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1. Introduction. Let f(x) denote a polynomial of degree d defined over a finite field k 
with q =p" elements. B. J. Birch and H. P. F. Swinnerton-Dyer [I] have estimated the 
number NCf) of distinct values of y in k for which at least one of the roots of 

is in k. They prove, using A. Weil's deep results [12] (that is, results depending on the Riemann 
hypothesis for algebraic function fields over a finite field) on the number of points on a finite 
number of curves, that 

N ( f  = IZq + O(q9, (1.2) 

where IZ is a certain constant and the constant implied by the 0-symbol depends only on d. In 
fact, if GCf) denotes the Galois group of the equation (1.1) over k(y) and G'Cf) its Galois 
group over k'(y), where k' is the algebraic closure of k, then it is shown that A depends 
only on GCf), G'Cf) and d. It is pointed out that " in general " 

1 1  1 
IZ=l--+--...-(-l)d- 

2! 3! d!' 

It is the purpose of this paper to consider the case of quartic polynomials (modp) (so 
that d = 4 and q =p) in greater detail. It is shown, using Skolem's work [9] on the general 
quartic polynomial (mod p) and Manin's elementary proof [5] of Hasse's result 

that (1.2) can be proved in this special case in a completely elementary way, which incidently 
avoids explicit consideration of GCf) and G'Cf). Further it is shown that the only values 
of IZ which occur are 

and moreover it is determined when each of these occurs. For those f having IZ = 3, 3 or f ,  
it is proved that the error term in the asymptotic formula for NCf) is in fact O(1). In the case 
of cubic polynomials [6] the corresponding values of A are 
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and in this case the error term is always O(1). We note that for cubic and quartic polynomials, 
the number of 1-values occurring is the same as the degree of the polynomial under con- 
sideration. We also observe that for d = 3 and 4 

is absolutely irreducible (modp) if and only if 

(For d = 3 this was first noted by S. Uchiyama [lo].) 
We also consider the problem of determining the number of residues in an arithmetic 

progression. If the arithmetic progression has h terms we prove that the number of residues 
in it is given by 

Ah + O(p*log P), (1.4) 

where IZ is given by (1.3) and the constant implied by the 0-symbol is absolute. This proves 
that any arithmetic progression with B p* logp terms contains a residue of f ( x )  (modp), 
generalizing a result of L. J. Mordell [7] in the case d = 4. It is shown that it also contains 
a non-residue (generalizing a result of one of us [14]) and a pair of consecutive residues. 
(Similar results have been shown to hold in the cubic case [6].) This last result verifies a 
conjecture of one of us [I31 in a special case, namely, that the least pair of consecutive non- 
negative residues of any polynomial (modp) of degree d is O@* log p). 

Finally we conjecture that (1.4) holds for all polynomials of degree d. The truth of this 
conjecture would imply that the least non-negative non-residue (modp) of a polynomial of 
degree d, for which 1 9 1, is 0@* log p). 

2. Simplillcation of the problem. Let 

fl(x)=alx4+ blx3 + clx2+dlx+el (a1 +O)t  
have the N residues (modp) 

Then 

where 

r19 r2, - - - y  r ~ .  

fi(x)=x4+ b2x3 + c2x2+ d2x + e,, 

b2=a;lbl, c2=a;lcl, d,=a;'dl, e,=a;'e,, 

also has N residues, namely 

a;lr1, a;lr2, ..., a;'rN. 

t Very often we omit (mod p) as this is the only modulus occumng. 
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Now let 

f3(x)=fz(x-4-'bZ) =x4+ c3x2 +d3x+ e3, 

so that -a 

~ 3 = - 2 - ~ .  3b:+cz, d3=2-3b:-2-1bzcz+d2 
and 

e3 = -3.2-8b~+2-4b~cz-2-Zb2dz+ez. 

Then f3(x) also has the N residues (2.1). Now set 

f4(4 =f3(x) - e3. 
The residues of f,(x) are 

Hence, without loss of generality, we need only consider the number of residues (modp) of 

f (x) = x4 + ax2 + bx. (2.2) 

When we count the residues (modp) only if they lie in a certain arithmetic progression, say 

{l+ms} (s=O, 1, ..., h-1), (2.3) 

we.can still work with (2.2) without any loss of generality, as the formula obtained for the 
number of its residues in (2.3) is of the form 

where A is the constant discussed in 41 and the constant implied by the 0-symbol is absolute? 
and so does not depend on 1 and m. 

