
THE DISTRIBUTION OF SOLUTIONS OF CONGRUENCES 
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1. Introduction. Let p be an odd prime and denote by b ] ,  the finite 
field of residue classes, modp. In Euclidean n-space, let 9, denote the 
lattice of points x = (x,, . . . , x,) with integral coordinates and C = C(n, p), 
the set of points of 9, satisfying 

Ogx,<p, ( i = l ,  2, ..., n). (1) 

We define a box B =  B(n, h, v) as the set of points X E  C for which 

vtgx,<v,+ht, ( i = l ,  2, ..., n) 
where 

(2) 

O<vi<vt+hd<p, ( i = l ,  2, ..., n). (3) 

For n 3 2, let f (x) = f (x,, x,, . . . , x,) be a polynomial in the n variables 
x,, x,, . . . , x, of degree d 2, fixed independently of p,  and with coefficients 
in b ] .  Iff (x) is not homogeneous in x,, . . . , s,, we introduce the associated 
forms, F and f *, defined by 

F(xo, 21, ..., X ~ ) = X O ~ ~ ( X ~ / X O ,  e e . 7  xn/xo) (4) 

and f *(xl, ..., 2,) = F(0, xl, ..., x,). ( 5 )  

Let N(B)=N(p, n, f ,  23) denote the number of X E B  for which 

f (x)  = 0, [PI (6) 

where, for convenience, we count x=O as a solution when OEB and 
f (x) is a form. Thus in the special case when 23 = C, the integer N(C) is 
just the number of solutions of the congruence f (x)=O (mod p), while 
generally, N(B) represents the number of solutions in certain prescribed 
residue classes (namely, those defined by the points of B), of the same 
conpence. By using a generalization of the inequalities of Vinogradov 
[ l l ]  and Mordell [8] we shall obtain estimates for N(B) in terms of N(C) 
for " general " polynomials f (x), when p is large. This general inequality 
was established in [3] and relevant details are summarized in the following 
lemma : 

LEMMA 1. Let f(x) be a function defined over [p] and taking values 
in [PI and ~ " t  t 

t For any real t ,  e ( t )  stands for exp (2dtp-I) .  

~ T H E M A T I K A  12 (1965), 176-1921 
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Suppose that there is a constant cD, independent of y, such that 

I S ( y )  I G a, for all non-zero Y E  C. (9) 
Then 

N(B) = hl . . . hnp-" N(C) + @b(B) (10) 

for some real number 9 satisfying 181 6 1. Moreover, b(B) g Cpn lognp, 
for some absolute constant C > 0. (11) 

For convenience in referring to the inequality (lo), we shall speak of 
hl . .. hn p-n N(C) and p-n-l cDb(B) as the main and error terms, 
respectively. Note that the only reference to B in the error 
term occurs in b(B), since cD is merely a bound for the mplete 
exponential sum S ( y ) .  We remark that the estimate for b(B) in 
(11) is essentially best possible in the absence of any ful-ther restriction 
on the box B, for it can be easily verified that b(B) 2 kpnlognp 
for some absolute constant k>O in the special case v,=l, 
h, = (p - 1)/2, (i = 1, 2, . . . , n), when p is large enough. It is of interest, 
therefore, to find an estimate cD for S ( y )  which is sufficiently good, for 
p large, to ensure that the main term dominates the error term when the 
" sides" h, of the box B are also large but bounded by O(pl-a), for some 
fixed 8 > 0 depending on n (and possibly on d). This has been done in 
some special cases, e.g. for quadratic and diagonal polynomials (see [3], 
[8] and [9]). Results can also be obtained for other special polynomials 
when good estimates are known for the exponential sum in (7). In the 
general case, however, some restriction on f(x) is essential, e.g. we have 
to exclude polynomials such as f (x) = xld, for then N(B) = 0 whenever 
v1> 0. Roughly speaking, we require N(C) large and cD small. The 
crude estimate for S ( y )  is pN(C), since on taking absolute values in (7) 
we have 

and inspection of (10) shows that virtually any improvement on this 
would be effective for our purpose. In Theorem 1 we find that, for forms 
f(x) which have no linear factor over b] ,  there is an improvement (by a 
factor which is about p when N(C)p-"+l is bounded below) on the estimate 
in (12): 

