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THE DISTRIBUTION OF SOLUTIONS OF CONGRUENCES
J. H. H. Crark and K. S. WrLLramMs

1. Introduction. Let p be an odd prime and denote by [p], the finite
field of residue classes, modp. In Euclidean n-space, let %, denote the
lattice of points x = (z, ..., #,) with integral coordinates and C=C(n, p),
the set of points of &, satisfying

oz, <p, (=1,2,...,n) (1)
We define a box B=%3(n, h, v) as the set of points xe C for which

vi<xt<vt+h,t, (i=1, 2, ...,n) (2)
where
Oy, <v;+h<p, (=12,...,n). (3)
For n>2, let f(x)=f(x,, z,, ..., %,) be a polynomial in the » variables
zy, Zg, ..., z, of degree d > 2, fixed independently of p, and with coefficients
in [p]. If f(x)is not homogeneous in z,, ..., z,,, we introduce the associated
forms, F and f*, defined by
F (g, Ty, o0y ) =22 f (210, <0y Zp/20) 4)
and SRy, .., 2,)=F(0,%,, ..., x,). (5)
Let N(B)=N(p,n,f, B) denote the number of xe B for which
f(x)=0, [p] (6)

where, for convenience, we count x=0 as a solution when 0% and
f(x) is a form. Thus in the special case when B =C, the integer N(C) is
just the number of solutions of the congruence f(x)=0 (mod p), while
generally, N(%B) represents the number of solutions in certain prescribed
residue classes (namely, those defined by the points of B), of the same
congruence. By using a generalization of the inequalities of Vinogradov
[11] and Mordell [8] we shall obtain estimates for N (%) in terms of N(C)
for ‘“ general "’ polynomials f(x), when p is large. This general inequality
was established in [3] and relevant details are summarized in the following
lemma :

Lemma 1. Let f(x) be a function defined over [p] and taking values
wn [p] and putt

F(1= 5T eltfx)-x.y} ™)
£®)=_ 3 | T ev.2) ®)
0xyeC lze sy

t For any real ¢, e(t) stands for exp (2mitp-t).
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Suppose that there is a constant O, independent of y, such that

| Z(y)| <D, for all non-zero yeC. (9)
Then
N(B)=h,...h,p " N(C)+0p—"1 D& (B) (10)

for some real number 0 satisfying |0|<1. Moreover, &(B)< Cp"log*p,
for some absolute constant C > 0. (11)

For convenience in referring to the inequality (10), we shall speak of
hy...h, p® N(C) and p™ ! OS(B) as the main and error terms,
respectively. Note that the only reference to B in the error
term occurs in &(®), since P is merely a bound for the complete
exponential sum %(y). We remark that the estimate for &(%B) in
(11) is essentially best possible in the absence of any further restriction
on the box B, for it can be easily verified that &(3B)>kp"loghp
for some absolute constant k>0 in the special case y;=1,
hi=(p-1)/2, (¢=1,2,...,n), when p is large enough. It is of interest,
therefore, to find an estimate ® for % (y) which is sufficiently good, for
p large, to ensure that the main term dominates the error term when the
“gides”’ h; of the box B are also large but bounded by O(p'-?), for some
fixed 8> 0 depending on n (and possibly on d). This has been done in
some special cases, e.g. for quadratic and diagonal polynomials (see [3],
[8] and [9]). Results can also be obtained for other special polynomials
when good estimates are known for the exponential sum in (7). In the
general case, however, some restriction on f(xX) is essential, e.g. we have
to exclude polynomials such as f(x)=x,%, for then N(®B)=0 whenever
v;>0. Roughly speaking, we require N(C) large and ® small. The
crude estimate for & (y) is pN(C), since on taking absolute values in (7)
we have

-1 ~1
1F0)|=| 2 (x0T ()| < 2 |'T etrw)|=p(0), a2
. xeC =0 xeCl i=0

and inspection of (10) shows that virtually any improvement on this

would be effective for our purpose. In Theorem 1 we find that, for forms

f(x) which have no linear factor over [p], there is an improvement (by a

factor which is about p when N (C)p—"+! is bounded below) on the estimate
in (12):

