ON EXTREMAL POLYNOMIALS
Kenneth S. Williams

(received April 9, 1967)

Let p denote a prime number and let k denote the finite
P
field of p elements. Let f(x) ek [x] be of fixed degree d > 2 .,
b Ed

We suppose that p is also fixed, large compared with d, say,
p>p (d). By V(f) we denote the number of distinct values of
— "o

1
f{x), xek . We call f maximal if V(f) = p and quasi-maximal

if V(f) =p +0O(1) . Clearly a maximal polynomial is quasi-maximal
but it is not known under what conditions the converse holds. As

-1
dV(f) > p , the minimum possible value of V(f) is > [Rc'l_] +1.

d -1 -1
When f{x) =x and p =z 1 {(mod d), V(f) = Rd— +1, so [p—d—] +1
-1
is in fact the actual minimum. I V(f) = [pd—] +1 we call f a

minimal polynomial and if V({) ’:‘S— + O(1) a quasi-minimal poly-

nomial. Clearly a minimal polynomial is a quasi-minimal poly-
nomial and Mordell has noted in an addendum to [7] that the converse
is true for p > p (d) . It seems reasonable to conjecture that a

= Yo

quasi-maximal polynomial is maximal for p > po(d) .

It is the purpose of this paper to generalize the ideas of
quasi-maximal and quasi-minimal. We set

(1) ix,y) = S Il)
X~y

Dickson [6] calls such a polynomial a substitution polynomial.
We shall see later that these are the exceptional polynomials

of Davenport and Lewis [5]. (See Corollary 4 and Theorem 2.)
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and call {(x) an extremal polynomial of index ¢ if, in the (unique)
decomposition of f¥*(x,y) into irreducible factors in k_[x,y],
P

there are { linear factors and no non-linear absolutely irreducible

4
factors. Clearly 0<f <d-1 . For example, f(x)=x is extremal
of index 1 when p = 3 (mod 4) since

2 i
-y)x+y) Y

is irreducible but not absolutely irreducible. When p = 1 {mod 4)

2
there exists w € k such that w = -1 s0 that
4 4
X -y _

= (x+y ) etwy ) (x-wy)

4
hence f(x) = x 1is extremal of index 3 in this case. On the other
hand, f(x) =x + x is not an extremal polynomial as

(¢ 4x) - (v +y)

X-y

2 2
=X txy+ty +1
is absolutely irreducible in k [x,y] for any prime p > 3 .
p
THEOREM 1. If f(x) is extremal of index £ then

Vi) =_ P +0o01).

g +1
Proof, As f(x) is extremal of index f we can write
i m
Floy)= 1 gbay) T b(xy),
i=1 i=1

where each g {(x,y) i linear so that £ (possibly 0) is the index
i

of f and each h (x,vy) is irreducible but not ahsolutely irreducible
J

in k [%,v]. Clcarly no two of 2y CIVEREE g£ are associates and
p
none is associated with (x-y) . Let
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glx,y)=ax+by+c, (i=1,2,...,2)
i i i i

and suppose that some a. = 0. Then

i

f(X)-—f(y)=:(X-y0(biy+<ﬁ)g(x,y)

for some g(x,vy) ek [x,y]. Now b, #0,
p i

otherwise g  would

i

not be linear, so on taking y = -c./b, we have
i1

f(x) = f(-c /b,)
it

= constant ,
contradicting d > 2 Hence no a, = 0 and similarly no b, =0
- i
£
Set a= I a , d =b. /a. and e. =
joq 1 i it i

= ¢ /a. so that
1 1 1

m
(x+dy+e) I hixvy).
1 1 j:'i ]