THEOREM? 1. Let f (x) be a form over b ] ,  of degree d 2 2, which admits 
m linear factors over b ] .  Then 

N(B)=hl ... h,p-"N(C)+ O(p n-2 lognp), a;s p+m. (13) 
- 

t Hem, .ad throughout the prper, the c o n h t  in the 0-rymbol -dm d y  
upon n and d, unlm explicitly stated otherwiee. 
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where f,(x) are the irreducible factors off (x) over b ] ,  deg f, 2 2 (i = 1, 2, . . . , 1 )  
and s 2 1 of these are absolutely irreducible (i.e. irreducible over the algebraic 
closure of b]) ,  then 

COBOLURY 2. If 0 < B < n-l, let v, 2 0 (i = 1, 2, . .., n) be chosen 
arbitrarily subject only to the condition vi +pl-n- '+~p.  Then, provided (16) 
hob%, there is an integer po=po(s'n, d) and an X E  C for which f (x) = 0 b ]  
and 

V, < xi < v, + pl-n-'+c, (i = 1, 2, . . . , n) (16) 
if PaPo- 

Our method depends upon an interpretation of F ( y )  in terms of the 
numbers of solutions of pairs of simultaneous equations over b] (see 
Lemma 1 l), and appears to be useful only when f (x) is homogeneous and 
the number of such pairs reduces to one. As the properties of F ( y )  are 
vital to the effectiveness of the general inequality (lo), we include in $3 
an alternative, but generally less useful, interpretation of F ( y )  in terms 
of equations obtained from f (x) = 0 [p] by the addition of certain linear 
terms (again, this works only for form when the homogeneity can be 
exploited). If we regard F ( y )  as a complete exponential sum over (n + 1) 
variables (x,, . . . , xn, t) the estimates of Davenport and Lewis [5] (for 
d = 3) and Birch [2] are applicable, but the results will involve the deter- 
mination of certain invariants off (x) over b ] ,  or over the algebraic closure 
of b].  In the latter case, for example, if K = 2-d+1 and s is defined as the 
dimension of the singular locus of f(x) (see [5]) in the n-dimensional 
vector spade of points x over the algebraic closure of b] ,  then Birch's 
result gives 

F(Y) = Ow+,-K(n-s) 1, (17) 

which is effective in (10) when N ( C ) P - ~ + ~  is bounded below and 

So far as estimates for N(C) are concerned, we use the general theorem 
of Lang and Weil [6] on the number of points in an algebraic variety over 
a finite field. As Birch and Lewis [I] have observed, this specializes to 
the case of forms f(x) over b ] ,  which are absolutely irreducible over b] ,  
to give the asymptotic formula 
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Corollary 1 is an elementary deduction from this and Theorem 1 (see 
Lemma 8). I n  fact we have N(C) = O(P"-~), unless the form f has a t  lemt 
one absolutely irreducible factor over b]. For polynomials f(x) which 
are not homogeneous we have no direct method of attack, though the 
simple device of working with the form F(xo, x,, . . . , x,) in place of 
f (x,, . .. , xn), and a " flat " box 23, in (n + 1)-dimensions satisfying xo = 1 
is partially successful. However, the formula (13) with n +  1 in place 
of n, applied to a form F(xo, x,, ..., xn) with N(C) about pn  is clearly 
ineffective, since the main term is no larger than pn-l, while the error is 
pn-I logn+lp. This raises the question of whether the error term in (13) 
itself can be improved. But the example with f (x) = (x12 + x , ~ ) ~ ,  p = 3 (mod 4) 
vi = p  - hi = 1, (i = 1, 2, . . . , n) in which f has no linear factors over b] and 

shows that some further condition on f (x) is essential for such an improve- 
ment. In  Theorem 2 we impose the restriction that the form f(x) be 
non-singulaq and show that this leads to an improvement of about p-lI2 
in the error term. In  addition, i t  is easily shown that such forms are in 
general absolutely irreducible (cf. Lemma 9) and consequently (19) is 
applicable : 

THEOREM 2. If f (x) is a non-singular form of degree d in n 2 2d + 1 
variables then 

N (23) = h, . . . h , p  N (C) + 0 (pn-5/2 lognp) as p -f w . (20) 

COROLLARY 1. Iff (x) is a non-singular form of degree d in n 2 2d + 1 
variables, then 

COROT.C~RY 2. If O<s<3/2n, let v ,>O (i=1,2, ..., n) be chosen 
arbitrarily subject only to the codition ~,+pl+~/~~)n)+f<p.  Then, provided 
(21) ?wlEB, there is an integer po =po(s, n, d) and an XEC for which f (x) = 0 b] 
a d  

V$ < xi < V$ +p1+3/2n)+C, (i = 1, 2, . . , , n) (22) 

if P >Po. 

