ON EXTREMAL POLYNOMIALS

Kenneth S. Williams

(received April 9, 1967)

Let p denote a prime number and let k denote the finite field of p elements. Let $f(x) \in k p[x]$ be of fixed degree $d \geq 2$. We suppose that p is also fixed, large compared with d, say, $p \geq p_0(d)$. By V(f) we denote the number of distinct values of f(x), $x \in k p$. We call f maximal if V(f) = p and quasi-maximal if V(f) = p + O(1). Clearly a maximal polynomial is quasi-maximal but it is not known under what conditions the converse holds. As $dV(f) \geq p$, the minimum possible value of V(f) is $\sum \left[\frac{p-1}{d}\right] + 1$. When $f(x) = x^d$ and $p \in 1 \pmod d$, $V(f) = \frac{p-1}{d} + 1$, so $\left[\frac{p-1}{d}\right] + 1$ is in fact the actual minimum. If $V(f) = \left[\frac{p-1}{d}\right] + 1$ we call f a minimal polynomial and if $V(f) = \frac{p}{d} + O(1)$ a quasi-minimal polynomial. Clearly a minimal polynomial is a quasi-minimal polynomial and Mordell has noted in an addendum to [7] that the converse is true for $p \geq p_0(d)$. It seems reasonable to conjecture that a quasi-maximal polynomial is maximal for $p \geq p_0(d)$.

It is the purpose of this paper to generalize the ideas of quasi-maximal and quasi-minimal. We set

(1)
$$f^{*}(x, y) = \frac{f(x) - f(y)}{x - y}$$

Canad. Math. Bull. vol. 10, no. 4, 1967

 $^{^{}f 1}$ Dickson [6] calls such a polynomial a substitution polynomial.

We shall see later that these are the exceptional polynomials of Davenport and Lewis [5]. (See Corollary 1 and Theorem 2.)

and call f(x) an extremal polynomial of index ℓ if, in the (unique) decomposition of $f^*(x,y)$ into irreducible factors in $k_p[x,y]$, there are ℓ linear factors and no non-linear absolutely irreducible factors. Clearly $0 \le \ell \le d-1$. For example, $f(x) = x^4$ is extremal of index 1 when $p \equiv 3 \pmod 4$ since

$$\frac{x^4 - y^4}{(x - y)(x + y)} = x^2 + y^2$$

is irreducible but not absolutely irreducible. When $p \equiv 1 \pmod 4$ there exists $w \in k_p$ such that $w^2 = -1$ so that

$$\frac{x^4 - y^4}{x - y} = (x+y)(x+wy)(x-wy);$$

hence $f(x) = x^4$ is extremal of index 3 in this case. On the other hand, $f(x) = x^3 + x$ is not an extremal polynomial as

$$\frac{(x^3+x)-(y^3+y)}{x-y}=x^2+xy+y^2+1$$

is absolutely irreducible in $k_{p}[x, y]$ for any prime p > 3.

THEOREM 1. If f(x) is extremal of index ℓ then

$$V(f) = \frac{p}{\ell + 1} + O(1)$$
.

Proof. As f(x) is extremal of index ℓ we can write

$$\mathbf{f}^{*}(\mathbf{x},\mathbf{y}) = \prod_{\mathbf{i}=1}^{\ell} \mathbf{g}_{\mathbf{i}}(\mathbf{x},\mathbf{y}) \prod_{j=1}^{m} \mathbf{h}_{\mathbf{j}}(\mathbf{x},\mathbf{y}) \ ,$$

where each $g_1(x,y)$ is linear so that ℓ (possibly 0) is the index of f and each $h_1(x,y)$ is irreducible but not absolutely irreducible in $k_p[x,y]$. Clearly no two of g_1,g_2,\ldots,g_ℓ are associates and none is associated with (x-y). Let

$$g_{i}(x, y) = a_{i}x + b_{i}y + c_{i}$$
 (i = 1, 2, ..., ℓ)

and suppose that some $a_i = 0$. Then

$$f(x) - f(y) = (x-y)(b_{i}y+c_{i})g(x, y)$$

for some $g(x, y) \in k_p[x, y]$. Now $b_i \neq 0$, otherwise g_i would not be linear, so on taking $y = -c_i/b_i$ we have

$$f(x) = f(-c_i/b_i) = constant$$
,

contradicting $d \ge 2$. Hence no $a_i = 0$ and similarly no $b_i = 0$. Set $a = \prod_{i=1}^{n} a_i$, $d_i = b_i/a_i$ and $e_i = c_i/a_i$ so that

$$f^{*}(x, y) = a \prod_{i=1}^{\ell} (x + d_{i}y + e_{i}) \prod_{j=1}^{m} h_{j}(x, y)$$
.