TreorREM?T 1. Let f(x) be a form over [p), of degree d > 2, which admits
no linear factors over [p]. Then

N(®)=h,...h,p*N(C)+ O(p"2log"p), as p—>co. (13)

t Here, and throughout the paper, the constant in the O-symbol depends only
upon n and d, unless explicitly stated otherwise.
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CororLLARY 1. If

f) =7 LA (6] (n @ unit (14)

where f;(X) are the trreductible factors of f(x) over [p], degf;>2 (=1, 2, ..., 1)
and 82 1 of these are absolutely irreducible (i.e. irreducible over the algebraic
closure of [p]), then

N(B)=h,...h,p{sp" 1+ O(p"32)} + O(p"~2 log" p), as p—>c0. (15)

COROLLARY 2. If O<e<mn™, let v,20 (i=1,2,...,n) be chosen
arbitrarily subject only to the condition v,+p'~""+e<p. Then, provided (15)
holds, there is an integer py=py(e, n, d) and an xe C for which f(x)=0 [p]
and

v ST <v P, (1=1,2,...,n) (16)
if p2p,

Our method depends upon an interpretation of % (y) in terms of the
numbers of solutions of pairs of simultaneous equations over [p] (see
Lemma 11), and appears to be useful only when f(x) is homogeneous and
the number of such pairs reduces to one. As the properties of #(y) are
vital to the effectiveness of the general inequality (10), we include in §3
an alternative, but generally less useful, interpretation of # (y) in terms
of equations obtained from f(x)=0 [p] by the addition of certain linear
terms (again, this works only for forms when the homogeneity can be
exploited). If we regard & (y) as a complete exponential sum over (n 4 1)
variables (zy, ..., z,,t) the estimates of Davenport and Lewis [5] (for
d =3) and Birch [2] are applicable, but the results will involve the deter-
mination of certain invariants of f(x) over [p], or over the algebraic closure
of [p]. In the latter case, for example, if K =2-%+! and s is defined as the
dimension of the singular locus of f(x) (see [5]) in the »-dimensional
vector space of points X over the algebraic closure of [p], then Birch’s
result gives

F (y) =0 {pn+1—K(n—s)}, (17)
which is effective in (10) when N(C)p—"t! is bounded below and
g<n—20-1, (18)

So far as estimates for N(C) are concerned, we use the general theorem
of Lang and Weil [6] on the number of points in an algebraic variety over
a finite field. As Birch and Lewis [1] have observed, this specializes to
the case of forms f(x) over [p], which are absolutely irreducible over [p],
to give the asymptotic formula

N(C)=p"1+0(p*), as p>. (19)

n
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Corollary 1 is an elementary deduction from this and Theorem 1 (see
Lemma 8). In fact we have N(C)=O(p™—?), unless the form f has at least
one absolutely irreducible factor over [p]. For polynomials f(x) which
are not homogeneous we have no direct method of attack, though the
simple device of working with the form F(x,, =, ...,%,) in place of
f(zy, ..., z,), and a “flat”’ box B, in (n+ 1)-dimensions satisfying x,=1
is partially successful. However, the formula (13) with n+1 in place
of n, applied to a form F(z,, 2, ..., x,) with N(C) about p™ is clearly
ineffective, since the main term is no larger than p"—1, while the error is
p"1log*tlp, This raises the question of whether the error term in (13)
itself can be improved. But the example with f(x) = (z,2 + 2,%)™, p=3 (mod 4)

cy=p—h;=1, ({=1, 2, ..., n) in which f has no linear factors over [p] and

[N(B)—hy...hy,p " N(O)|=(1-p ) p"2~p"? a5 p->o0,

shows that some further condition on f(x) is essential for such an improve-
ment. In Theorem 2 we impose the restriction that the form f(x) be
non-singulart and show that this leads to an improvement of about p—1/2
in the error term. In addition, it is easily shown that such forms are in
general absolutely irreducible (¢f. Lemma 9) and consequently (19) is
applicable :

TarorEM 2. If f(X) i3 a non-singular form of degree d in n>2d+1
variables then

N(B)=h,...h, p" N(C)+ O(p™—*2log"p) as p—>co. (20)

CororLrarY 1. If f(X) is a non-singular form of degree d in n>2d+1
variables, then

N(B)=hy... hyp~{p"+ O(p"~3?)} + O(p"~52 log™ p), (21)
as p—>o.