Use of Chevalley's theorem [4] on the existence of a non-trivial zero b] 
of a system of simultaneous equations over b] is a convenient tool in 
the proof of Theorem 2 and gives rise to the condition on the number n 
of variables. Then, with the device of the " flat box " in (n + 1)-dimen- 
sions, we deduce - 

- - - 

t 6.6.. f a  MY x#O of C,the n partid derivativss of the &st o h  do not Mi.h 
imoltrpeoarly. 



THEOREM 3. I f f  ( x )  is  a polynomial in n variables x,, . . . , xn of degree 
d < n/2  and 

is  rum-singular, then for f ( x ) ,  

COROLLARY. If 0 < r < 1/2n, let v, 3 0 (i = I ,  2,  . . . , n )  be chosen arbi- 
trarily only to the condition v, +p1-(2nb1+e <p .  Then provided (23) holds, 
there is  an integer po=po(r, n, d )  and an X E  C for which f(x)=O [p] and 

With regard to the corollaries where the existence of a solution of 
f ( x )  = 0 [p] satisfying certain asymmetric inequalities is asserted, it is 
natural to enquire whether methods from the geometry of numbers are 
applicable. For the special case when f ( x )  is homogeneous and the box B 
is symmetric in 0, Minkowski's theorem on convex bodies is useful ; for 
if (tl, . . . , 5,) # (0,  . . . , 0 )  [p] is some solution of f ( x )  = 0 [p], the subset 
of Pn defined by 

is a lattice A of determinant pn-l and so there is a point x #O of A in 
the oube 

1 xi 1 < (i= 1, 2, ..., n) 

and this point will satisfy f ( x )  = 0 b ] ,  by the homogeneity oft  f (x). How- 
ever, for the general case, we have no information. 

2. Estimation of N ( C ) .  In 1954 Lang and Weil [6] deduced (as a 
consequence of Weil's work on algebraic curves) an estimate for the number 
of points of an absolutely irreducible variety V, of algebraic dimension r 
and degree d in m-dimensional projective space Pm over a finite field Tc, 
with q elements. As pointed out by Birch and Lewis [I], the following 
lemma is the special case of this with r = m - 1 = n - 2 and q =p.  

LEMMA 2. I f  f ( x )  i s  an absolutely irreducible few over [p] in n 
variables and of degree d then 

They also deduced from Lang and Weil's paper the following two 
lemmas. 

t A special case of this was communicated to one of us by Dr. G.  L. Watson. 
$ W e r a r v r L ~ m a ~ ~ M e ~ i n c r v u m ~ ~ c m . b o k c a y  

i m b i b b  M y  in poja&ip. (r-1)-.p.oe of dimsodon r = n-$; for thim, .ad the 
oollvwme, rse e.g. [12; Pmpoeition 2, p. 741. 
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LEMMA 3. If f(x) is a form which is irreducible over b ] ,  but not abso- 
lutely irreducible, them all the zeros of f(x) are singular. 

LEMMA 4. If f(x) is a form over b] of degree d in n variables with no 
squared factors over b ] ,  then the number N* of singular zeros off satisjies 

Combining Lemmas 3 and 4, we have 

LEMMA 6. If f(x) is a form which is irreducible over b ] ,  but m t  
absolutely irreducible, then 

The bound for N(C) in the following lemma is well known ; a proof, 
by induction on m, was given by S. H. Min [7] in 1947. 

