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DISTINCT VALUES OF A POLYNOMIAL
IN SUBSETS OF A FINITE FIELD

KENNETH S. WILLIAMS

1. Introduction. If 4 is a set with only a finite number of elements, we
write |4]| for the number of elements in 4. Let p be a large prime and let
m be a positive integer fixed independently of p. We write [p™] for the finite
field with p™ elements and [p™]’ for [p™] — {0}. We consider in this paper only
subsets H of [p™] for which |H| = & satisfies

. pn”

(1.1) LI_I)T:) = 0.

If f(x) € [p™, x] welet N(f; H) denote the number of distinct values of y in H
for which at least one of the roots of f(x) = yisin [p™]. We writed (d = 1) for
the degree of f and suppose throughout that d is fixed and that p = p.(d),
for some prime p,, depending only on d, which is greater than d. We call f(x)
primary if the coefficient of x? is 1 and f(0) = 0. There are p™® D primary
polynomials of degree d over [p™]. Uchiyama (3, p. 199) has proved that

(1.2) > NP = kap™ + 0,7,

deg f=d
where the summation is over all primary polynomials f defined over [p™]
of degree d,

1

1 __1 d—1
(13) kd=1—-2!—[—§—!——_._+(7_)___

a

and the subscript means that the O-symbol depends only on d, that is not on
m or p. Our aim in this paper is to generalize (1.2). In § 3 we prove the following
theoren.

TueoreM. If H is any subset of [p™], satisfying (1.1), then
(1.4) S N H) = k" + 0,4,

deg f=ad
This is a genuine asymptotic formula for large p as the term O, (p™@-1/2)
is certainly o(Ap™@—1), as p — 0, in view of (1.1). We have thus generalized
(1.2) but at the cost of weakening the error term.The error term in (1.4) can
be improved when d = 1 or 2 to O,(p™“~ D),
It turns out that the estimation of 34, ,—o N(f; H) depends on that of the
number of (x1, ..., %) € [p™]’ X ... X [p™), x; # x, (¢ # j) for which
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(—=1)%1x;...x51sin H. This number is denoted by N(p, m, d, H). It is
precisely in the estimation of N(p, m, d, H) that the error term can be improved
when d = 1 or 2 (or when H = [p™]). We devote § 2 to the estimation of
N(p, m,d, H) and it will be shown there that

(1.5) N(p,m, d, H) = hpm@=D 4 0, (pma-1m).

2. Estimation of N(p, m, d, FI). We denote the trace of « from [p™] to [p]
by t(a), so that

(2.1) ta) =a+a®+ ...+ a1 € [p],
and hence can be considered as an integer (mod p). Clearly,
(2.2) te+ B8) = ta) + t(8)
and
(2.3) tOa) = M(a),
for all o, 8 € [p™], X € [p]. Now let
(2.4) e(a) = exp{2mit(a)/p};
thus from (2.2) we have
(2.5) ela + B) = e(a)e(d).
It is well known that for x € [p™], we have
(2.6) ygf;m] e(xy) = {gm iijc - 8f
We define for any integer &2 = 1,
S(k) = {(¥1, ..., x) |2 € [pr), 1 =4 = B},
Then, if 0 # a € [p™], we have on summing over x,, by (2.6),
(2.7) Soelaxy. . xg) = 2, (=)= —(@p"— 1%t
S@ s{a—1

It is also well known (1, p. 39, display (12)) that for 0 # b € [p™] and
p >k = 1, we have:

(2.8) 2 e(by")l < (B — 1)p""
welp™
For any I (1) positive integers 1y, . . . , 1; we define

T = {xy, ..., xg) lxg; € [p), 1 =25 =1}
Thus for any positive integers 7,71, .. ., i, @1, - . ., &, satisfying

(2.9) 1<r=d—1, 124 <3<...<4, =2d, axtas+t...+a, =4d,
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we have, by (2.8), as p > d,

<
T(r—1)

> elaxy,™ ... %y,

T(r)

™’ ef(axy™ .o 2072,
zi, €lp

(. — Dp"* + 1} S a ™™ ™,

T(r—1)

IIA

and thusasr» £d — 1, ¢, £ d we have:

(2.10) < dp™ie,

> elax,™ .. x,

T(r)

From (2.7) and (2.10) we have:

(2.11) S eam . x) = — (O — 1 0,5,

s@
where the asterisk means that the summation is only taken over those
(1, ..., %) € [p™] X ... X [p"]) for which x; 5 x, (¢ # §), since any sum
(212) 27 e(axy...xs) (%, = x, for at least one pair (2,7) (i 5 7)),

S{d)
is of the form (2.10) for somer, 41, ..., %, a4, . . ., a, satislying (2.9). There are

0.(1) such sums (2.12).
Now N{p, m, d, H) is just the number of

(xly-- -vxdyy) E [Pm]l X e X [pm]/ X H: Xy # xj (1 #])y

for which (—1)%;...x; — y = 0. Hence by (2.6) we have:

(2.13) N(p,m,d, H) = — *Z 2 eft((— 1)y ox — W)}

P S@ veH i€p™
The terms with ¢ = 0 in (2.13) contribute

Ly D@t —2)... "~ d).

