ON EXCEPTIONAL POLYNOMIALS
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Let f(x) be a polynomial of degree d > 2 defined over

the finite field k with q = pn elements. Let
q

_ =) - f(ly)
(1) *(x, y) = y

If f*¥(x,y) has no irreducible factor over k which is absolutely
q

irreducible, f is called an exceptional polynomial [1]. Davenport
and Lewis have roted that when d 1is small compared with p, a
permutation (substitution) polynomjal is necessarily an exceptional
polynomial. It is the purpose of this paper to prove the converse;
that is, we will show the existence of a constant a(d), depending only
on d, such that if f(x) is an exceptional polynomial over k , where

p > a(d), then f(x) is a permutation polynomial.

If f(x) is an exceptional polynomial over kq then, in the

terminology of [2], f(x) is an extremal polynomial of index 0. Hence
by theorem 1 in [2] we have

(2) V() - gl < k(d),

where the constant k(d) depends only on d and V(f) denotes the
number of distinct values of y in kq for which at least one of the

roots of f(x) =y is in k . Hence we can write V(f) = q - w, where
q

0 < w< k(d). It suffices to prove that w = 0. We assume w > 1 and
obtain a contradiction.

Let the distinct values taken by f(x) in k be r ,r ., T
q-w
and the distinct values not taken by {(x) be n1, nz, ..., n . Let the
w

values ri (1 <i< g-w) occur for m (1< i< g-w) values of x so
1= EIR

q-w
that = mi: qg. Now each m_ > 1 so thatfor r=1,2, ..., q-w we
i=1 !
have
(3) m < w+1.
P

Now for t=1,2, ..., w we have



t t
= {f(x)} = = {f(x)} = = m_r‘t.
X e k i=1 X e k i=1 !
q q
f(x) = r.
i
. d
On the other hand we can write f(x) = fo +f1x ... +fdx where each
fi(O< i<d)e k . Nowif p>a(d), where a(d) = dk(d) +2, we have
Sis q z
q-2 > p-2 > dk(d) > dw so we can write for t=1,2, ..., w,
t_ . (t) (t) (t)_q-2
{f(x)} =1, Jrf1 x+...+fq_2 x . Then
q-2
T
= {(fx)} " = = f,(t) = 53
X ek j=0 Joxek
q q
Now > xJ:O for j=0,1, 2, ..., g-2; so
x e k
q
t
= {£(x)} = 0 (t =1, 2, , W)
xe k
q

Thus we have

q-w ¢
(4) > m.r, = 0 (t=1,2, ..., w).
. 1 1
i=1
Now set m = max m. so that from (3) we have 1< m< w + 1.
5 = =

1 <i<qg-w
If s{1< j<m) denotes the number of nli(i < i< g-w) with m, =,
- = == i

J
q-w
s. = 2 1,
J i=1
mizj
so that
m m q-w q-w
zZ s. = Z Z 1 = 1=q-w
j=1 / j=1 i=1 i=1
m, =
i
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and

m m q-w m g-w q-w
Z js. = Z ] 1 =2 ¥ m, = £ m, = q.
j=1 =1 i=n i=1 i=1 S YR
m, =] m, =]
1 1
Now reorder r,, , T so that » , ..., r have
q~-w 1 s
1
m = = m =1; r , , T have m = =m
1 s s +1 s *ts s +1 s
1 12
= 2; ; , , T
s ts_+ ... +s +1 s +... +s = g-w have
m-1 m
Mmooy s g e Emo L0 = m Hence (for
1 m-1 1 m
t=1, 2, ., w)(4) becomes
s *t...+s
m j :
T ] z r. = 0.
j=1 i=s 4...ts. H17
-1
Thus (for t=1, , W)
s + . + s,
w ¢ w : m i ¢
Z n = X n + Z j = T
j=1 ! j=1  j=1 i=s +...+s. H !
1
s + . + s
m 1 J
t . t
= = x + Z (j-1) = T,
. i
X ¢ k =1 i=s +...s. H
¢ q J 1 j-1
t
Now 1<t<w<dw<dk(d)< g-2 so Z x = 0. Hence
x e K
q
s + . +s
w ¢ m 1 J ¢
(5) S n. o= = (j-1) T o
j=1 j=2 Psshts t

We next consider the two polynomials, both of degree w,

g(6)
j

and

02 g

1

(6 - n.)
J
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S.

m ] i
he) = ,H ,H (O—rs +...+s, +i)
j=2 i=1 1 j-1
Let g.,h(i=0,1,...,w) denote the coefficients of e“’_l in g(€) and
i

h(€) respectively. Clearly, go = hO =1. Also let Gt' Ht(t =1, 2,...

t
denote the sum of the t h powers of all of the roots of g(€) and h(6),
respectively. Thus by (5) Gt = Ht (t=1, 2, ..., w). Newton's {irst

w identities for g(6) are
t-1

(6} z G g +tg =0 t=1, 2, ..., w).
(=0 t-171 t
1=

Now p > dk(d) + 2 > dk(d) > k(d) > w so the coefficient of g, in (6)

does not vanish in k . Hence the w equations can be solved
successively and uniquely for g ,...,¢g interms of G ,...,G ;
1 w 1 w
G 2—1(G z G.) tc. Similar! obtain h H
= - s = - s . n = - s

gy 1 gz 1 > e imi y we al 1 1

-1,.2
hZ =2 (H1 - HZ), etc., and so as Gt = Ht we have gi = hi for
i=0,1, 2,...,w. Hence g(8) = h(6) and so {ni’ ...,n } mustbe

W
a rearrangement of {r81+1, el rq_W} . This is clearly impossible as
the r's are distinct from the n's by definition. This completes the
proof.
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