(%, v) = a

i

[

1

Now let Nr(r =2,3,...,d)

denote the number of solutions of

f(xi) = f(xz) = ... = f(xr)
with x, #x  (i#], 1<i, j<r). This system has the same number
; = <
of solutions as the system
Flx ,x ) = £ C )= o= £, =0
f (x1 }\2) (Xi,}x?)) (x1 Xr)
JJ m
+d.x h , = ...
i.e., 'l'I (x1 iXZ + ei) 'l'I J.(Xi XZ)
i=1 j=1
£ m
= N (x, +dx +e ) I hix,x)=0
) 1 ir i,
i=1 =1

with x, #x, (i#]j, 2<i, j<r) Now it is known (see for example
i j = =
[1]) that if f(x,y) € k [%,y] is irreducible but not absolutely
P

irreducible then f(x,y) =0 has O(1) solutions. Hence Nr



differs from the number N; of solutions, with x, # x.
i
(i#7, 2<i, j<r), of
4 {
+d = ... = +d.x +e.)=0
.l'I (Xi iX2+ei) 'H (Xi X, el)
i=1 i=
by only O(1) . Since for any i1 and j with i#j, 1<i, j<g
+d.y+e, =x, +dy+e,. =0
Xy yte =%, jy ej
has 0 or 1 solutions (g.,g. are not associates)
i7

N' = > N(iz,i

., 1) +0(1),
1<i .., i <4 *

YRR
where N(iz,i .,1 ) denotes the number of solutions of
T

(2) x +d. X2+e :...:X1+d, x +e. =20

with =% #x. (1#], 2<i, j<r). Now
it - -

x +d. x +e. =x +d, x +e. =0
1 m 1 1 i n 1
m m n n
with 1 =1 gives x = X so
m n m n
N' = ? N@GE,,...,1 ) +001).
A (i, )+ o)
1<1_, .,1 <Y
_2 r—
i #1i
m n
m # n

Z<m, n<r
Let N’(iz, .+.,1 ) denote the number of solutions of (2) without
T

the conditions x, #x.  (i#j, 2<i, j<r) . As
1 J - -

x +d x 4+e. =0 (2<k<r)
1 i, k i -

k k
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has one solution Xk for each x1 ,

m m n n

(where m# n, 2<m, n<r) is 0 or 1,
. N .
N(12,...,1r) N(12, ...,1r) + O(1)
giving

N =p Z 1 + O(1)
1_<_i2,...,ir_<_£

i %1

m n

m#n

2<m, n<r

=000 -1) ... (0-(r-2)p + O1) .

Now let M (r =1,2,...,d) denote the number of y ek
r P

for which the equation f(x) = y has precisely r distinct roots
in k . Then

p

d d

(3) V)= =T M , p= Z M
T r

r=1 r=1

and
d

(4) Nr: zZ s(s-1) ... (s-(r—i))MS (r=2,3,...,4d).
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Thus

N d s
T {=Z
2 . §s=2 r=2

(1"
> s(s-1) ... (s- (1'-'1))}MS

n Mo
—_
[}
P
=
{

d
= = {(1-1)° - (1-s)} M
s=2 s

so that

N
ro_r

d
Vi) =p- T (1) 4

r=2

d r
=p-p = gty L - (-2)) + 0()

r=2
2 +1 r
Zp{i— %1'_)_ 2{e-1) ... (€ -(r-2))} +0(1)
r=2 '
{2 +1
r-1 (4 +1
=~[i—1— 21 (-1) ( ) + O(1)
r=

- B {1-(1-1)“1} + 0(1)
2 4 o)

as required.

COROLLARY 1. If f(x) is extremal of index 0 then f
is quasi-maximal.

COROLLARY 2. If f(x) is extremal of index d-1 then
f is quasi-minimal.
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We now prove the converses of corollaries 1 and 2.

THEOREM 2. If f{x) is quasi-maximal then f(x) is
extremal of index O .

Proof. As f(x) is quasi-maximal
V) =p + O(1) .

Set M:M2 + ... +Md so that from (3) we have

M1+M:p+O(1), M1+2M§p.

