ON EXCEPTIONAL POLYNOMIALS

Kenneth S. Williams

Let f(x) be a polynomial of degree $d \ge 2$ defined over the finite field k with $q = p^n$ elements. Let

(1)
$$f^*(x, y) = \frac{f(x) - f(y)}{x - y}$$
.

If f*(x,y) has no irreducible factor over k which is absolutely irreducible, f is called an exceptional polynomial [1]. Davenport and Lewis have noted that when d is small compared with p, a permutation (substitution) polynomial is necessarily an exceptional polynomial. It is the purpose of this paper to prove the converse; that is, we will show the existence of a constant a(d), depending only on d, such that if f(x) is an exceptional polynomial over k, where p>a(d), then f(x) is a permutation polynomial.

If f(x) is an exceptional polynomial over k then, in the terminology of [2], f(x) is an extremal polynomial of index 0. Hence by theorem 1 in [2] we have

$$|V(f) - q| < k(d),$$

where the constant k(d) depends only on d and V(f) denotes the number of distinct values of y in k for which at least one of the roots of f(x) = y is in k. Hence we can write V(f) = q - w, where $0 \le w \le k(d)$. It suffices to prove that w = 0. We assume $w \ge 1$ and obtain a contradiction.

Let the distinct values taken by f(x) in k_q be $r_1, r_2, \ldots, r_{q-w}$ and the distinct values not taken by f(x) be n_1, n_2, \ldots, n_w . Let the values r_i $(1 \le i \le q-w)$ occur for m_i $(1 \le i \le q-w)$ values of x so

that $\sum m_i = q$. Now each $m_i \ge 1$ so that for r = 1, 2, ..., q-w we i=1

$$m_r \leq w + 1.$$

Now for $t = 1, 2, \ldots, w$ we have

On the other hand we can write $f(\mathbf{x}) = f_0 + f_1 \mathbf{x} + \ldots + f_d \mathbf{x}^d$ where each $f_i(0 \le i \le d)$, k_q . Now if $p \ge a(d)$, where a(d) = dk(d) + 2, we have $q-2 \ge p-2 \ge dk(d) \ge dw$ so we can write for $t=1,2,\ldots,w$, $\{f(\mathbf{x})\}$ $t=f_0 = t$, t=1, t=1,

$$\sum_{\mathbf{x} \in \mathbf{k}_{\mathbf{q}}} \{f(\mathbf{x})\}^{\mathbf{t}} = \sum_{j=0}^{\mathbf{q}-2} f_{j}^{(\mathbf{t})} \sum_{\mathbf{x} \in \mathbf{k}_{\mathbf{q}}} \mathbf{x}^{j}.$$

Now

$$\Sigma$$
 $\mathbf{x}^{j} = 0$ for $j = 0, 1, 2, \dots, q-2$; so $\mathbf{x} \in k$

$$\sum_{\mathbf{x} \in \mathbf{k}} \{f(\mathbf{x})\}^{\mathbf{t}} = 0 \qquad (\mathbf{t} = 1, 2, \dots, \mathbf{w}).$$

Thus we have

(4)
$$\sum_{i=1}^{q-w} m_i r_i^t = 0$$
 (t = 1, 2, ..., w).

Now set $m = \max_{\substack{1 \leq i \leq q-w}} m_i$ so that from (3) we have $1 \leq m \leq w+1$. If $s_j (1 \leq j \leq m)$ denotes the number of $m_i (1 \leq i \leq q-w)$ with $m_i = j$,

$$s_{j} = \frac{q - w}{\sum_{i=1}^{\infty} 1,}$$

$$m_{i} = j$$

so that

and

Now reorder r_1, \ldots, r_{q-w} so that r_1, \ldots, r_{s-1} have $r_1,$

m
$$\Sigma_{j=1} \quad i = s_1 + \ldots + s_j$$

$$\Sigma_{j=1} \quad i = s_1 + \ldots + s_{j-1} + 1$$

$$t = 0.$$

Thus (for $t = 1, \ldots, w$)

Now $1 \le t \le w \le dw \le dk(d) \le q-2$ so $\sum_{\mathbf{x} \in k} \mathbf{x}^t = 0$. Hence

(5)
$$\sum_{j=1}^{w} n_{j}^{t} = \sum_{j=2}^{\infty} (j-1) \sum_{i=s_{1}+\ldots+s_{j-1}+1}^{s_{1}+\ldots+s_{j}} r_{i}^{t}.$$

We next consider the two polynomials, both of degree w,

$$g(\theta) = \prod_{j=1}^{w} (\theta - n_j)$$

and

$$h(\theta) = \prod_{\substack{j=2 \ i=1}}^{m} \prod_{i=1}^{s_{j}} (\theta - r_{s_{1}} + \ldots + s_{j-1} + i)^{j-1}.$$

Let g_i , h_i ($i = 0, 1, \ldots, w$) denote the coefficients of θ^{w-i} in $g(\theta)$ and $h(\theta)$ respectively. Clearly, $g_0 = h_0 = 1$. Also let G_t , H_t ($t = 1, 2, \ldots, w$) denote the sum of the t^{th} powers of all of the roots of $g(\theta)$ and $h(\theta)$, respectively. Thus by (5) $G_t = H_t$ ($t = 1, 2, \ldots, w$). Newton's first w identities for $g(\theta)$ are

(6)
$$\sum_{i=0}^{t-1} G_{t-i}g_i + tg_t = 0$$
 (t = 1, 2, ..., w).

Now $p \ge dk(d) + 2 > dk(d) > k(d) \ge w$ so the coefficient of g_t in (6) does not vanish in k. Hence the w equations can be solved successively and uniquely for g_1, \ldots, g_w in terms of G_1, \ldots, G_w ; $g_1 = -G_1, g_2 = 2^{-1}(G_1^2 - G_2)$, etc. Similarly we obtain $h_1 = -H_1$, $h_2 = 2^{-1}(H_1^2 - H_2)$, etc., and so as $G_t = H_t$ we have $g_i = h_i$ for $i = 0, 1, 2, \ldots, w$. Hence $g(\theta) \equiv h(\theta)$ and so $\{n_1, \ldots, n_w\}$ must be a rearrangement of $\{r_{g_1+1}, \ldots, r_{q-w}\}$. This is clearly impossible as the r's are distinct from the n's by definition. This completes the proof.

REFERENCES

- H. Davenport and D. J. Lewis, Notes on congruences (I), Quart. J. Math. Oxford (2) 14 (1963),51-60.
- K.S. Williams, On extremal polynomials. Canad. Math. Bull. 10 (1967),585-594.

Carleton University Ottawa