P s@ vem
The terms with ¢t # 0 yleld:

1 Zm e(—ty) Sz(d:ke((——l)d_ltxl C %)

m
P ier Ty

T T ()= (" — D 4 0,

P vem o

—_ (pm _ml)d_l Z Z 6(—ty) + Od(pm(d~1/2))

P veH €M)

- _p—l)d_ ("5 (H) — B} + 0,(0" ),
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where

_J1 ifo ¢ H,
(2.14) o) = {0 if0 ¢ H.
Clearly

. _pm—-l)_ (p"aUT) — b} = 0™,

thus (2.13) becomes
N(p,m,d, H) = hp™ D + Og(p™@-1/2),

as required.

3. Proof of the Theorem. Let g¢, g1, ..., gym_1 be the p™ elements of
[p™], with go = 0. We let
3.1) M= Mp,md, H, x)

={flx) =2+ aqp ™'+ ...+ ax —y|a; € [p"],y € H}

so that |[M| = hp™@ D Fori=0,1,...,p™ — 1 we define
32 M, =M, md H,g,x)={f€ M|f amultiple of x — g,}.

Now for
0251 << ... <, 2p" -1, 1Sr2d—-1(2p—2Zpmn—2)
we have:

My DMy .. O

= number of f € M which are multiples of [] (x — 24)
pis|

= number of by ,_1,..., 0y € [p"] such that
111 (x — gtj)(xd‘T + bd—r-lxd-r_l + ...+ bx+ b)) EM
=

Sp’" ifi;=0,0 ¢ H,
ma—r—1)

= p 0 if#=00¢H,
ho if 4 %0,
as (—1)"'g;, ... g, has an inverse in [p™] if and only if 7; > 0. Thus from

(2.14) we have:
P S(H) i 4y = 0,
P if 41 # 0.

Hence, writing Uk, 1) = {1, ..., %) [ S <1y < ... <1 = p™ — 1},
we haveforl €7 =d — 1 (= p™ — 2):

My My N M ={
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S M N MyaN .. N\ M,
U(r,0)
= >  M,NAM,N...N\M,
U(r,0)-U(r,1)
4+ 3 M N MO N M

U(r,1)

— <Pm:11>Pm(d—r)6(H) + (Pm 7,_ 1>Pm(d—r—1)h

r

— hpm(d—r—l)/(p + 0, (Pm(r—l))} + 6(H)Pm(d-r)0 (Pm(r 1))
hpm(d—-l)

+ O (Pm(d-l)) as h é Pm

We next estimate

d
[MyN ... N My =numberof f =[] (x —gy) € M
=1

_ {1 if (=1)" gy ... g4 €H,
0 otherwise,
hence

> Mo ... N M, = 31

U(d,0) U(d,0)
where the dagger (T) denotes that only those (71, . . ., 14) are counted for which
(=1)* g, ...giw € H. Thus on picking out the terms with 7; = 0 we have:

3;1=@; %@w+2*

Ud,l)
Now N
at St = 1 = N(p, m, d, H)
Ud,1) 070 raen
= hpm(d—l) + Od(PM(d_l/Z))i by (15)
Hence
— hp™ m{d—1/2)
2 M NN M) = T 0u(p )-
Ud.0)
Now
ST N H) = | Mo\U MU ...UM
deg f=d

=§:1(—1)’—1 Z | My O\ O My
1 m(d 1)
—Z(lr{ +0@W”ﬁ

| 4 (cayif

m—1 v (=171 m(a—1/2)
WYL S+ Oule ),

Pm(d—l)

+ Od (pm(d—lﬂ))}

as required.
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4. Conclusion. The Theorem shows that for any given subset H of [p"]
we have:
4.1) N(f; H) = ki + O,(p™'?)

on the average. Carlitz and Uchiyama (1, p. 40, display (17)) have also shown
that

NZ : m =k 2, m({d+1) 0 md .

4.2) o N D = k™ A+ 0™

It would be interesting to find an analogous asymptotic formula for
N*(f; H).

(43) deg2f=d <f )

It seems reasonable to conjecture that the main term of any such asymptotic
formula for (4.3), when it exists, would be

(44) ko 2h2ph (@D,

This is certainly true when d = 1. It can also be verified in special cases when
d = 2, 3 or 4. For example (see 2, p. 79, Theorem 2) when d = 4 (so that
ky = 5/8), m = 1, p > 3 and H an arithmetic progression of £ (£p) distinct
terms in [p], it was shown that

(4.5) N(f; H) = (5/8)h + O(p? log p} if and only if a;® — 4asas + Saq 0.

Hence

= (p° — PG/ + 0" log p))* + pOR)

M

Tz

a

s
|

3/4
(25/60)h%p° + 0(p** log p), if uml’—‘# = 0.

P2
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