Now let $N_r(r = 2, 3, ..., d)$ denote the number of solutions of

$$f(x_1) = f(x_2) = \dots = f(x_r)$$

with $x_i \neq x_j$ (i \neq j, 1\leq i, j\leq r). This system has the same number of solutions as the system

$$f^*(x_1, x_2) = f^*(x_1, x_3) = ... = f^*(x_1, x_1) = 0$$

i.e.,
$$\prod_{i=1}^{\ell} (x_1 + d_i x_2 + e_i) \prod_{j=1}^{m} h_j(x_1, x_2) = \dots$$

$$= \prod_{i=1}^{\ell} (x_1 + d_i x_r + e_i) \prod_{j=1}^{m} h_j(x_1, x_r) = 0$$

with $x_i \neq x_j$ ($i \neq j$, $2 \leq i$, $j \leq r$). Now it is known (see for example [1]) that if $f(x,y) \in k_p[x,y]$ is irreducible but not absolutely irreducible then f(x,y) = 0 has O(1) solutions. Hence N_r

differs from the number N_r^i of solutions, with $x_i \neq x_j$ ($i \neq j, 2 \leq i, j \leq r$), of

$$\prod_{i=1}^{\ell} (x_1 + d_i x_2 + e_i) = \dots = \prod_{i=1}^{\ell} (x_1 + d_i x_r + e_i) = 0$$

by only O(1). Since for any i and j with $i \neq j$, $1 \leq i$, $j \leq \ell$ $x_1 + d_i y + e_i = x_1 + d_j y + e_j = 0$

has 0 or 1 solutions (g_i, g_i) are not associates)

$$N_{r}^{\prime} = \sum_{1 \leq i_{2}, \ldots, i_{r} \leq \ell} N(i_{2}, i_{3}, \ldots, i_{r}) + O(1),$$

where $N(i_2, i_3, \dots, i_r)$ denotes the number of solutions of

(2)
$$x_1 + d_1 x_2 + e_1 = \dots = x_1 + d_1 x_r + e_1 = 0$$

with $x_i \neq x_j$ ($i \neq j$, $2 \leq i$, $j \leq r$). Now

$$x_1 + d x_m + e = x_1 + d x_n + e = 0$$

with $i_{m} = i_{n}$ gives $x_{m} = x_{n}$ so

$$N'_{r} = \frac{1 \le i_{2}, \dots, i_{r} \le \ell}{1 \le i_{2}, \dots, i_{r} \le \ell}$$
 $i_{m} \neq i_{n}$
 $m \neq n$
 $2 < m, n < r$

Let $N'(i_2, ..., i_r)$ denote the number of solutions of (2) without the conditions $x_i \neq x_j$ ($i \neq j$, $2 \leq i$, $j \leq r$). As

$$x_1 + d_{i_k} x_k + e_{i_k} = 0$$
 $(2 \le k \le r)$

has one solution x_k for each x_1 ,

$$N'(i_2, i_3, ..., i_r) = p$$
.

Now, as the number of solutions of

$$\begin{cases} x_1 + d & x + e = x_1 + d & x + e = 0 \\ i_m & i_m & i_n & i_n \end{cases}$$

$$x_m = x_n$$

(where $m \neq n$, $2 \leq m$, $n \leq r$) is 0 or 1,

$$N(i_2, ..., i_r) = N'(i_2, ..., i_r) + O(1)$$

giving

$$N_{r} = p \sum_{1 \leq i_{2}, \dots, i_{r} \leq \ell} 1 + O(1)$$

$$i_{m} \neq i_{n}$$

$$m \neq n$$

$$2 \leq m, n \leq r$$

$$= \ell (\ell - 1) \dots (\ell - (r - 2)) p + O(1).$$

Now let $M_r(r=1,2,...,d)$ denote the number of $y \in k_p$ for which the equation f(x)=y has precisely r distinct roots in k. Then

