  Uchiyama (3, p. 199) has proved that 

\\-here the sui~lination is over all prinlary polynomials f  defined over [pm] 
of degree d ,  

and the subscript means that  the 0-syinbol depends only on d ,  that is not on 
m or p .  Our aim in this paper is to generalize (1 .2) .  In 8 3 we prove the follo~\-ing 
tl~eorem. 

T n ~ o ~ s n ~ .  I f  H i s  a n y  subset of [p7'", satisfying (1 . I ) ,  then 

This is a genuine asymptotic fornlula for large p as the term 0 d ( p m ( d - 1 1 2 )  1 
is certainly ~ ( h p ~ " ( ~ - l ) ) ,  as p + a, in view of (1 .1 ) .  We have thus generalized 
(1 .2)  but a t  the cost of weakening the error term.The error term in (1.4)  can 
be improved when d = 1 or 2 to Od(pm(d- l ) ) .  

I t  turns out that  the estimatio~z of Cdeg I=d N ( f ;  H )  depends on that  of the 
number of ( x l ,  . . . , x d )  E [pm]' X . . . X [pm]' ,  x i  # x,  (i # j )  for which 
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( - l ) d - l x l . .  . xd is in H.  This  number is denoted by N ( p ,  m ,  d ,  H ) .  I t  is 
precisely in the  estimation of N ( p ,  m ,  d ,  H )  t h a t  the error term can be improved 
when d = 1 or 2 (or when H = [ p m ] ) .  W e  devote 5 2 to  the estimation of 
N ( p ,  m, d ,  H )  and i t  will be shown there tha t  

(1.5)  N ( p ,  m ,  d ,  N) = h ~ " ( ~ - l )  + Od ( ~ ~ ( ~ - 1 / 2 ) ) .  

2. Estimation of N ( p ,  m ,  d ,  f1). We denote the trace of a from [pm] to [ p ]  
by t ( a ) ,  so tha t  

(2.1 1 t ( a )  = a + a P  + .  . .  + d m - I  € [ p ] ,  

and hence can be considered as  an integer (mod p ) .  Clearly, 

(2.2)  t ( a  + P) = t ( a )  + t ( P )  

and 

(2 .3)  t  (Xa)  = Xt ( a ) ,  

for all a ,  @ E [p"] ,  X € [p j .  Now let 

(2.4)  &(a)  = e x p { 2 ~ i t  ( a ) / p }  ; 

thus from (2.2)  we have 

(2 .5)  e ( a  + b') = e(a)c(b') .  

I t  is well known tha t  for x E [p"],  we have 

We define for any integer k 2 1 ,  

S ( k )  = { ( X I ,  . . . , x ~ )  1 x i  C [pm] ' ,  1  5 i 5 k } .  

Then,  i f  0 P a E [pwf ] ,  we have on summing over x d ,  by ( 2 . G ) ,  

I t  is also well kno~vn (1, p. 39, display ( 1 2 ) )  tha t  for 0 # b E [pm] and 
p > k 2 1 ,  Lve have: 

For any 1 ( 2 1 )  positive integers il,  . . . , i l  we define 

T(L)  = (x,,, . . . , xir) ( xi ,  E [P"] ' ,  1  5 j 5 11. 

T h u s  for any positive integers r ,  i l ,  . . . , i,, n l ,  . . . , n ,  satisfying 

(2 .9 )  1 7 - 1 ,  1 < <  . . . < i d ,  ( z1+az+  ...+ n , = d ,  
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we have, by (2 .S ) ,  as p > d ,  

=< C ( ( a ,  - 1 ) ~ ~ ' ~  + 1 )  =< n,pm'2 - (pm),-l, 
T ( r - 1 )  

and thus as r 5 d - 1 ,  a ,  5 d we have: 

(2.10) 

From (2 .7 )  and (2.10) we have: 

\\-liere the asterisk means that  the summation is only talien over those 
( X I ,  . . . , xd) E [pm]' X . . . X [pr"]' for ~~rliich x ,  f x ,  ( i  f j ) ,  since any sum 

(2.12) x e(ax1 . . . x d )  ( x i  = xi  for a t  least one pair (i, j )  ( i  # j ) ) ,  
S ( d )  

is of the form (2.10) for some r ,  il, . . . , i,, a l ,  . . . , a ,  satisfying (2 .9) .  There are 
O d ( l )  such sums (2 .12) .  