CoroLLARY 2. If O<e<3/2n, let v;20 (t=1,2,...,n) be chosen
arbitrarily subject only to the condition v,+p'=C2n+e<p.  Then, provided
(21) holds, there is an integer p,=py(€, n, &) and an X C for which f(X) =0 [p]
and

S <y +plBEnte (=12 ..., n) (22)

if 2P,

Use of Chevalley’s theorem [4] on the existence of a non-trivial zero [p]
of a system of simultaneous equations over [p] is a convenient tool in
the proof of Theorem 2 and gives rise to the condition on the number n
of variables. Then, with the device of the “flat box” in (n+ 1)-dimen-
sions, we deduce ~

t s.e., for any x#0 of C, the n partial derivatives of the first order do not vanish
simultaneously.
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TreorEM 3. If f(x) is a polynomial in n variables z,, ..., x,, of degree
d<n/2 and

F (g, Ty ..y Tp) =22 f(21/20, ..., Tp[2,)
i8 non-singular, then for f(x),
N(B)=h,...h,p 1+ O(p"32 logr+ip), as p—>co. (23)

CoROLLARY. If O<e<1/2n, let v;=0 (t=1,2,...,n) be chosen arbi-
trarily only to the condition v,+p'—@W'+e<p. Then provided (23) holds,
there i3 an integer py=py(e, n, d) and an xe C for which f(x)=0 [p] and

v Sx;<vy+pl—@ite (3=1,2, ...,n) (24)
if p=p,

With regard to the corollaries where the existence of a solution of
J(x)=0 [p] satisfying certain asymmetric inequalities is asserted, it is
natural to enquire whether methods from the geometry of numbers are
applicable. For the special case when f(x) is homogeneous and the box B
is symmetric in 0, Minkowski’s theorem on convex bodies is useful; for
if (&1, .., £,)# (0, ..., 0) [p] is some solution of f(x)=0 [p], the subset
of %, defined by ’

(xl’ ooy xn)=h(§1; ey fn) [p]’ hE [P],

is a lattice A of determinant p™~! and so there is a point x#0 of A in
the cube

|z |<p (i=1,2, ...,n)
and this point will satisfy f(x) =0 [p], by the homogeneity oft f(x). How-
ever, for the general case, we have no information.

2. Estimation of N(C). In 1954 Lang and Weil [6] deduced (as a
consequence of Weil’s work on algebraic curves) an estimate for the number
of points of an absolutely irreducible variety ¥, of algebraic dimension r
and degree d in m-dimensional projective space P™ over a finite field £,
with ¢ elements. As pointed out by Birch and Lewis [1], the following
lemma is the special case of this with r=m—1=n—2 and ¢g=p.

Lemma 2. If f(x) is an absolutely irreductble formi over [p] in n
variables and of degree d then

N(C)=p" 14 O(p™32), as p—>oo. (25)

They also deduced from Lang and Weil’s paper the following two
lemmas.

+ A special case of this was communicated to one of us by Dr. G. L. Watson.

1 We remark thet an absolutely irreducible form in » veriables defines an absolutely
irvedmoible variety in projective (m—1)-space of dimension r = n—2; for this, and the
oomverse, see ¢.g. [12; Propoeition 2, p. 74].
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Lemma 3. If f(x) 18 a form which is irreducible over [p], but not abso-
lutely trreducible, then all the zeros of f(x) are singular.

Lemma 4. If f(x) is a form over [p] of degree d in n variables with no
squared factors over [p), then the number N* of singular zeros of f satisfies

N#*=0(p"?), as p—>c0. (26)
Combining LLemmas 3 and 4, we have

Lemma 5. If f(x) is a form which is irreducible over [p], but not
absolutely trreducible, then

N(C)=0(p™?), as p—>co. (27)

The bound for N(C) in the following lemma is well known; a proof,
by induction on n, was given by S. H. Min (7] in 1947.

