
PAIRS OF CONSECUTIVE RESIDUES OF 
POLYNOMIALS 

KENNETH S. WILLIAhlS 

1. Introduction. Let p be a large prime and let f(x) be a polynomial 
of fixed degree d >, 4 with integral coefficients, say, 

(1.1) f(x) = a0 + a l  x + . . . + ad xd (ad # 0 (mod p)).  

Recently RIordell (8) has considered the problem of estimating the least 
positive residue of f(x) (mod p) ,  that is, the unique integer 1 (0 < I < p - 1) 
such that the congruence 

(1.2) f (x) - r (mod p)  

is soluble for r = 1 but not for r = 0, 1, . . . , 1 - 1. 
Let N ,  (r = 0, 1, . . . , p - 1) denote the number of solutions of (1.2). 

Then 

This proves that 1 always exists and RIordell establishes that 

(1.4) I ,< dp* log p. 
If we let e(u) denote e x p ( 2 ~  iup-I), for any real number Z L ,  11-e have 

1"-1 
N ,  = -C e(t(f(x) - r)), Pz. l=O 

since as the sum in t is zero if f (x) # r and is p if f (x) - r (mod p).  (We 
usually omit "mod p" hereafter.) Mordell's proof of (1.4) consists of using 
(1.5) and a deep result of Carlitz and Uchiyama (3) to show that 

The deep result quoted, which is a consequence of Weil's proof of the Riemann 
hypothesis for algebraic function fields over a finite field (lo), is the following: 

The purpose of this paper is to consider the similar problem for pairs of 
consecutive residues of f(x) ,  that is we require an estimate for the least 
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integer e (0 < e < p - 1) with the property that both e and e + 1 are 
residues of f (x), i.e. the pair of congruences 

are soluble for r = e but  not for r = 0, 1, . . . , e - 1. 
The number of incongruent solutions (x, y)  of (1.8) is, of course, 12'T XT+,  

and i t  is easy to see that 

where N ,  denotes the number of solutions (x, y) of the congruence 

(1.10) f (y) - f (x) - 1 = 0. 

If N ,  = 0, then each summand in (1.9) (being non-negative) is zero and e does 
not exist. I t  is clear then that  a necessary and suficient condition for the 
existence of e is that N ,  > 0. In Theorem 1 \ve sho\v, using a deep result 
of Lang and Weil (6), that 

(1.11) N ,  = P + 0(p3), 

where the constant implied by the 0-symbol depends only on d. This implies 
that 

where cd is a constant depending only on d, for sufficiently large primes I-, 
and so e always exists for large enough p. However, when p is small, e nlay 
not exist, for consider f (x) = 2x4 when p = 5 .  In this case the residues are 0 
and 2 and so there are no consecutive ones. 

Our method for estimating e for large p follows that of Mordell for I .  In- 
stead of considering 

(as in (1.6)) we consider 

,After replacing N ,  and N,+l by exponential sums (see 5 5 )  we find that \ye 
need to consider the sums 

We, in fact, need an upper bound for I S @ ) ,  which is independent of v. From 
(1.14) it is easy to see that we require a suitable estimate for an exponential 
sum of the type 

(1.15) 
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where g and h are polynomials in the two variables a and y. (In our case 
g(x ,  y )  = vf ( x )  and h ( x ,  y )  = f ( y )  - f (x) - I . )  I t  seen~s very difficult to 
estilnate such a sum effectively. In  fact our knowledge of the similar sum 

is slight, except in a feiv special cases (5). \Ye are thus forced to estimate 
J S ( p ) J  for almost all polynomials of fixed degree d .  This involves determining 
an upper bound for 

(1.17) s = C ls(v>lz ,  
I 

deg I=d 

which is independerlt of v. (Without loss of generality, the summation over 
f involves summing a ,  from 0 to p - 1 (i = 1,  2, . . . , d - 1 )  and ad fro111 
1 to p - I . )  This is done in 'Theorem 2. Our final result is 

T H E ~ R E ~ I  3. For almost all polynomials of fixed degree d ,  we have 

e = 0 ( p i  log p ) ,  
where the constant implied by the 0-symbol depends only on d.  

2. Proof of Theorem 1. In this section we regard the coefficients off  as 
reduced modulo p and considered as belonging to [ p ] ,  the Galois field with p 
elements. 

THEOREM 1. N I  = p f O ( p f ) ,  where the constant implied by the 0-symbol 
depends only on d. 

Proof. Let 

where 

(2.2) g i  g i (x ,  y )  = n i ( x i  - yi )  (i = 1 ,  2 , .  . . , d ) .  