Throughout this paper we will use the following notation. We let Nr (r = 0, 1,2, . . ., p - 1) 
denote the number of incongruent (modp) solutions x of 

f ( 4  = r (mod PI, 
and set 

n,= El  (i=0,1,2,3,4), 
r 

N , = l  

where the summation in r is taken over the set (0, 1,2, . . . , p -  1). The number NCf) of 
residues off (x) is therefore just 

For the residues off (x) (modp) in the arithmetic progression (2.3), we let MCf) denote their 
number and introduce 

t Unless otherwise stated, all constants implied by 0-symbols are. absolute. 
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where the dash (') denotes that the summation in r is taken over the set (2.3). Hence 

3. Estimation of n3. The discriminant off (x) - r is given by 

D(r) = - 256r3 - 128azrz -(16a4 + 144a b2)r - (4a3b2 + 27b4). (3.1) 

Hence D(r) = 0 (modp) has at most three incongruent solutions r, that is f (x) -r has a squared 
factor (modp) for O(1) values of r. But Nr = 3 implies that f(x)-r has a squared linear 
factor (modp), and so we have 

4. Estimation of n,. If b = 0, obviously n, =0(1) so that we may suppose that b + 0. 
The cubic resolvent off (x) - r, having the same discriminant as f (x) - r, apart from a factor 
212, is 

Now, by a result of Skolem [9], f (x)-r is congruent to the product of a linear polynomial 
and an irreducible cubic (modp) if and only if g r Q  is irreducible (modp). Hence 

or equivalently 

n,=p - C1 +0(1). 
r 

6~ red (mod P) 

As discrimg,(y) = 212~(r),  there are at most three values of r for which gr(y) has a squared 
factor (modp). Let n") denote the number of r for which g r Q  has exactly one linear factor 
and n(j) the number of r for which gr(y) has three distinct linear factors (modp). Then 

n, = p-(n(" + d3))+ O(1). 

Now 

n") + 3d3)= p+ 0(1), 

so that 

nl = 3p - +n(') + ~ ( l ) .  

Now grb) has exactly one linear factor if and only if 

discrim gr(y) ( )=-I. 



DISTRIBUTION OF THE RESIDUES OF A QUARTIC POLYNOMIAL 71 

This was first proved by L. E. Dickson 141. Hence 

by Manin's result [5]. Hence we have proved in an elementary way 

5. Estimation of n,. In this section we give two different proofs of our estimates for n,. 
The first proof appears to be deep but is easily generalized to deal with m,. The second proof 
is elementary and completes the elementary proof of the asymptotic formula for N o .  This 
method does not seem to be easily capable of generalization to m,. To calculate m, by this 
method would require an asymptotic formula for m, +4m2 +9m3 + 16m4, which, after applying 
the method of incomplete sums to it, requires an effective estimate for 

where, for any real t, e(t) denotes exp(2nitp-I). Such an estimate seems difficult to obtain. 

First Proof. We consider two cases according as b = 0 or b + 0. 8 

Case (i) : b = 0. In this case 
f ( x ) - r ~ x ~ + a x ~ - r  

is congruent to the product of an irreducible quadratic and two distinct linear factors if and 
only if 

( 1  and crza2)= - +I. 

This result is contained in a theorem of Carlitz [2]. (Skolem [9] seems to forget the possibility 
a: -4ala2+8a3 = 0 (his notation) in his paper; in our case we have a, = 0, a, = a, a, = 0 
and a, = - r.) Hence 

4r+az 
+ O(1) 
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Case (ii): b f 0. In this case 

is congruent to the product of an irreducible quadratic and two linear distinct factors if and 
only if 

gXy)=(y -Y 1)hXY) (Y 1 =Y *(r)),  (5.1) 

where hrb )  is an irreducible quadratic and b1 ( p) = + 1 ; for convenience we occasionally 
use this alternative notation for Legendre symbols. 