Lemma 6. Let f(x) be a polynomial with coefficients in [p], not identically

zero. Then
N(O)=0(p"?), as p—>o0. (28)

A similar result can be deduced for a pair of polynomialst; to do this
we use the fact that if F,(x), ..., Fi(x) are k polynomials over [p], at
least one of which does not vanish identically, then there exist & poly-
nomials @,(x), ..., @,(x) over [p], such that

F1¢1+...+Fk(pk=dQ,

where d=d(x) is the highest common factor of F,, ..., F;, and Q is a
polynomial over [p] which does not vanish identically and in which the
variable z, does not appear (for a proof, see [10; p. 192, Satz 101]).
Further, the degree of Q is bounded in terms of the degrees of F,, ..., F;.
Here, the special role played by the variable z, could equally well be taken
by any of the other variables z, (2<r<n). We also note that the greatest
common divisor is unique, apart from units; in particular, the greatest
common divisor of f and g over [p] will be denoted by (f, g),. If either
f or g is independent of some z;, .. it is a polynomial in z; (j#3:
J=1,2,...,n), then so is (f, g),. Thus if, say f, is identically zero then
(f, 9)p=9, apart from unit factors.

Lemmal 7. If f(x) and g(X) are polynomiels in xX=(x,,...,%,),
where n > 2, with coefficients in [p], of degrees k, and k, respectively, such that
(f, 9)p=1, then the number of solutions of the pair of simultaneous equations

f(x)=g(x)=0, [p],

t We are indebted to Professor H. A. Heilbronn, for a remark which suggested a
lemma of this type.

1 By elementary deductive arguments, it may be shown that this lemma is equivalent
to Lemma 4. It would be of interest to know whether our elementary veorsion of Lemma 7
is oapable of extension to three or more polynomials.
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18 O(p"2), where the constant implied in the O-symbol depends only on
n, &, and k.

Proof. We first prove the result for =2, Since

(2, 7). 9o, 22)),=1

we can find a, (zy, %), ag(%1, Tp), by (%1, Ta), ba(21, Z3), Q; () # 0 and Qq(xg) # 0
such that
a f+b,9=Q(xy),

and ayf+beg=Qy(2,).
Thus N(f=g=0)<N(Q,=Q,=0)=0(1).

We now suppose that »>3 and make the inductive hypothesis that .
the result is true for all polynomials in (n—1) variables satisfying the
conditions of the lemma. We consider three cases: ‘

Case (i). Suppose that for some fixed ¢ (1<i<n), f and g are poly-
nomials in 2, (j=1, 2, ..., n) with j#4. Then we can apply the inductive
hypothesis to the pair f, g and obtain

N(f=g=0)=0(p.p"2%)= 0(p"?),

since to each set (z,,...,%;_;, %4y, ..., %,) there corresponds at most
p values for =z;. i

Case (ii). We now show that it is sufficient to consider the case
when at least one of f and g is a polynomial in at most n—1 of 2,, ..., 2,.
For, if (f, 9),=1, we can find polynomials @, and b, and a polynomial
Q=Q(z,, ..., ,), independent of z,, satisfying

a'1f+ blg= Q(xz, crey x,,,_).

If d,= (9, Q),, then d,=d,(x,, ...,z,) and (f, d,),=1. Putting g=d, g,
Q=d, Q,, where (g, Q,),=1, we have
N(f=9=0)=N(f=9g=Q=0)
=N(f=d19,=d,Q,=0)
<N(@g=2=0:d,#0)+ N(f=d,=0)
<N(@g=Q,=0)+N(f=d,=0).