LEMMA 6. Let f (x) be a polynomial with coegicients in b] ,  not identically 
zero. Then 

N(C)=O(pn-l), as p+m. (28) 

A similar result can be deduced for a pair of polynomialst ; to do this 
we use the f a d  that if F,(x), . . ., Fk(x) are k polynomials over b ] ,  a t  
least one of which does not vanish identically, then there exist k poly- 
nomials @,(x), ..., Qk(x) over [p], such that 

where d=d(x)  is the highest common fador of F,, ..., Fk and Q is a 
polynomial over b] which does not vanish identically and in which the 
variable x, does not appear (for a proof, see [lo ; p. 192, Satz 1011). 
Further, the degree of Q is bounded in terms of the degrees of F,, . . . , Fk. 
Here, the special r61e played by the variable x, could equally well be taken 
by any of the other variables xr (2 < r < n). We also note that the greatest 
common divisor is unique, apart from units; in particular, the greatest 
common divisor off and g over b] will be denoted by (f, g),. If either 
f or g is independent of some xt, i.e. it is a polynomial in xj ( j  #i : 
j = 1, 2, . . . , n), then so is (f, g),. Thus if, say f, is identically zero then 
(f, g), = g, apart from unit factors. 

LEMMA$ 7. If f (x) and g (x) are polymials  i m  x = (x,, . .. , x,), 
where n 2 2, with coegicients in b ] ,  of degrees k, and k, respectively, such that 
(f, g), = 1, then the number of solutions of the pair of simultaneous equations 

t We are indebted to Professor H. A. Heilbronn, for a remark which suggested a 
lemma of this type. 

$ By elementary deductive argument., it may be &own that this lemrne in equivalent 
to bmma 4. It would be of interest to know whether our elementary vanion of Lemma 7 
ir mpeble of extamion to three or more polynomisln. 
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is  O@n-7, where the constant implied i n  the 0-eymbol depenrEs only on 
n,  k, and k,. 

Proof. We first prove the result for n= 2. Since 

we mnfindal(z1, X Z ) ,  aa(zi, z,), bi(z17 4 7  ba(zi, z,), Rl(z1) # 0 and Qa(za) # O 
such that 

a1f + b19 = SZ, (x1)7  

and azf + bz9 = R,(za). 

We now suppose that n >  3 and make the inductive hypothesis that 
the result is true for all polynomials in (n -  1 )  variables satisfying the 
conditions of the lemma. We consider three caws: 

Case (i). Suppose that for some fixed i ( 1  < i < n) ,  f and g are poly- 
nomials in x, (j = 1 ,  2, . . . , n )  with j # i. Then we can apply the inductive 
hypothesis to the pair f ,  g and obtain 

since to each set (x,, ..., xi-,, x{+,, . .., x.,,) there co~mponda a t  most 
p values for 2,. 

Case (ii). We now show that it is sufficient to consider the case 
when at least one off and g is a polynomial in at most n - 1 of x,, . . . , xn. 
For, if ( f ,  g),  = 1, we can find polynomisle a, and b, and s polynomial 
R = R(x,, . . . , xn), independent of x,, mtisfying 

If dl = ( g ,  R),, then dl = dl (x,, . . . , xn) and ( f ,  dl),  = 1. Putting g = dl g,, 
R = dl R,, where (g,, R,), = 1,  we have 

Since R, and dl are independent of x, and 



Case ( )  Suppose now that g, say, does not contain x,. Proceed 
as in Case (ii), and define a,, b,, Q, dl, g,, Q,. If dl = 1, then 

and Case (i) can be applied to give the required result. If dl # 1, we get 

just as for Case (ii). Since g = dl 9, is independent of x, so is 9, and since 
(g,, a,), = 1, Case (i) applies to N(g, = Q, = 0). Also, for N( f = dl = 0), 
we note that dl is independent of x, and (f, dl), = 1. Hence the pair 
f and dl satisfy the same hypotheses as the pair f and g. Moreover, dl is 
a non-unit divisor of g and therefore has lower degree than that of g. 
Hence the process can be repeated and after a certain number of steps, 
bounded in terms of the degree of g, we reach the condition (d,, Q,), = 1 
when the inductive hypothesis is applicable. Thus, writing g = do, we have 

N(f=g=O)=N(f=d,=O) 

<N(g,=Q,=O)+ ... +N(g,-,=Q,,=O)+N(f=d,=O), 

where N(gt=Qt=O)=O(pn-a), ( l< t< r -1 )  

by Case (i), and 

N( f = d, = 0) < N(d, = Q, = 0) = O(pn-a), 

by our induction hypothesis. Moreover, the constants implied in the 
0-symbols are, by our process, bounded in t e r n  of n, k, and ka. This 
proves the lemma. We can now prove 