Eliminating M,1 we have M = O(1) so that each Mi(i > 2) is
O(1) . Hence N2 = O(1) . Now if f*(x,y) has t absolutely
irreducible facters (linear or non-linear)in k [x,y] then by a
result of Lang and Weil (see for example Lemrl;a 8 in [4]),

ale 1 2
f7(x,vy) =0 has tp + O(p / ) solutions. Hence t =0 as required.

THEOREM 3. If f(x) is quasi-minimal then f(x) is
extremal of index d-1 .

Proof. This was proved by Mordell in [7].

Finally we calculate the number Vn(f) of residues of an

extremal polynomial in the sequence 1,2,...,h, where h<p.
(Here we are identifying the elements of k  with the residues

1,2, ...,p (mod p).) We require a lemma.

LEMMA. If f(x) is an extremal polynomial of index ¢
then, for r =2,...,d,

p-1
P e(ti(x)) = op1/?)
X, . ,x =0 r
1 r
% #x (14))
fi(x )=...=1(x)
1 r

uniformly in t # 0, the implied constant depending only on d .
(e(u) denotes exp(2miu/p)).
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Proof, From the proof of the estimation of Nr in
Theorem 1 we see that

p-1
5 e(tf(x )) = Y | y e(ti(x )| +O(1)
X ,...,%x =0 1<i_,...,i <4 x +d4. x_+e,
1 r —2 r— 1 12 2 12
x #x, (14]) i #i
i n = ...
flx,)=...=f(x ) m#n =x +d. x +e.
1 r 1 71 r i
2<m, n<r T r
=0
p-1
=0{ Z e(ti(x ))}
T
x =0
T
1/2
- o' ’?y,

by a deep result of Carlitz and Uchiyama [3].

THEOREM 4. If f{(x) is an extremal polynomial of
index { the number Vh(f) of residues of f(x) (mod p) in the

set {1,2,...,h} is given by

h 1/2
— + 0 .
FEY (p log p)

Proof, Let N (h) (r =2,3,...,d) denote the numbcr of
_— r

solutions of

f(Xi) = f(XZ) = ... = f(xr) =y

with ye {1,2,...,h} and Xi#xj (i#j) . Then

h
N (h) = Z =1 1,
T =1 x,...,X
Y 1 Ty
where the dash (') denotes summation over Xi’ ...,x satisfying
r
x. #x (i#j) and f(x ) =... =f(x )=y . Thus
1 ] 1 r

592



p h p

pN _(h) = = paL Z T e(tfy-2))
y=1 xi,...,xr z=1 t=1
p p-1 P
=h Z ! 1+ Z {Z =! e(ty)}
y=1 Xi, ,Xr t=1 Y:i Xi’ ’Xr
h
X {Z (-tz)}
z=1
2
= th + O(p1/ - p log p),

by the lemma and the familiar result
h
z ' = e(-tz)‘f_plogp.
Hence appealing toTheorem 1 we obtain
1/2
Nr(h)=£(£-1) cos (- (r-2)h+O(p log p) .
Now if Mr(h) (r =1,2,...,d) denotes the number of y e {1,2,...,h}

for which the equation f(x) =y has precisely r distinct roots in
k  we have

and

d
1/2
z er(h) =h + O(p / log p).
r=1
The first of these is obvious and the second is due to Mordell [8].

Corresponding to (4) we have

d
Nr(h) =2 s(s-1) ... (s- (r-1))MS(h)
s=r
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and the rest of the proof is the same as in Theorem 1 with
Vh(f), Mr(h), Nr(h), h replacing V({), Mr, Nr’ p respectively.

This proves a conjecture of the author [9] in the case of extremal
polynomials. When the index £ is > 1 it shows that the least

1/2
positive non-residue of f(x) (mod p) is O(p / log p) . This has

been proved for more general polynomials, without obtaining an
asymptotic formula for Vh(f) , by Bombieri and Davenport [2],

using the recent work of Bombieri on the L-functions corresponding
to multiple exponential sums.
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