Since €2, and d, are independent of x, and

(91> Q1),?= (fs dl)p =]
it suffices to consider the case described.
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Case (iii). Suppose now that g, say, does not contain ,. Proceed
as in Case (ii), and define a,, b;, Q, d,, g1, Q,. If d,=1, then

N(f=g=0<N(g,=Q,=0)
and Case (i) can be applied to give the required result. If d,#1, we get
N(f=g=0)<N(g;=Q,=0)+ N(f=d,=0)

just as for Case (ii). Since g=d, g, is independent of x, so is g, and since
(91, ©)),=1, Case (i) applies to N(g,=0Q,=0). Also, for N(f=d,=0),
we note that d, is independent of x, and (f, d,),=1. Hence the pair
f and d, satisfy the same hypotheses as the pair f and g. Moreover, d, is
a non-unit divisor of g and therefore has lower degree than that of g.
Hence the process can be repeated and after a certain number of steps,
bounded in terms of the degree of g, we reach the condition (d,, €},),=1
when the inductive hypothesis is applicable. Thus, writing g =d,, we have

N(f=9=0)=N(f=d,=0)
SN(G=Q=0)+...+ N(g, ,=Q, ;=0)+ N(f=d,=0),
where N(g=Q=0)=0(p"?), (1<t<gr-1)
by Case (i), and
N(f=d,=0)<N(d,=Q,=0)=0(p"3),
' by our induction hypothesis. Moreover, the constants implied in the

O-symbols are, by our process, bounded in terms of n, k, and k,. This
proves the lemma. We can now prove

Lemma 8. Let f(x) be a form of degree d in n variables, with coefficients
in [p], which does not vanish identically. Let s denote the number of abso-
lutely irreducible factors over [p] in the unique decomposition (apart from
units and order) of f=f,%...f,% into powers of irreducible faciors. Then

N(C)=0(p™?), as p>o, if 8=0 (29)
nd
¢ N(C)=gp* 1+ O(p"32), as p—>oo, if s> 1. (80)
Progf. Since
N(©)=N( fx)=0)
=N(fy.fy=0)
Z N(fi 0)— Z N(ft—fl 0)+..
+ (=N (fy=...=f,=0),
we have

N(O)- 5 N(f=0) =0 msx N(fi=f,=0)| =00,
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by Lemma 7. Thus if fj, ..., f,, say, are absolutely irreducible over [p],

N(C)= 3 (p+0@™3®))+ % O@E3+0(@™?

1<igs s+lgixgr
=sp"14+3.0(p"3%) + O(p™?),

as required.

The next two lemmas are required for the proof of Theorems 2 and 3.
They tell us, roughly, that if f(x) is a non-singular form over [p], then
both f(x) and f(x,, ..., %,_;, 0) are absolutely irreducible over [p], if »
is large enough.

Levma 9. Iff(x)is a non-singular form over [p] of degree din n>d+ 1
variables, then f(x) is absolutely irreducible over [p].

Proof. Suppose, if possible, that the conclusion is false for some
such f. Then there are two possibilities; case (a), f is irreducible but
not absolutely irreducible over [p], case (b), f is reducible over [p].

Case (a). Since n>d+ 1, Chevalley’s theorem [4] implies the exist-
ence of at least one non-zero solution x of f(x)=0 [p]. By Lemma 3,
this is a singular zero of f; a contradiction.

Case (b). Suppose f=gh, where degg=d,, degh=d, and d,+d,=d.
As n>d+1, (i.e. n>d,+d;) Chevalley’s theorem tells us that there is a
non-zero solution of g=h=0. But for such a solution we have

of oh og

2= he— = =1,2,...
ax‘ gaxi + ax‘ 0’ (z ’ b ’ n)’

whence it is a singular zero of f; a contradiction.

Remark. The following example shows that the converse is false,
1.e. there exist absolutely irreducible forms of degree d in % > d + 1 variables
which are singular over [p]. Take

fX) =z, 2,5~ 2,7, (31)

where n>d+1>3; then f is absolutely irreducible over [p] (see [1;
Lemma 3]), but has a singular zero (1,0, ..., 0).

Levma 10. Let f(x) be a non-singular form over [p] in n>22d+1
variables. Then f(z,, ..., ,_;, 0) 18 absolutely irreducible over [p)].

Proof. Put
f(@ys ooy ZR)=a32,8+ @5 12,871+ ... + 8, %, + Gy,

where A, =02y, ..., Tpy), $=0,1,2,....d,
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is a form of degree d—i, which possibly vanishes identically, and
ay=f(,, ..., %,_4, 0). By Lemma 9, f(x) is absolutely irreducible over [z]
since n>2d+1>d+1. Hence it is irreducible over [p] and @, cannot
vanish identically. Now suppose a, is not absolutely irreducible over [p].
Then there are two possibilities; case (a), @, is irreducible over [p] but
is not, absolutely irreducible over [p], case (b), a, is reducible over [p].