As x - y gi for i = 1,  2 ,  . . . , d and ( x  - Y ) ~  Y gd over [ p ] ,  by Eisenstein's 
irreducibility criterion, g(x ,  y ,  z )  is irreducible over [ p ] .  Suppose, however, 
that  g is not absolutely irreducible over [ p ] ;  then there is a normal extension 
N [ p ]  of [ p ]  over which g splits into c >, 2 conjugate factors, say 

(2.3) 

Let 

then 
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Hence x - y / k , ( s ,  y )  over N [ p ]  for some i, and so by conjugacy:for all i. Let 

(2.6)  k , ( x ,  y )  = ( x  - y ) h , ( x ,  Y ) ;  

then 

(2.7)  a d ( x d  - y d )  = ( S  - y ) ' h (x ,  y ) ,  

where 

has coefficients in [ p ] .  This is a contradiction since c >, 2 ,  and so g ( x ,  y ,  2 )  

is absolutely irreducible over [ p ] .  Hence by a result of Lang and Weil (6) 
the number of solutions (x, J ,  Z )  of 

(2 .8)  R(-v, Y ,  2 )  = 0 (mod p )  

is 

(2.9)  P 2  + + ( P ~ / ~ ) ,  

where the constant implied by the O-sy111bol depends only on d. No117 the 
number of solutions ( x ,  y )  of 

(2.10) g(xzl,y,O) = 0 (mod P I ,  

that is of 

(2.11) X d  - yd , 0 ,  

is certainly O ( p ) ,  so the number of solutions ( x ,  y ,  z )  with c = 0 of (2.8)  is 
also given by 

(2.12) p2 + 0 ( p 3 / ~ ) .  

Hence the number of solutions ( x ,  y )  of 

(2.13) g (x l  Y ,  1 )  e 0 ,  

that is, of 

(2.14) f ( y )  - f ( x )  - 1 s 0 ,  

is just 

as required. 
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3. Some useful lemmas. 

Dc$nztion. Let 1% = ( I L ~ ,  . . . , a,.) denote the number of solutions 
( r l ,  . . . , .up) of the s~ stem of d congruences 

( l 1 x 1  + .  . . + a k x k  = 0 ,  

(3.1) (11 xl+ . . . + uk xk2 = 0 ,  (mod p ) .  

(11 xld + . . . + ( I k  xkd 0.  

We require the following lemmas for the proof of Theorem 2. They give 
asymptotic formulae for N,, ( a l ,  . . . , n k ) ,  \\hen k = 2, d >, 2 ;  k = 3 ,  d > 3 ;  
and k = 4, d > 4 .  

L~:vsr.-\ 3.1. If al ,  a2  f 0 and d >, 2 ,  

IJroof. The result is obvious, since the only solution when a1 + a z  $ 0 is 
( x l ,  .yz) = (0 ,  0 )  and the only solutions \\hen a1 + a z  = 0 are given by 
(x1 ,x2)  = ( x , x )  ( x  = O , l , .  . . , p  - 1 ) .  

LISMM.~ 3.2. If a l ,  a2, a3 # 0 and d >, 3 ,  

[ 0 ( 1 ) ,  zjal  + a?, a? + a3,a3 + al,al  + az + a3$O, 
P + 0 ( 1 ) ,  i f a l + a z + a 3 = O o r a l + a 2 + n 3 f 0 ,  

(8.3) iVd(alr az, ~ 3 )  = and exactly one oj a l  + az, a2 + a,, a3 + a1 = 0 ,  
1 2p + 0 ( 1 ) ,  if a1 + a z  + a3 f 0 and exactly two of 

\ a1 + az, a2 + a3, a3 + a1 = 0. 

Proof. Let N,* (a1, a2, a s )  be the number of solutions of (3.1) (d >, 3 ,  
k = 3 )  11-ith x ,  f x, ( 1  ,< i < j < 3 ) .  Since d >, 3 ,  for these solutions, 

and so by a result of Rlin (7, Theorem 1 )  

(3 .5 )  Nd*(al ,  az, a3) = 0(1 ) ,  
where the constant implied by the 0-symbol depends only on d. Let N,ci" 
( a l ,  az ,  a 3 )  ( 1  < i < j < 3 )  denote the number of solutions of (3.1) (d >, 3, 
k = 3) with x f  = x,. Also let N,(123)(al,  a 2 ,  a3) denote the number with 
xl = xq = x3. Then 

(3.6) rV,(al, az, a d  = Nd* (al ,  az, a d  + ( Nd(12) (al ,  a ~ ,  a3) 
+ Nd(13) (a l ,  az, a3) + N P 3 )  (al ,  az, a s ) }  - 2Nd( lZ3) (a l ,  a z ,  a s ) ,  

and so by (3 .5 )  we have 

(3 .7 )  N,(al, az, a,) = ( N d ( a l  + az, a3) + Nd(n? + ax, a l )  

+ iVd(a3 + al ,  a d )  - 2ATd(l")(al, as, a d  + O ( 1 ) .  
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The result then follows fro111 Lenl~lla 3.1 and the obvious result 

LEMMA 3.3. I f  a l ,  a? ,  a 3 ,  a4 f 0 and d >, 4 ,  N d ( a l ,  a2, as, a 4 )  i s  given by the 
expression (3 .12) ,  the terms of which are given by Lemmas 3.1 and 3.2 and (3 .13) .  

