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Abstract. Let G be a compact group whose local weight b(G)
has uncountable cofinality. Let H be an amenable locally compact
group and A(G ×H) be the Fourier algebra of G ×H. We prove
that the group von Neumann algebra V N(G × H) = A(G × H)∗

has the weak uniform A(G × H)∗∗ factorization property of level
b(G). As a corollary we show that A(G × H) is strongly Arens
irregular, and the topological centre of UC2(G × H)∗ is equal to
the Fourier–Stieltjes algebra B(G×H).

1. Introduction

Let A be a Banach algebra and κ be a cardinal number. Then A∗

is said to have the left A∗∗ factorization property of level κ if for every
bounded family of functionals (hα)α∈I ⊂ A∗ with |I| = κ, there exist
a bounded family (ψα)α∈I in A∗∗ and a single functional h ∈ A∗ such
that the factorization formula hα = ψα ·h holds for all α ∈ I. The first
such factorization result was obtained by the second named author in
[43] for L∞(G) = L1(G)∗, where G is a locally compact non-compact
group, and κ is the compact covering number of G. The existence of
such factorizations can be used in the study of topological centres of
the biduals of Banach algebras, as shown by Neufang [44, 45].

In [1] Arens showed that the product on a Banach algebra A can be
extended in two different ways to its double dual A∗∗. When the two
extended products are identical, A is called Arens regular. This is the
case, for example, if A is a C∗-algebra (or, more generally, an operator
algebra). The left (respectively, right) topological centre of A∗∗ is the
subspace consisting of all m in A∗∗ such that left (respectively, right)
multiplication by m with respect to either product is the same. If the
left (respectively, right) topological centre of A∗∗ is equal to A, then,
following Dales–Lau [5], A is called left (respectively, right) strongly
Arens irregular; if A is both left and right strongly Arens irregular, it
is called strongly Arens irregular. In the case that A is commutative,
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both topological centres coincide with the algebraic centre of A∗∗ (en-
dowed with either Arens product). A complete characterization of the
topological centres is often difficult. For the case of the group alge-
bra L1(G), following earlier works by Civin–Yood [3], Young [50], and
Işik–Pym–Ülger [29], finally in 1988, Lau and Losert [36] showed that
L1(G) is strongly Arens irregular for all locally compact groups. More
information about the results on topological centres of Banach algebras
can be found in [14]. For another new approach leading to the deter-
mination of topological centres including those of L1(G)∗∗, LUC(G)∗

and their corresponding weighted algebras, see Filali–Salmi [12, 13]).
If λ is the left regular representation of G on L2(G) defined by

λ(t)f(x) = f(t−1x), then the Fourier algebra A(G) is the collection of
all functions u(x) = (λ(x)f |g) = g ∗ f̌(x) (x ∈ G), where f, g ∈ L2(G).
The group von Neumann algebra V N(G) ∼= A(G)∗ is the closure in
the weak operator topology of the linear span of {λ(x) : x ∈ G} in
B(L2(G)) (see Eymard [8]). In harmonic analysis, A(G) is considered
the dual object of the group algebra L1(G). Indeed, when G is abelian,

A(G) ∼= L1(Ĝ) via the Fourier transformation. The analogues of many
results on L1(G) have been proved for A(G), which have helped to
better understand the nature of the duality between L1(G) and A(G).
However, unlike the case of L1(G), the characterization of the topo-
logical centre of the bidual of the (commutative) Banach algebra A(G)
has resisted a solution for many years, and is still not complete.