Case (a). By Chevalley’s Theorem [4], there is a non-zero solution
(x,*, ..., x¥_)) satisfying a,=a,=0, since n—1>d+ (d—1), t.e. n>2d + 1.
By Lemma 3, such a solution is a singular zero of a,. Hencethe partialderiva-

tives g% G=1,2, ..., n—1) vanish at (z,, ..., Tu_y)= (%,*, ..., z¥_,). Put
X¥*=(x,% ..., 2¥_,,0)#0. Since
of day , oa, oa, .
—_—= et =— -_—, =1,2,...,n-1
Ox; Oz Tntet oz, Tnt oz, g n—-1)
.. o . . .
the derivatives 5% (t=1,2,...,n~—1) vanish at X=Xx%*, and since
s
0
% =a4dx, 0+ ... +ay 22, +ay,

n

% vanishes when x =x*, Hence X* is a singular zero of f, contradicting

n

the hypothesis that f is non-singular over [p].

Case (b). Suppose a,=hk [p], where degh=d,, degk=d, and
d,+d,=d. By Chevalley’s Theorem [4], there is a solution

(w0, *, ..., x* )#(0, ..., 0)

satisfying h=Fk=a,=0 over [p],since n—1>d, +dy+ (d—1),1.e. n>2d +1.

Then the argument of Case (a) is applicable and we can show, similarly,

that (z,%, ..., @¥_,, 0) is a singular zero of f, contradicting our hypothesis

for f. Hence ay,=f(2,, ..., #,_1, 0) is absolutely irreducible over [p].
3. Estimation of F(y).

Definition. Let a(u, y)=a(w,y, p,f, C) denote the number of solu-
tions xe C of the pair of simultaneous equations

f(x)=x.y-u=0 [p]. (32)
Firstly, we express & (y), as defined in (7), in terms of a(x, y) in

Lmoa 11, f(y)=p’§ e(—w)al, ¥). (33)
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Proof. From (7) we have

FW= 5T i -x.9)
= 3 e(~%.9) T e((x)
xeC =0

=T 5 e(-x9)'E ()
u—oxx;S“

=S B e-w)'S o)

xeC
X.¥=4%

=% e(-1) 3 T o).

x. y=u
From the definition of a(u, y) we have
' 1 Pl
w3 % e(tfx) (34)

and the lemma follows.
Next, we note the following two properties of a(u, y) wh.lch lead to
the interpretation of Z(y) in Lemma 15.

Levma 12,

-1
Z a(, y)=N(C). (35)
]

Proof. Trivial.

Lemma 13. If u#0 [p), then a(u, y)=a(l,y). (36)

Proof. As u#0 [p], u! is uniquely defined by wu—1=1. Then the
substitution x=wuz maps C onto itself. Hence

o)== 3 T ¢tf(ua)

E y=1
1 p-
"7 5, &)

gince f is homogeneous of degree d. As u#0 [p], the substitution v=tud
permutes [p]. Thus

1 —
awy)=— 3 T e(sfm)=al1, ).

2. y=1

Lmaa 14, If u#0 [p], then
a(w, y)=(p—1)"{N(C)-a(0, y)}. (37)



THE DISTRIBUTION OF SOLUTIONS OF CONGRUENCES 187

Proof. By Lemmas 12 and 13,

a(Oa Y)+ (.p— l)a(u’ Y)=N(0)’
since u#0 [p].

LeMMa 15, P
F(y)= Py {pa(0, y)-N(O)}. (38)
Proof. By Lemma 11,

FH)=p'3 e(~u)a, )
=pa(0, y)+f§; e(—u)a(x, y)},

=p(a(0, )+ 'S e(—u)[w]},

p—1

=pia(0,y)- =1

£ {pa0,y)-N(O)},

on using Lemma 14,

With this interpretation of & (y) the estimates available for (0, y)
in Lemma 7 and for N(C) in Lemma 8 are sufficient for our proof of
Theorem 1. For Theorems 2, 3 we shall need a more precise estimate
for a(0,y):

Lemma 16. If f(x) i a form of degree d, which is non-singular over [p]
and in n>2d+ 1 variables then

a(0, y)=p""*+ O(p"~5?) (39)
uniformly in 0#yeC. '

Proof. By definition a(0, y) is the number of xe C satisfying the pair
of equations

fx)=x.y=0, [p].