LE- 8. Let f (x) be a form of degree d in n nvcsriables, with coeficients 
in b] ,  which does not vanish identically. Let s denote the number of abso- 
lutely irreducible factors over b ]  in the unique decomposition (apart from 
units and order) off = f,°l ... f,°r into powers of irreducible factors. Then 

JJ(C)=O(p"-", as p + a ,  if 8=0 (29) 
and 

-spn-l+O(pn--81a), as p + a ,  if 82 1. N(C) - (30) 

Proof. since 

N(C) = ~ ( f  (x) = 0) 

= x N(f,=O)- r, N(f,=f,=O)+ ... 
SdCf l<i<jG 

+ (-l)'-lN(fl=...=f,=O), 
we have 



by L e n  7. Thus iff,, . . . , f,, say, are absolutely irreducible over b ] ,  

as required. 
The next two lemmas are required for the proof of Theorem 2 and 3. 

They tell us, roughly, that if f(x)  is a non-singular form over b ] ,  then 
both f (x) and f (x,, . . . , xn-,, 0) are absolutely irreducible over b] ,  if n 
is large enough. 

LEMMA 9. Iff (x) is a non-singular form over b ]  of degree d in n 2 d + 1 
va&les, then f (x) is absolutely irreducible over b].  

Proof. Suppose, if possible, that the conclusion is false for some 
such f. Then there are two possibilities; case (a), f is irreducible but 
not absolutely irreducible over b] ,  cme (b), f is reducible over w]. 

Case (a). Since n 2 d + 1, Chevalley's theorem [4] implies the exist- 
ence of at least one non-zero solution x of f (x) = 0 b] .  By Lemma 3, 
this is a singular zero off ; a contradiction. 

Case (b). Suppose f =gh, where degg=d,, deg h =d, and dl+ da=d. 
As n 2 d + 1, (i.e. n > dl + d,) Chevalley's theorem tells us that there is a 
non-zero solution of g = h = 0. But for such a solution we have 

af ah ag - - -9- +h -=O, ( i = l , 2  ,..., n), 
axj axi axg 

whence it is a singular zero off;  a contradiction. 

Remark. The following example shows that the converse is false, 
i.e. there exist absolutely irreducible forms of degree d in n 2 d + 1 variables 
which are singular over b ] .  Take 

where n 2 d +  1 > 3; then f is absolutely irreducible over [p] (see [I ; 
Lemma 3]), but has a singular zero (1, 0, ..., 0). 

LEMMA 10. Let f (x) be a m-singular form over b ]  in n 2 2d + 1 
variables. Then f (x,, . . . , xn-,, 0) is absolutely irreducible over b]. 

Proof. Put 

where aj==aj(xl ,..., 5%-,), i=0 ,1 ,2  ,..., d ,  



is a form of degree d-i, which possibly vanishes identically, and 
a, = f (x,, . . . , xn-,, 0). By Lemma 9, f (x) is absolutely irreducible over [p] 
since n >  2d+ 1 >d+  1. Hence it is irreducible over b ]  and a, cannot 
vanish identically. Now suppose a, is not absolutely irreducible over b ] .  
Then there are two possibilities ; case (a), a, is irreducible over b ]  but 
is not absolutely irreducible over k ] ,  cctse (b), a, is reducible over b] .  

Case (a). By Chevalley's Theorem [4], there is a non-zero solution 
(xl*, . . . , xz-,) satisfying a, = a, = 0, since n - 1 > d + (d - I), i.e. n > 2d + 1. 
By Lemma 3, such a solution is a singular zero of a,. Hence the pdalderiva- 

aao tives - (i= 1, 2, .. ., ra - 1) vanish at (x,, .. ., xn-,) = (xl*, .. ., xt-,). Put a 4  
x*=(xl*, ..., xz-,, O)#O. Since 

af the derivatives - (i = 1, 2, . . ., n - 1) vanish at x = x*, and since axi 

af - vanishes when x = x*. Hence x* is a singular zero off, contradicting 
8% 
the hypothesis that f is non-singular over b ] .  