In this paper we show that for any compact group G whose local
weight has uncountable cofinality, and any amenable group H, the
algebra A(G × H) is strongly Arens irregular (Corollary 4.7). As an
implication of our result, we mention the following interesting phenom-
enon: while by a result of Losert [42], A(SU(3)) is not strongly Arens
irregular, the Fourier algebra of a suitable power of SU(3) – for instance
SU(3)ℵ1 – is in fact strongly Arens irregular (cf. [38] for the case of
the power of size ℵ0). The proof of our result relies on the existence
of a ‘weak’ factorization property for the group von Neumann algebra
V N(G×H) which we shall prove in Theorem 4.6. In obtaining our fac-
torization formulae (23) and (36) we have been influenced by the role
of right cancellable points in the study of topological centres of Banach
algebras and semigroup compactifications as shown in Filali–Pym [10]
and Filali–Salmi [11, 12, 13]. In fact, as in the case of right cancellable

points discussed in the above papers, we obtain the terms Cλ
kl and ξ̃λ

kl

in our factorization formulae from some cluster points of a ‘thin set’.
In our case, the thin set consists of coordinate functions of carefully
selected irreducible unitary representations of G.

To put our result on the (topological) centre of A(G)∗∗ in a proper
context, we briefly survey some of the earlier results on the subject.
In 1989, Lau and Wong [39] showed that if G is amenable, then A(G)
is Arens regular if and only if G is finite. Later, Forrest [16] obtained
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an analogous result for large classes of discrete groups. In addition,
he also showed that if G is a locally compact group for which A(G) is
Arens regular and if H is an amenable subgroup of G, then H is finite.
As observed by Forrest, from this result it follows immediately that
A(G) is not Arens regular if G is the Ol’shanskii’s famous example
of a discrete non-amenable group for which every non-trivial proper
subgroup is infinite [46]. In [37, 38] Lau and Losert showed that A(G)
is strongly Arens irregular for large classes of amenable groups which
includes discrete amenable groups, second countable amenable groups
G such that [G,G] is not open in G, and countably infinite product of
second countable locally compact groups Gi, i = 0, 1, 2, . . . where each
Gi is a non-trivial compact group for i > 0. In his survey paper [35]
on how the structures of A(G) and the Fourier–Stieltjes algebra B(G)
relate to the amenability of G, Lau posed a series of open interesting
problems including that of the determination of the centre of A(G)∗∗.
Ten years later, the same question was again asked by Kaniuth and
Lau in their survey article [31], where they presented developments on
how amenability of the Fourier algebra A(G) and the Fourier-Stieltjes
algebra B(G) can be characterized with properties of subalgebras of
A(G) and B(G) and their duals. Recently, Losert [40] has proved that
if G is a discrete group containing Fr (the free group with r generators,
where r ≥ 2 is finite) then A(G) is not strongly Arens irregular. In
2008, Losert announced in his lectures [42] that A(G) is not strongly
Arens irregular whenG is either the compact group SU(3) or the locally
compact group SL(2,R), but A(G) is strongly Arens irregular when G
is the compact group SU(2).

We should also note that the study of topological centres is related to
many other interesting problems arising in abstract harmonic analysis.
For instance, if McbA(G) is the space of completely bounded multi-
pliers of A(G) (or Herz-Schur multipliers) and MbA(G) is the space
of bounded multipliers of A(G), then B(G) ⊆ McbA(G) ⊆ MbA(G)
for any locally compact group, and, as is well known, these spaces are
equal isometrically when G is amenable. In [41], it was shown that
B(G) 6= MbA(G) whenever G is not amenable. Also, in [2], it was
shown that McbA(G) 6= MbA(G) when G is a noncommutative free
group. It was open for quite a long time whether the latter inclusion is
strict when G is not amenable. See for example [6], [47], [32] and [48]
for more details and references related to this problem. However, the
recent techniques leading Losert to the (topological) centre of A(G)∗∗

when G = SL(2,R) enables him also to show that McbA(G) = MbA(G)
in this case [42].

Despite the above progress, it is still not known exactly when A(G)
is strongly Arens irregular. For further results on the centre of A(G)∗∗

see [18, 19, 25, 26, 27, 28].
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In Section 2 we briefly discuss the preliminaries and the notation
used in this paper.