Since y 0 [p], we can transform X into X’ by a non-singular, homogeneous,
linear transformation so that the above pair becomes

Hix')==,"=0, [p].

This does not affect (0, y) nor the non-singularity of f, but the coefficients
of f, will now d.epend on the y,’s. Thus a(0, y) is just the number of solu-
tions (z;, ...; Zp_y, 0) of

fl(xll: veey zfll—l’ O) =0,

ar
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By Lemma 10, f,(2,’, ..., ¥s_3, 0) is absolutely irreducible over [p] and
so, by Lemma 2, we have

G(O: y) =P"—2 + 0(pﬂ-§lﬂ)’ as p—>

uniformly in 0#yeC.
We give here an alternative interpretation of & (y) which is useful
in special cases but not, however, effective for our general problem.
Lemma 17. Let f(X) be a form in z,, ..., %, of degree d > 2, with coeffi-
cients in [p]. Let k,_, be the multiplicative group of (p] and k,, the subgroup
of k,_, consisting of the (d— 1)-th powers, where the order of k,, is m= A n ! R

I=(d—1,p—1). Let ny, ny, ..., ny be elements of k,_,, one from each coset
of k,, relative to k,_,. Then

F=2 3 ¥(C, f)~nx.y) -p" (40)

i=1

Proof. If the elements of k,, are denoted by ry, ry, ..., 7., the cosets
€, can be represented by {n,7'ry, ..., n;7lr,}, (6=1,2,...,1). Then, for
y#0 [p],

FW="Z 3 clf0-x.y}

> 3 eff(x)-x.y}

iml (¥, xeC

> ze{m Ly, f(X)—X.y}

iml x€C =l
= Z p— 3 e{nstudlf(x)—x.y},
i=1 xeC’ u=1

since ud-1=r; [p] has exactly ! solutions u, for each j=1,2,...,m. Put
x=u"1z [p], so that C is mapped onto itself over [p] and note that

fuz)= u“f (z).

F¥) =+ Z e{u“[nrlf (z)-z.y1}

l =1 IEC u=

Then

- _:_é; S efuln1f(x)—x.yl},

“u

-3 3 [{’ile[uwlf(x)—x.y)]}—1],

i=l xeC w0

!
=L 3 N(C, n ) -x.y)~pm,
as required.
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4. Proof of Theorem 1. By Lemmas 6 and 7,
N(C)=O0(p"?)
a(0, y)=O(p™2), uniformly in y.
Hence, by Lemma 15,
F(y)=0@@""),
80 we may take ®=0(p"-!) in Lemma 1, obtaining the result.

Proof of Corollary 1. This is immediate on substituting the estimate
for N(C) given by Lemma 8 in the theorem.

Proof of Corollary 2. TFor arbitrary e satisfying O<e<n™l, take
h;=[p*"+] and v;> 0 (subject to v;+p'~"'+*<p) in Corollary 1; then

by ... by, p{sp™ 1 + O (pn32)} = O(pn—2tne)

exceeds the error term O(p"~2log®p) for p > py=2py(€, n, d), 80 N(B)>0
and the result follows.

Proof of Theorem 2. By Lemma 9, f(X) is absolutely irreducible over
[p] since n>2d+1>d+1. Thus, by Lemma 2, N(C)=p"1+ O(pn—32),
Also, by Lemma 16, a(0, y)=p*2+ O(p*—52) and so from Lemma 15 we -
have #(y)=O0(p™32) for y£0. The theorem then follows from Lemma 1
with @=O(p™372).

Proof of Corollary 1. This is immediate on substituting the estimate
for N(C) from Lemma 8.