Case (b). Suppose a,=hk b ] ,  where degh=d,, deg k=d2 and 
dl + d2 = d. By Chevalley's Theorem [4], there is a solution 

satisfyingh=k=a,=Oover b ] ,  sincen- 1 >dl+&+ (d- l),i.e. n>2d+l .  
Then the argument of Case (a) is applicable and we can show, similarly, 
that (x,*, . . ., 52-,, 0) is a singular zero off, contradicting our hypothesis 
for f. Hence a, = f (x,, . . . , xn-,, 0) is absolutely irreducible over b]. 

Definition. Let a(u, y) =a@, y, p, f, C) denote the number of solu- 
tions X E  C of the pair of simultrtneous equations 

Firstly, we express 9 ( y ) ,  as defined in (7), in terms of a(u, y) in 



Proof. Prom ( 7 )  we have 

From the defhition of a(u, y) we h v e  

x.y-44 

and the lemma follows. 
Next, we note the following two properties of a(u, y) which lead to 

the interpretation of 9 ( y )  in Lemma 16. 

Proof. Trivial. 

Proof. As u#O b], u-I is uniquely defined by uu-l= 1. Then the 
substitution x = uz maps C onto itself. Hence 

since f is homogeneous of degree d. As u # 0 @I, the substitution v = tzld 
pannutea @I. Thus 
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Proof. By Lemmas 12 and 13, 

0 ,  Y)+ @- l)a(u, y)=N(C), 
since u#O b]. 

Proof. By Lemma 11, 

on using Lemma 14. 
With this interpretation of S ( y )  the estimates available for a(0, y) 

in Lemma 7 and for N(C) in Lemma 8 are s&cient for our proof of 
Theorem 1. For Theorems 2, 3 we shall need a more' precise estimate 
for a(0, y) : 

L E ~  16. Iff (x) i8 a fm of degree d, which i8 m-&hguh over b ]  
and in n 8 2d + 1 variablas then 

Proof. By definition a(0, y) is the number of XE C satisfying the pair 
of equations 

f(x)=x.y=O, bl. 
Since y #O b] ,  we can transform x into x' by a non-singular, homogeneous, 
linear tramformation- so that the above pair becomes 

This does not affect a(0, y) nor the non-singularity off, but the coefficients 
of fl will now depend on the y,'s. Thus a(0, y) is just the number of solu- 
tiom (xll, . .., 0) of 
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By Lemma 10, fl(z,', . .., &-,, 0 )  is absolutely irreducible over b] m d  
so, by Lemma 2, we have 

a (0,  y ) = + 0 0%-61s), as p -+ m 

uniformly in O # y e C .  
We give here an alternative interpretation of S ( y )  which is useful 

in special cases but not, however, effective for our general problem. 

LEMMA 17. Let f ( x )  be a f m  in x,, . . . , x,, of degree d 2 2, with coefi- 
ck& in b]. Let kP-l be the multiplicative g r q  of b] and k ,  the mbqrowp 

of kP-l &dng of the (d - 1)-th powera, where the order of k,n is m= , 
a -  1, p - 1 .  Let n,, n,, . .., n, be elemnts of kP-l, f r m  each wset 

of km relative to kP-,. Then 

Proof. If the elements of km are denoted by r,, r,, ..., rm, the cosets 

Vt  can be represented by {n,-lr,, ..., n,-'r,}, (i = 1, 2, ..., 1). Then, for 

Y Z O  b1, 

1 1  P-1 
= -i- Z Z Z e {nC-l uddl f ( x )  - x . y}, 

t=1 X€C u-1 

since el= r, Ii)] has exactly 2 solutions u ,  for each j = 1, 2, . . ., m. Put 
x = u-lz  Ii)], so- that C is mapped onto itself over b] and note that 

Then 
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4. Proof of Theorem 1. By Lemmas 6 and 7, 

a(0,  y )  = O(pn-a), uniformly in y. 

Hence, by Lemma 15, 

~ ( Y I  = oofl-I), 
so we may take @ = O(pn-l) in Lemma 1, obtaining the result. 

Proof of Corollary 1. This is immediate on substituting the estimate 
for N ( C )  given by Lemma 8 in the theorem. 

Proof of Corollay 2. For arbitrary r satisfying O< r<n-l, take 
h, = bl-n-'+e] and v, 2 0 (subject to vi +pl-"'I+" < p )  in Corollary 1 ; then 

exceeds the error term O(pn-a lognp) for p 2 p o  =po(r,  n, d) ,  so N ( B )  > 0 
and the result follows. 

