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CHAPTER 2, QUESTION 8

8. Prove a modification of Theorem 2.3.1 which allows one of the primes p
and q to be the prime 2.

Solution. We prove
Theorem. Let m be a positive squarefree integer≡ 3 (mod 4). If there

exists an odd prime q such that
(

m

p

)
= −1,

and positive integers t and u such that

2t + qu = m, t ≡ m− 1

2
(mod 4), q - u,

and an integer r such that

r2 ≡ 2t (mod m),

then Z+ Z
√

m is not Euclidean with respect to φm.
Proof. Suppose that Z + Z

√
m is Euclidean with respect to φm. Then

there exist γ, δ ∈ Z+ Z
√

m such that

r
√

m = mγ + δ, φm(δ) < φm(m).

Setting γ = x + y
√

m (x, y ∈ Z) we obtain

φm(r
√

m−m(x + y
√

m)) < φm(m),

that is

|m2x2 −m(r −my)2| < m2,

so that

|mx2 − (r −my)2| < m.

Since

mx2 − (my − r)2 ≡ −r2 ≡ −2t (mod m)
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and

0 < 2t < 2t + qu = m,

we must have

mx2 − (my − r)2 = −2t or m− 2t,

that is

mX2 − Y 2 = −2t or qu

for integers X(= x) and Y (= my−r). Suppose that mX2−Y 2 = 2t. Taking
this equation modulo 4, we obtain

3X2 − Y 2 ≡ 2 (mod 4).

Thus X ≡ Y ≡ 1 (mod 2). Now taking the equation modulo 8, we have

m− 1 ≡ −2t ≡ −(m− 1) (mod 8),

so that m ≡ 1 (mod 4), contradicting m ≡ 3 (mod 4). Now suppose that

mX2−Y 2 = qu. As

(
m

q

)
= −1, we have q - m. Also as q - u we have q||qu.

Hence q - X and q - Y . Thus,

(
m

q

)
=

(
mX2

q

)
=

(
Y 2

q

)
= 1,

contradicting

(
m

q

)
= −1. This proves that Z+Z

√
m is not Euclidean with

respect to φm.

It follows from this theorem that Z+Z
√

43 is not Euclidean with respect
to φ43 by taking m = 43, q = 11, t = 5, u = 3, r = 15.

June 19, 2004