Proof of Theorem 3. Applying Theorem 2, with, n replaced by n+1,
to the box B, and the form F, we have

N(DBy, F)=h,...h,p " IN(C, 1, F)+ O(p"—32logntl p),

as p—»>w. By Lemma 9, F is absolutely irreducible over [p] and so,
by Lemma 2,

N(Cpyy, F)=p"+ O(p™11%).
Since N (B, F)=N(B,f), the result follows.

The proofs of the corollaries to Theorems 2 and 3 are straightforward
and follow the lines of that for Corollary 2 of Theorem 1.

5. Extension to Galois Fields. Let k, denote the finite field of ¢=p™
elements and write k, for [p]. Select any fixed basis a,, ..., a,, for k,;
then any ack, may be expressed as

a=61a1+...+cma.m
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with ¢;€k, (i=1, 2, ...,m). Denote the trace of « from k, to k, by ¢(a),
so that
t(a)=a+aP +oP’+... +a?™ '€k,

and t(a+B)=t(a)+t(B), for all « and B in k,

If we put
e(a)=exp {2mip~1t(a)},

then it is easy to verify that the orthogonal property

g, if A=0
0, otherwise,

X e()\a)={
aek,

for the case m =1, is preserved. We can now extend the definition of the
box B to the vector space V of points X = (z,, @, ..., Z,) over k,, relative
to our chosen basis, by

B={X|xeV, zy=cnar+... +Cimm O<vy<ey<viy+hy<p}

where 1<i<n,1<j<m. Itisnow aroutine matter tocheck that Lemma 1
goes through as it stands, but with p replaced by ¢ and [p] replaced by k,,
apart from the estimate for &£(B) in (11). With &(%) defined as

)

OxyeV

X e(y.z)
zeP

we shall repair this deficiency in Lemma 18. We note also that the
estimates in §2 (see Lemmas 6, 7 and 8) which are used in the proof of
Theorem 1 and its first corollary are readily extended to k,. Then
Theorem 1, for example, has the following generalization :

4

TurorEM 1. Letf(x) denote a form over k,, of degree d > 2, which admits
no linear factors over k,. If N(V) denotes the number of zeros of f(x) in V,
then

N@)=( 1 h) ¥ 1)+ 02 Togmp), @)

where the constant in the O-symbol depends at most on m and n.

Counterparts for the other theorems about N (%) may also be given,
since the only new idea required is that in Lemma 18; the proof of which
follows:

LeMMA 18, There is an absolute constant py such that

D>

yev

.§be(y-2) < q*(log p)™", (42)

Jor all p2py, m21, n21. -
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Proof. Since the given sum splits into a product of n sums of the type

5

ek,

X e(yiz)

g€ Y,

’

where ;
By = {2(|2€ ky 2g=C o+ ... 0y 0y vy <Cy<vyy+ Pushs

1<j<m, it is sufficient to prove that this is less than (p logp)™, under
the conditions stated. Dropping the subscripts ¢ and writing

y=bjoy+...+b, e,
z=61a1+ ves +cma7n
vy=vy, hy=h,

for convenience, this sum has the shape

p-1 -1 |vyt+hy—1 yov+hm—1
3o e{(byay+ oo by ) (€101 F +ov - Cpp )} | (43)
b,=0 b=0! cy=v, Cn=Vm
Now, the inner sums over ¢, ..., ¢,, can be expressed as
m  vithr—1 Y
Y exp {2mipincy},
k=1 c=¥;
where

m
M= El byt (s ).

The m x m matrix

T = {#(c, )}
has determinant

[det ()],

and, as is well known [see, e.g., L. E. Dickson, Linear Groups (Dover, 1958),
p. 52], this cannot vanish when «, ..., a,, are linearly independent over k,,.
Hence det 740 (modp) and so the m-dimensional vector space ¥, of
points b= (b, ..., b,) is mapped onto itself by 7. Thus 3 can be

beVy
replaced by ¥ , where n=7b, and our sum (43) becomes

neVm
m  p—=1 |vp+hx—1

II Z| X exp{2mip~inc}|.

k=1 n3=0 | c=v;

Each of the m sums in this product is less than p logp (see, e.g., [11; Ch.
II1, 11c]) for p> 60 and so (42) holds with p,= 60,
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