Proof of Theorem 2. By Lemma 9, f ( x )  is absolutely irreducible over 
b] since n > 2 d + l > d + l .  Thus, by Lemma 2, N(C)=pn-l+O(pn-3la). 
Also, by Lemma 16, a(0 ,  y )  =pn-a + and so from Lemma 15 we 
have . F ( y )  = 0(pn-312) for y #O. The theorem then follows from Lemma 1 
with @ = 0(pn-3/2). 

Proof of Corollary 1. This is immediate on substituting the estimate 
for N ( C )  from Lemma 8. 

Proof of Theorem 3. Applying Theorem 2, with n replaced by n+ 1, 
to the box So and the form F ,  we have 

aa p + a .  By Lemma 9, F is absolutely irreducible over b] and so, 
by Lemma 2, 

N (Cn+,, F )  =pn + O(pn-,la ). 

Since N ( B o ,  F )  = N (23,  f ), the result follows. 
The proofs of the corollaries to Theorems 2 and 3 are straightforward 

and follow the lines of that for Corollary 2 of Tbeorem 1. 

5. Extension to GaEoi8 Fields. Let kg denote the finite field of q=pm 
elements and write k, for b]. Select any fixed basis a,, . . ., a,,, for kq ; 
then m y  a s  kq may be expressed aa 
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with C ~ E  kp (i = 1, 2, . . . , m). Denote the trace of a from k, to k, by t (a), 
so that 

t(a)=a+ap+apa+ ... +aPm-'~kp 

and t(a+p)=t(a)+t(p), for all a and ,9 in k,. 

If we put 
e(a) = exp (2rrilp-I t (a)}, 

then it is easy to verify that the orthogonal property 

q, if h=O 8 e (ha) = 
a a k ,  0, otherwise, 

for the caee m = 1, is preserved. We can now extend the definition of the 
box B to the vector space V of points x = (x,, x,, . . ., xn) over k,, relative 
to our chosen basis, by 

where 1 6i 6 n, 1 6 j < m. It is now aroutine matter to check that Lemma 1 
goes through as it stands, but with p replaced by q and b] replaced by k,, 
apart from the estimate for 6(B) in (11). With b(B) defined m 

we shall repair this deficiency in Lemma 18. We note also that the 
estimates in $2 (see Lemmas 6, 7 and 8) which are used in the proof of 
Tbeorem 1 and its first corollary are readily extended to kq. Then 
Theorem 1, for example, has the following generalization : 

THEOREM 1'. Let f (x) denote a form over kq, of degree d 2 2, which admits 
no linear factors over kg. If N(V) denotes the number of zeros of f(x) in V, 
then 

where the wmtant in the 0-symbol dependa at most on m and n. 

Counterparts for the other theorems about N(B) may also be given, 
since the only new idea required is that in Lemma 18 ; the proof of which 
follows : 

LEMMA 18. There is an absolute wmtant po such that 

8 1 7 e(y.z)l< qn(log~)mn, 
y a v  "€3 

for all p2%,  m 2  1, n 2  1. 
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Proof. Since the given sum splits into a product of n sums of the type 

Z I X e(Yizi)I, 
~ t e k ,  e t e d t  

where 
bi={ziJz,~kq, zi=cslal+ ...+ cimam, vij<cij<v,j+hij}, 

1 < j < m, it is sdcient  to prove that this is less than (p logp)'", under 
the conditions stated. Dropping the subscripts i and writing 

for convenience, this sum has the shape 

Now, the inner sums over c,, ..., cm can be expressed as 

where m 

r)k = s bjt(ajak). 
j=l 

The m x m matrix 
T = {t (a, ad) 

has determinant 
[det (ajPbl)la, 

and, as is well known [see, e.g., L. E. Dickson, Linear Groups (Dover, 1958), 
p. 521, this cannot vanish when a,, . . ., or, are linearly independent over Ic,. 
Hence det T+O (modp) and so the m-dimensional vector space V ,  of 
points b = (b,, . . . , b,) is mapped onto itself by T. Thus 2 can be 

b e  V m  

replaced by s , where YJ = Tb, and our sum (43) becomes 
I €  vm 

Each of the m sums in this product is less than p logp (see, e.g., [I1 ; Ch. 
111, 1 lc]) for p 2 60 and so (42) holds with po = 60. 
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