(3)
$$V(f) = \sum_{r=1}^{d} M_r, \quad p = \sum_{r=1}^{d} r M_r$$

and

(4)
$$N_{r} = \sum_{s=r}^{d} s(s-1) \dots (s-(r-1))M_{s} \qquad (r = 2, 3, \dots, d).$$

Thus

$$\frac{d}{\sum_{r=2}^{\infty} (-1)^{r}} \frac{N_{r}}{r!} = \frac{d}{\sum_{s=2}^{\infty} \left\{ \sum_{r=2}^{\infty} \frac{(-1)^{r}}{r!} \right\}} s(s-1) \dots (s-(r-1)) M_{s}$$

$$= \frac{d}{\sum_{s=2}^{\infty} \left\{ (1-1)^{s} - (1-s) \right\}} M_{s}$$

$$= \frac{d}{\sum_{s=1}^{\infty} (s-1) M_{s}}$$

$$= p - V(f)$$

so that

$$V(f) = p - \frac{d}{\sum_{r=2}^{d} (-1)^{r}} \frac{N_{r}}{r!}$$

$$= p - p \frac{d}{\sum_{r=2}^{d} (-1)^{r}} \ell(\ell-1) \dots (\ell - (r-2)) + O(1)$$

$$= p \left\{1 - \frac{\ell+1}{\sum_{r=2}^{d} (-1)^{r}} \ell(\ell-1) \dots (\ell - (r-2))\right\} + O(1)$$

$$= \frac{p}{\ell+1} \sum_{r=1}^{\ell+1} (-1)^{r-1} \binom{\ell+1}{r} + O(1)$$

$$= \frac{p}{\ell+1} \left\{1 - (1-1)^{\ell+1}\right\} + O(1)$$

$$= \frac{p}{\ell+1} + O(1)$$

as required.

COROLLARY 1. If f(x) is extremal of index 0 then f is quasi-maximal.

COROLLARY 2. If f(x) is extremal of index d-1 then f is quasi-minimal.

We now prove the converses of corollaries 1 and 2.

THEOREM 2. If f(x) is quasi-maximal then f(x) is extremal of index 0.

Proof. As f(x) is quasi-maximal

$$V(f) = p + O(1)$$
.

Set $M = M_2 + ... + M_d$ so that from (3) we have

$$M_4 + M = p + O(1), M_4 + 2M \le p$$
.

Eliminating M_1 we have M=O(1) so that each $M_1(i\geq 2)$ is O(1). Hence $N_2=O(1)$. Now if $f^*(x,y)$ has t absolutely irreducible factors (linear or non-linear) in $k_p[x,y]$ then by a result of Lang and Weil (see for example Lemma 8 in [4]), $f^*(x,y)=0$ has $tp+O(p^{1/2})$ solutions. Hence t=0 as required.

THEOREM 3. If f(x) is quasi-minimal then f(x) is extremal of index d-1.

<u>Proof.</u> This was proved by Mordell in [7].

Finally we calculate the number $V_n(f)$ of residues of an extremal polynomial in the sequence $1,2,\ldots,h$, where $h\leq p$. (Here we are identifying the elements of k with the residues $1,2,\ldots,p$ (mod p).) We require a lemma.

LEMMA. If f(x) is an extremal polynomial of index ℓ then, for r = 2, ..., d,

$$\begin{array}{c} \begin{array}{c} p-1 \\ \sum \\ x_1, \ldots, x_r = 0 \end{array} & e(tf(x_r)) = O(p^{1/2}) , \\ x_i \neq x_j & (i \neq j) \\ f(x_1) = \ldots = f(x_r) \end{array}$$

uniformly in $t \neq 0$, the implied constant depending only on d. (e(u) denotes $\exp(2\pi i u/p)$).

 $\underline{\underline{Proof.}}$ From the proof of the estimation of N_r in Theorem 1 we see that

$$= O\left\{ \sum_{\mathbf{x_r}=0}^{p-1} e(tf(\mathbf{x_r})) \right\}$$
$$= O(p^{1/2}),$$

by a deep result of Carlitz and Uchiyama [3].