Kow N ( p ,  m, d ,  H )  is just the number of 

( x i ,  . . . , xd, y )  E [p1'1' x . . . X [Pm]' X H ,  x i  f x j  (i f j ) ,  

for which ( - l ) d - l x l .  . . xd - y = 0 .  Hence by (2.6) we have: 

1 * 
(2.13) N ( p ,  m, d ,  H )  = -- C C C e ( t ( ( -  l )d-lxl  . . . x, - y ) ] .  

pm S ( d )  YEH I E [ P ~ I  

The terms with t = 0 in (2.13) contribute 

1 * h --C C 1 = -- ( P m -  l ) ( p r n  - 2) . . .  ( p m - d ) .  
pm S ( d )  YEH pm 

The terms with t # 0 yield: 

1 * 
* E  Ern e ( - t y )  e ( ( - ~ ) ~ - l t x ~  . . . x d )  

VEH Z E I P  1' S ( d )  

1 
= --C C e ( - t y ) ( - ( p m  - I ) ~ - '  + ~ ~ ( p ~ ( ~ - ~ ' ~ )  

prn vEH * E [ P ~ I '  
1 I 

- - - (prn - l)d-i 

pm 
x C e ( - t y )  + ~ ~ ( p ~ ( ~ - ~ ~ ~ )  
V E H  tE[LJm1' 

1 

- - - (pm - l)d-l 

pm 
(pm6(H)  - h] + 0, (pm(d-112) I 
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where 

Clearly 

thus ( 2 . 1 3 )  becomes 

N ( p ,  m ,  d ,  H )  = h ~ " ( ~ - l )  + od (prn(d-112) 1, 
as  required. 

3. Proof of the Theorem. Let go, g,, . . . , g,7n-l be the pm elelnerlts of 
[ p m ] ,  with go = 0. We let 

so that  M = h ~ " ( ~ - l ) .  For i = 0, 1 ,  . . . , pm - 1 we define 

Now for 

we have: 

T 

= number off E Af which are multiples of 11 (x  - g i j )  
3=1 

= number of b,-~,-l, . . . , bo E [ p m ]  such that 

3s ( - l ) T - l g , ,  . . . gir  has an inverse in [pm]  i f  and only if i l  # 0. Thus from 
( 2 . 1 4 )  \ve have: 

Hence, writing U ( k ,  I )  = { ( i l ,  . . . , i,) ( I 5 il < i2 < . . . < ik 5 prn - I ] ,  
\ve have for 1 5 r 5 d - 1 ( 5  pm - 2 ) :  
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Lye next estimate 
d 

I - l I , , n . .  . n A l , , l  = numberoff =n ( x  - g , , )  E M 
j = 1  

hence 

1 if ( - l ) d - l g i l  . . . g i ,  E H ,  
0 otherwise, 

where the dagger ( i )  denotes that only those ( i l ,  . . . , id)  are counted for which 
( -  g Z 1  . . . g i ,  E H .  Thus on picking out the terms with il = 0 we have: 

- - hpm(d-1) + od ( p m ( d - 1 / 2 )  1, by (1.751. 
Hence 

C N ( f ; H )  = IMo V M1 V . .  V Mpm-11 
deg I-d 

d 

= C  ( - I ) ' - '  C I M i l n . .  . n  M ~ , I  
r = l  U ( r , O )  

as  required. 



4. Conclusion. The Theorem shoxvs that for any given subset H of [p"n] 
we have: 

(4.1) N( f ;  N) = kdlz + 0d(pm'2) 

on the average. Carlitz and Uclliyama (1, p. 40, display (17)) have also shox~n 
that 

I t  x~~ould be interesting to find an analogous asymptotic formula for 

I t  seems reasonable to conjecture that the main term of any such aspnptotic 
formula for (4.3), when it exists, n-ould be 

(4.4) kd2h2pm(d-1). 

This is certainly true when d = 1. I t  can also be verified in special cases when 
d = 2,  3 or 4. For example (see 2, p. 79, Theore~n 2 )  when d = 4 (so that 
kd = 5/S), m = 1, p > 3 and H an arith~netic progression of h ( S P )  distinct 
terms in [ p ] ,  it was s11own that 

(4.5) N( f ;  H )  = (5lS)h + O(fi1I2 log p)  if and only if - 4a2a3 + Sul # 0. 

Hence 

d e g  f = 4  

= (25/64)1z2p" ~ ( p ~ ' '  log p ) ,  if lim = 0. 
Pi, 12 
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