8. If M_1, \ldots, M_n are $n \geq 1$ nonempty subsets of an R-module M, we define

$$M_1 + \dots + M_n = \{m_1 + \dots + m_n \mid m_i \in M_i\}.$$

If M_1, \ldots, M_n are submodules of M prove that $M_1 + \cdots + M_n$ is a submodule of M.

Solution. First, as M_1, \ldots, M_n are submodules of the R-module M, M_1, \ldots, M_n are nonempty subsets of M. Thus

$$M_1 + \cdots + M_n$$
 is a nonempty subset of M . (1)

Secondly, as M_1, \ldots, M_n are submodules of M, we have $0 \in M_i$, $i = 1, 2, \ldots, n$. Thus

$$0 = 0 + \dots + 0 \in M_1 + \dots + M_n. \tag{2}$$

Thirdly, let $m, m' \in M_1 + \cdots + M_n$. Then

$$m = m_1 + \dots + m_n$$
, $m_i \in M_i$, $i = 1, 2, \dots, n$, $m' = m'_1 + \dots + m'_n$, $m'_i \in M_i$, $i = 1, 2, \dots, n$.

Hence

$$m - m' = (m_1 - m'_1) + \dots + (m_n - m'_n).$$

As M_i is a submodule of M, we have $m_i - m_i' \in M_i$, i = 1, 2, ..., n. Thus

$$m - m' \in M_1 + \dots + M_n$$
, for all $m, m' \in M_1 + \dots + M_n$. (3)

Finally let $r \in R$ and $m \in M_1 + \cdots + M_n$. Then

$$m = m_1 + \dots + m_n, \quad m_i \in M_i, \quad i = 1, 2, \dots, n.$$

Hence

$$rm = r(m_1 + \dots + m_n) = rm_1 + \dots + rm_n.$$

As M_i is a submodule of the R-module M_i , we have $rm_i \in M_i$, i = 1, 2, ..., n. Thus

$$rm \in M_1 + \dots + M_n$$
 for all $r \in R$ and all $m \in M_1 + \dots + M_n$. (4)

From (1), (2), (3), (4) and the result of the Question 6, we deduce that $M_1 + \cdots + M_n$ is a submodule of M.

June 22, 2004