THEOREM 4. If f(x) is an extremal polynomial of index ℓ the number $V_h(f)$ of residues of f(x) (mod p) in the set $\{1, 2, ..., h\}$ is given by

$$\frac{h}{\ell+1} + O(p^{1/2} \log p) .$$

 $\underline{\text{Proof.}}$ Let $N_r(h)$ (r = 2, 3, ..., d) denote the number of solutions of

$$f(x_1) = f(x_2) = ... = f(x_r) = y$$

with $y \in \{1, 2, ..., h\}$ and $x_i \neq x_j$ ($i \neq j$). Then

$$N_{r}(h) = \sum_{y=1}^{h} \sum_{x_{1}} 1, \dots, x_{r}$$

where the dash (') denotes summation over x_1, \ldots, x_r satisfying $x_i \neq x_i$ ($i \neq j$) and $f(x_1) = \ldots = f(x_r) = y$. Thus

$$pN_{r}(h) = \sum_{\Sigma} \sum_{y=1}^{p} \sum_{x_{1}, \dots, x_{r}} \sum_{z=1}^{p} \sum_{t=1}^{p} e(t(y-z))$$

$$= h \sum_{y=1}^{p} \sum_{x_{1}, \dots, x_{r}} \sum_{t=1}^{p-1} p \sum_{y=1}^{p} e(ty)$$

$$= h \sum_{x_{1}, \dots, x_{r}} \sum_{t=1}^{p-1} \sum_{y=1}^{p} \sum_{x_{1}, \dots, x_{r}} e(ty)$$

$$= hN_{r} + O(p^{1/2} \cdot p \log p),$$

by the lemma and the familiar result

$$\begin{array}{c|cccc} p-1 & h & \\ \Sigma & D & \Sigma & e(-tz) & \leq p \log p \\ t=1 & z=1 & \end{array} .$$

Hence appealing to Theorem 1 we obtain

$$N_r(h) = \ell(\ell-1) \dots (\ell - (r-2))h + O(p^{1/2} \log p)$$
.

Now if $M_r(h)$ (r = 1,2,...,d) denotes the number of y \in {1,2,...,h} for which the equation f(x) = y has precisely r distinct roots in k we have

$$V_h(f) = \sum_{r=1}^{d} M_r(h)$$

and

$$\sum_{r=1}^{d} rM_{r}(h) = h + O(p^{1/2} \log p).$$

The first of these is obvious and the second is due to Mordell [8]. Corresponding to (4) we have

$$N_{r}(h) = \sum_{s=r}^{d} s(s-1) \dots (s-(r-1))M_{s}(h)$$

and the rest of the proof is the same as in Theorem 1 with $V_h(f)$, $M_r(h)$, $N_r(h)$, h replacing V(f), M_r , N_r , p respectively. This proves a conjecture of the author [9] in the case of extremal polynomials. When the index ℓ is ≥ 1 it shows that the least positive non-residue of f(x) (mod p) is $O(p^{1/2} \log p)$. This has been proved for more general polynomials, without obtaining an asymptotic formula for $V_h(f)$, by Bombieri and Davenport [2],

using the recent work of Bombieri on the L-functions corresponding to multiple exponential sums.

REFERENCES

- 1. B. J. Birch and D. J. Lewis, β -adic forms. Jour. Indian Math. Soc., 23 (1959), 11-32.
- 2. E. Bombieri and H. Davenport, On two problems of Mordell. Amer. J. Math., 88 (1966), 61-70.
- 3. L. Carlitz and S. Uchiyama, Bounds for exponential sums. Duke Math. Jour., 24 (1957), 37-41.
- 4. J.H.H. Chalk and K.S. Williams, The distribution of solutions of congruences. Mathematika, 12 (1965), 176-192.
- 5. H. Davenport and D.J. Lewis, Notes on congruences I. Quart. J. Math. Oxford (2), 14 (1963), 51-60.
- 6. L.E. Dickson, Linear groups. Dover Publications, Inc., N.Y. (1958), 54-64.
- 7. L.J. Mordell, A congruence problem of E.G. Straus. Jour. Lond. Math. Soc., 38 (1963), 108-110.
- 8. L. J. Mordell, On the least residue and non-residue of a polynomial. Jour. Lond. Math. Soc., 38 (1963), 451-453.
- 9. K.S. Williams, The distribution of the residues of a quartic polynomial. To appear in the Glasgow Math. Jour.

Carleton University, Ottawa