Now g r b )  is of the form (5.1) if and only if 

discrim gr(y) ( ) = - I ,  

i.e., if and only if 

Hence 

As D(r) is a cubic in r, the number of r wi th(D(r)(p)  = - 1 is just 

for large enough p. 
Hence there exists at least one r such that (D(r) lp)  = - 1, say r = r'. Let yl = y; = yl(r') 

be the unique solution of 

Then 

where 

We note that y1 f 0 as b f 0. Now 
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by a deep result of Perel'muter [8] as 

Y:D(~(Y 1) 

is a polynomial of odd degree, namely 11. The second sum is also O(p*) unless 

identically in y, where k(y) is a quintic polynomial. (Note that the coefficient of y10 on the 
left-hand side of (5.2) is 2-lo = (2-5)2.) However it is easy to see that this is not so, since 
on taking y = yi we have 

that is 

so that 

which is a contradiction. Hence we have proved 

LEMMA 3. 

n2 = /~[l-($)~-(f)]]p+O(l), if- b=O, 

1 t p  + O(P+), if- b+O. 

Secondproof. We note the obvious relation 

As we have evaluated nl and n3, to determine nz (and n4) it sufiices to estimate 

We prove in an elementary way 

Proof. 
1 ~P+O(P+), if- b+O. 
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where N, denotes the number of solutions (x,  y) of 

Let N; denote the number of such solutions with x + y ;  then 

After cancelling the factor x -y  in (5.4) we h d  that solutions with x +y satisfy 

( ~ + ~ ) ( x ~ + y ~ + a ) =  -b. (5.5) 

As there are at most three solutions of this with x = y we have 

N> = N'; + O(l), 

where N;' denotes the number of solutions (x,  y) of (5.5). We now consider two cases according 
asb=Oorb$O.  

Case (i): b E 0. Then (5.5) becomes 

(x+y)(x2+y2+a)=0 

and the number N;' of solutions (x ,  y) of this is 

Case (ii): b + 0. Let NL'(1 k 2 p -  1) denote the number of solutions (x, y) of the 
pair of congruences 

~ ~ + ~ ~ + a = k ,  x+y= -bk-l.  (5.6) 
Then 

P- 1 
N';= C N;'. 

k=l 

Eliminating y from the pair (5.6), we h d  that N:' is just the number of solutions x of , 

x2+ b k - l ~ + 2 - ' ( b ~ k - ~ -  k+a)=O. 
Hence 

b2k-'-4.2-'(b2k-'- k+a)) (2k3-2ak2- b? 
N ; = l +  = 1+ 9 

P P 
and so 

As b $0, by Manin's results [5], 
N'; = p+O(p*). 

This completes the proof of the lemma. 
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6. Estimation of n4. This follows at once from Lemmas 1, -2 and 3, or 3' and (5.3). 
We have 

LEMMA 4. 

7. The number of residues in a complete residue system. The number of residues 
NCf) = n, +n, + n3 + n4 of the quartic polynomial (2.2) (and so of f,(x)) is given by 

In the cases where the error terms are 0(1), it would be very easy to prove exact results. 
In fact, quoting some results of R. D. von Stemeck [Ill, we have in these cases 

for a,bmO,p=l(mod4), 

I p + l  
N(f) = 1 for a, b =O, p= 3(mod4), 

:(3p+4-2(7)+($)+2(?)) for u+O,b=O. 

8. Estimation of m3. As m3 6 n3 we have, from Lemma 1, 

LEMMA 5. 
ms = ql). 

9. Estimation of m,. If b = 0, obviously m, = 0(1), and so we may suppose that b $0. 
As in &I we have 

m,= x'1 +0(1), 
#, irrcd (mod p) 

or equivalently 
m,=h-  El +0(1). 

r 
or red (mod P) 



76 = K. McCANN AND K. S. WILLIAMS 

~ e f i n i  m(') (i  = 0, 1, 2, 3) by 
m(') = C 1, 

r 
Rr=l  

where & denotes the number of solutions y of gr(y) = 0, so that 

Corresponding to (4.2) we prove that 

m(')+ 3m@)= h + O(p+ log p). 
We have 

as b $ 0 .  Now change the summation in y to summation in z defined by z = ty, for fixed t. 
Then 

and so 

Now 
1 - e(64zhm) 1 I 7 1 = I 1 - 464zm) 1 1$ sin (64nzmlP) I 

and so 
P- 1 1 P-' 1 

( ~ " 6 4 z r )  1 z1 I sin (Mnzmlp) 1 = sin (nulp) r#O r 
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for p large enough. Hence 