Proof. Let Nd*(al ,  a 2 ,  a s ,  a 4 )  denote the number of solutions of (3.1)  (d  >, 4 ,  
k = 4 )  with x ,  f x 5  ( 1  < i < j < 4 ) .  For these solutions 

a1 a 2 a 3 

(3 .9)  rank [ . 2a1 x1  2a2 x z  2a3 x 3  2 2 %  x 4  I = ,  
dal xld-l (in2 xZd-' da3  xJd-l dn4  x ~ ~ - ~  ' 1  

and so, using AIin's theorem again, \\-e have 

where the constant implied by the 0-symbol depends only on d. Let Nd( IJ )  
( a l ,  a 2 ,  a s ,  u 4 )  (1  < i < j < 4) denote the number of solutions of (3.1)  
(d >, 4 ,  k = 4 )  with x i  --= x j  and N d ( w k ) ( a l ,  az, a3, a4) ( 1  < i < j < k < 4 )  
the number with x ,  -= x 5  --= x k  Finally let N d ( 1 2 3 4 ' ( ~ 1 ,  a2, a3 ,  a r )  denote the 
number with x l  = x2 --= X J  = x4. Then 

+ 6 ~ ~ ( ~ ~ ~ ~ )  bZl, 1 1 2 ,  ( [ a ,  ~ ~ 1 ,  
and so 

(3.12) N d ( a l ,  az, a3, a 4 )  = { N d ( a l  + (12 ,  aa, n4) + Nd((jl + as, ( 1 2 ,  0 4 )  

+ N d ( a l  + ( L r ,  a2, a3) + Nd(n2  + 1x3 ,  (11, + Nd((12 + 04, (11, a,i) 

+ Nd(a3  + [Lr,  n l ,  a s ) )  - (h rd (a1  + n2, a3 + ( ~ r )  + Nd((l.1 + 0 3 ,  a? + a l )  
+ N d ( a l  + a ~ ,  (2.2 + a s ) )  - 2 ( N d ( a i  + as + as, ar )  + lLT,(al + ( 1 2  + ( L A ,  0 3 )  

+ hrd(a l  + a3 + ( L 4 ,  ~ 2 )  + Nd(as + ( L 3  + (L4, a l ) ]  + 6hTd(1234)(01,  0 2 ,  ( I J ,  n r )  

+ O ( 1 ) .  
I t  is clear that 

and that the rest of the terms in (3.12) can be evaluated by Lemmas 3.1 and 
3.2. 
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4. Proof of Theorem 2. We prove 

THEOREM 2. For almost all polynomials of $xed degree d ,  there i s  a constant 
kd  (depending only on d )  such that 

max 1 S ( v )  1 < kd 9'. 
l<v<p-1 

Proof. We have, on adding in the term corresponding to ad = 0, 

d e g  f=d 

hT0\\- 

(4.3) s ( v ) '  = I 2 ~ b ~ b + l e ( - b V )  
b=O 

P- 1 

= C N b  Nb+l N ,  Nc+l e ( ( c  - b)v )  
b ,  c=O 

and because 

Nb Nb+l -vc Nc+l = 

- 1 - - e( -b t ,  - (b  + 1)tz - d 3  - (C + 1) t4 )  
p4 2 1  1x2 323 3 2 4 ,  

1 1 , 1 2 ,  2 3 ,  14=0 

X e ( t l f  ( X I )  + t2 f (x2) + t3 f  ( X A )  + t~ f ( X I ) )  

1 
= -- 5 e( -b t l  - (b + l ) i l  - ct3 - (C + l ) t I )  

P ~ Z I  ,.... 14-0 

we have 

and so 

p 2 s  < 2 e ( t l +  t 3 )  2 ( fi 2 e(u i ( t l  x l i  - ( t l  + v ) r Z i +  t3 x3' 
1 1 ,  13=0 2 1 , 2 ? , 2 3 , 2 4 = 0  z=O ai=o 

that is 
a-1 

(4.4) S < pd-l C e ( t ~  + ta)Nd(ti,  - ( t i  + v ) ,  t3, - (t3 - v ) ) .  
1 1 ,  13=o 