1 e(13 + 8az2t- 64b2t3} I I im(')- h 1 6 log p. max 
t2 

+ O(1) = ~ ( p f  log p), 
l S z $ p - 1  t + O  

by a deep result of Perel'muter [S]. Now m(2) = 0(1), so that 

m(')+ 3m(3) = h + O(pf log p). 

Hence from (9.1) and (9.2) we have 

ml = +h - +m(') + o(pf log p). 

Now g,Q has exactly one linear factor if and only if (D(r) lp); = - 1. Hence 

It is well-known that the above incomplete sum is O(pf logp), so that 

m") = +h + O(pf log p), 
giving 

10. Estimation of m,. We consider two cases according as b = 0 or b $0. 

Case (i), b = 0. In this case, from 95, we have 

The first two incomplete sums in r are O(pf logp) and the third one is also, unless a=O, 
when its sum is h. Hence 
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Case (ii), b $0. Again from $5 we have 

Hence 

and so from a deep result of Perel'muter [a] 
hn2 h m2 = + 0 ( p t l o g p )  = +O(p*logp). 
P 

We have proved 

11. Estimation of m,. It is easy to show in a similar (but easier) way to that used in the 
proof of 

m(1)+2m(2)+ 3m(3) = h + O(p*log p) 
in $9, that 

ml+2m2+3m3+4m4 = h + ~ ( ~ * l o g p ) .  
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Hence, from Lemmas 5,6 and 7, we have 

12. The number of residues in an arithmetic progression. The number of residues 
MCf) = m, +m, +m, +m4 of the quartic polynomial (2.11), and so of (2.1), in the arithmetic 
progression (2.12) is given by 

THEOREM 2. 
1 ih+~(p+logp) ,  if a, b=0, p= 1 (mod4), 

13. Some corollaries of Theorem 2. By choosing h large enough in the asymptotic formulae 
of Theorem 2 we can guarantee that MCf) > 0. This proves 

THEOREM 3. Any arithmetic progression with % pf log p terms contains a residue and 
non-residue (mod p) off (x). 

We also note that Theorem 2 implies 

THEOREM 4. If b + 0, any arithmetic progression with p pf logp terms contaim a pair 
of consecutive residues (mod p) off (x). 

Proof. As b + 0, by Theorem 2, 

Hence, for all p 2 p, , there exists a constant k > 0 such that 

Choose 

so that 

M(f) > +h - kpf log p. 

h = [9kpflogp]+ 1, 

37 
M( f )  > - kpf log p > 0. 

8 
We show that 

l,l+m,1+2m, ..., l+(h-l)m, 
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with this value of h, always contains a pair of consecutive residues. For suppose not; then 

and so, for p 2 po, 

which implies, for large enough p, the contradiction 

We remark that a number of other results, similar to Theorems 3 and 4, can be obtained 
in much the same way and that most of the results of this paper, with only slight modifications, 
go over to quartics over a general finite field. 

14. 'Ibe least pair of consecutive residues when b = 0. When b= 0, the asymptotic 
formulae of Theorem 2 tell us that there are far fewer residues off (x )  (mod p), and we do not 
have enough information to guarantee the existence of a pair of consecutive ones in this case. 
To overcome this difficulty we determine asymptotic formulae for the number m of pairs of 
consecutive residues in the arithmetic progression (2.3). To do this we set 

so that 

Now it is clear that 

m13, m23, m31, m32, m33, m34, m43 4 m3 
and 

hence by Lemmas 5 and 6 we have 

Thus (14.2) becomes 

so that we are left with the problem of estimating m,,, m24, m4, and m,,. We begin with m,,. 
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LEMMA 10. When b = 0, 

I A h  + O(p"og p), otherwise. 

Proof. Appealing to Carlitz's results 121 we see that 

x4+ax2-r 
is congruent (mod p) to the product of two distinct linear factors and an irreducible quadratic 
if and onlv if 

1 and (+2)=+l. 