Then 

(4.5)  s s P"l(Cl+ Cz + . . . + Cl2), 
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where C ,  (i = 1 ,  2 ,  . . . , 12) denotes the suln in (4 4 I with tl and t2 restricted 
as belo~v: 

In Case 1  
lvd(tlr - (tl + v ) ,  t3, - (t3 - 2 1 ) )  = lvd(0,  - 8 ,  0 ,  v )  

= p2.!vd(-V, V )  = p3, 

by Lemma 3.1 and so 

(4 .6 )  C1 = p3.  
Cases 2 ,  3 ,  and 4  are exactly similar to Case 1 .  We find that 

( 4 . 7 )  C2 = e (v )p3 ,  

(4 .8 )  C3 = P 3 ,  
and 

(4 .9 )  

I n  Case 5 

by Lemma :3.2, and so 

(4 .10)  C S  = e(2-lv)p2 + 0 ( p ) .  

Cases 6 ,  7 ,  and 8 are exactly similar to Case 5. We find that 
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and 

(4.13) Cs = e(2-lv)p2 + O ( p ) .  

In  Case 9 

Now by Lerrlrna 3.2 
N d ( - v ,  2-'v, 22%) = p + O ( 1 )  

and by Lemma 3.1 

Hence, by Lemma 3.3, we have 

Nd(-2- 'v,  -2-'v, 2-lv, 2-'v) = 2 ( p  + O ( 1 ) )  + 4p2  - (2p2 + p )  

- 8P + 4P + O ( 1 )  = 2p2 - p + O ( 1 )  
and so 

(4.14) Ce = 2p2 - p + o ( 1 ) .  

Cases 10, 11, and 12 are exactly similar to Case 9. We find that 

(4.15) CIO = - ( e (v )  + e ( - v )  + l ) p 2  + o(P),  
(4.16) El1 = p3 - 3p2 $ 0 ( 1 ) ,  
and 

(4.17) Clz = o ( p 2 ) .  

Hence from (4 .5) ,  (4 .6) ,  . . . , (4.17) we have 

C J s ( v ) I 2  = 0 ( p d f 2 ) .  
1 

deg f=d 

Suppose that there are more than 77pd+' polynomials of fixed degree d which 
satisfy 

(4.19) 

Then 

max lS(v) l  > p f f e .  
'<u<P--' 

(4.20) ( max S ( V ) I ) ~  > pdt2+''. 
l<r<p-1 

deg f=d 

which contradicts (4.18) for sufficiently large p ;  and this is true for every 
positive 7.  Hence the number of polynomials which satisfy (4.19) is o(pd+l) 
and so almost all polynomials of degree d satisfy 

max IS(v)l = 0 ( p 4 ) .  
1<r<p-l 
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5. Proof of Theorem 3. We have that 

and so 

that  is 

< max JS(v)I.logp, 
1SuSp-1 

by a well-known result (see, for example, (8)). Hence 

and so by Theorems 1 and 2, for almost all polynomials of fixed degree d, 
\\-e have 

Cd pe 6 kd p f ' p  log p ,  
1.e. e < k d / c d  p"og p. 

6. Conclusion. We have assumed throughout that d >, 4. This was in 
fact necessary only in one place, namely Lemma 3.3. When d = 2, a result 
of Burgess (2) gives 
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Concerning the case d = 3, the author and I<. hZcCann plan to publish a 
paper on the distribution of the residues of a cubic which will include the 
result 

(6 .2)  e = 0 (p"og p ) ,  

valid for ull cubics. 
As we have only proved a n  "almost all" result, i t  would have been suffi- 

cient to prove that 

for almost all polynomials f .  A proof of this can be given on exactly the same 
lines as that of Theorem 2 ,  by showing that 

(6.4)  C ( N f  - P ) ~  = 0 (pd+'). 
I 

deg I=d 

This, together with Theorem 2 ,  proves Theorem 3 in a completely elementary 
manner but has the disadvantage of not showing the existence of e for all 
polynomials for all sufficiently large p. 

We also remark that in the special case 

.f ( x )  = a0 xd 
we have 

P- 1 

= C ( 1  + ~ ( a o - '  s )  + . . . + Xd-l(ao-l s ) )  
s=O 

X 11 + x(ao-'(s + 1 ) )  + . . . + x"-'(c~~-'(s + l ) ) ) e ( - s v )  

where x denotes a dth order character (mod p )  (without loss of generality 
dip - 1 )  and so by a result of Perel'muter (9) 

Hence 
S ( v )  = 0 (p*) .  

e = 0 (p* log p ) ,  

in this special case. When a. = 1 ,  much more is known; see for example (4, 1)  
for the cases d = 3 and 4 respectively. 

Finally we make the following 

CONJECTURE. For all polynomials of jixed degree d ,  we have 

where the constant implied by the O-symbol depends only on d.  
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