For convenience we set a = 2c so that the second condition of (14.4) becomes (r+c2 Ip) = + 1. 
Hence 

where, in the summation, 

-(r+m) r+(m+c2) ( ) = -  ( ) = + l  ( , p  1 ,  ( 
Hence 

Now unless, after multiplying the expressions in the four brackets together, we obtain squares 
in the Legendre symbols, this gives 

m2, = A h  + O(pt logp). 
Now squares occur if and only if one of the following three possibilities holds: (i) c = 0, 
(ii) c2 E m, (iii) c2 = -m. 

If (i) holds, 



82 K. McCANN AND K. S. WILLIAMS 

Similarly if (ii) or (iii) holds we have 

This completes the proof of Lemma 10. 

h 
- + 0(p*log p), otherwise. 
32 

Proof. From Lemma 3, when a, b E 0 and p =- 1 (mod 4), 

n2 = q l ) .  

As mZ4 4 m2 4 n2, we have mZ4 = O(1). From Zemma 4 when a, b E 0 andp m 3 (mod 4), 

n4 = O(1). 

As mS4 4 m4 4 n4, we have m24 = O(1). 
Hence we may suppose that a + 0. From Carlitz's result we have that x4+axz-r is 

congruent (modp) to the product of two distinct linear factors and an irreducible quadratic 
if and only if 

where a m 2c; also 
y4+ay2-(r+m) 

is congruent (modp) to the product of four distinct linear factors if and only if 

and 

Hence 
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where, in the summations, r + m r - s2 and 

Setting 

and 
B(s) = A(-s2-m,s) 

for convenience, we have 

Hence 

by a result of Perel'muter [S]. We now consider 

By Perel'muter's results this is 
P+ O(P9 

except in a few special cases. Thus in general 



As c, m + 0 the special cases are easily seen to arise whan 

c z = m  or cZ=-m.  
When cZ = m, (14.5) becomes 

Similarly, when cZ = -m, we obtain 

This completes the proof of Lemma 11. In an almost identical way we can prove 

LBMMA 12. When b = 0, 

[ 0(1)* 

h 
5i+ o@t log P), otherwise. 

Finally we evaluate m44. 

I h 
-+O(p+logp), otherwise. 
64 
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Proof. As x4 +ax2 -r is congruent (mod p) to the product of four distinct linear factors 
if and only if 

(+)= +I, say r =  -s2, 

and 

where, in the summations, r = -s2, r+m = -t2, and 

Hence 

Now change the summation over s and t to one over u and t, where u is defined by 

s = t+u. 
Hence 

1 
mu=- cz {I+( c2 -(t + uI2)} + (-2(c; t + u))} ll + y ; t2)} 

64 u . 1 ,  
r r  -(1+.)2, 

P 
u 2 + 2 u t - m r 0  

x (1 +(-2;+ '))} + O(1) 
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where 

Thus 
4 

and so 

by Perel'muter's results [a]. We must therefore consider 

In general this is p + O(p*) except for a few special cases, and so 

h 
m4, = - + O(p*log p). 

64 

It is easy to check that the special cases only occur if c = 0, c2 = m or c2 = -m. 
--If c = 0, (14.6) becomes 
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so that 

m, =(I +(+)I A + O(P+ log p). 

If c2 = m, (14.6) becomes 

and therefore 

The case c2 E -m is exactly similar. This completes the proof of Lemma 13. Putting 
together the results of Lemmas 10, 11, 12 and 13 we obtain (using 14.3) 

if a=O,  p -= 3 (mod 4), 

g + 0(Ptl0g P), otherwise. 
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An immediate corollary of this is 

THEOREM 6.  If b = 0, any arithmetic progression with B p+ log p terms contains a pair 
of consecutive residues (modp) o f f  (x). 

15. A conjecture. We conclude this paper by making the following 
Conjecture. The number M ( f )  of residues (modp) of a general polynomial f(x) of 

degree d in an arithmetic progression of h terms is given by 

where A is the constant given by Birch and Swimerton-Dyer [I.] and the constant iQplied 
by the 0-symbol depends only on d .  8 

We remark that it is true when d = 2, 3 or 4. 
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