The main result in Section 3 is Theorem 3.11 in which we prove
that if G is a compact group whose local weight b(G) has uncountable
cofinality, then V N(G) has the left weak uniform A(G)∗∗ factoriza-
tion property of level b(G). In Corollary 3.14 we show that for these
groups, the centre of A(G)∗∗ is exactly A(G) (in other words, A(G)
is strongly Arens irregular), and that every left A(G)∗∗ module ho-
momorphism of A(G)∗ is automatically bounded and normal (that is,
w∗-w∗-continuous).

In Section 4, we extend our results in Section 3 to the product group
G × H where G is as above, and H is an arbitrary amenable locally
compact group.

We would like to thank the referee for the valuable comments and
corrections. A large part of this work was done when the first author
was visiting Universities of Carleton and Windsor in September 2007
and March 2008. He would like to express his warm thanks for the
kind hospitality and support.

2. Preliminaries and Notation

For a set S we write |S| to denote the cardinality of S. An ordinal
number α is called an initial ordinal if for each ordinal β such that
|α| = |β|, we have α ≤ β (equivalently, if β < α implies that |β| < |α|).
Let α > 0 be a limit ordinal (that is, α is not a successor ordinal), a
subset A ⊂ α is called cofinal in α if supA = α. The cofinality of α is,
by definition, the least limit ordinal β such that there is an increasing
β-sequence (αξ)ξ<β with limξ→β αξ = α (cf. [30]). Let G be a locally
compact group. We denote by b(G) the local weight of G, i.e., the
smallest cardinality of an open base at the identity element e of G.
If G is non-metrizable, then b(G) > ℵ0 by Hewitt–Ross [20, Theorem
8.7].

Let f be a function on G and t ∈ G. Then the left and right
translations of f by t are denoted by tf and ft and are defined by

tf(x) = f(tx) and ft(x) = f(xt) (x ∈ G). The function f̌ on G is
defined by f̌(x) = f(x−1).

Let V be a (continuous) unitary representation of G on a Hilbert
space H. If (ei)i∈I is an orthonormal basis of H, then the continu-
ous functions vij(x) = (V (x)ej|ei) (x ∈ G) are called the coordinate
functions of V with respect to (ei)i∈I . We denote the conjugate (con-
tragredient) representation of V by V . If V = (vij) in an orthonormal
basis of H, then we have V = (vij) in the same basis. If V1 and
V2 are two unitary representations of G, we denote by V1 ⊗ V2 the
tensor product of V1 and V2 defined by V1 ⊗ V2(x) = V1(x) ⊗ V2(x)
(x ∈ G). Note that V1 ⊗ V2 is a unitary representation of G, but in
general V1 ⊗ V2 is not irreducible, even if V1 and V2 are. Let G0 be



WEAK FACTORIZATIONS AND APPLICATIONS 5

a closed subgroup of G, and let V0 be a unitary representation of G0

on a Hilbert space H0. We say that V is a unitary extension of V0 if
H0 is a closed subspace of H, and V (x)ξ = V0(x)ξ for all x ∈ G0 and
ξ ∈ H0. If G is a compact group, then any unitary representation V0

of G0 has a unitary extension to G; moreover, the extension can be
chosen to be irreducible if V0 is irreducible (cf. [21, Theorem 27.46]).
Let Vγ : G −→ B(Hγ) (γ ∈ Γ) be a family of unitary representations
of G, and let V = ⊕γVγ : G −→ B(⊕γHγ) be their direct sum. We
say that a unitary representation W of G is contained in V (or is a

summand of V ) if W is equivalent to Vγ for some γ ∈ Γ. We let Ĝ be
the set of all equivalent classes of irreducible unitary representations of
G.

Let A be a Banach algebra and E be a Banach A-bimodule. Then
E∗ is a Banach A-bimodule by the module actions defined by

〈a · f, x〉 = 〈f, x · a〉, 〈f · a, x〉 = 〈f, a · x〉 (a ∈ A, x ∈ E, f ∈ E∗).

In particular both A∗ and A∗∗ are Banach A-bimodules. The space A∗∗

is a Banach algebra under both the first 2 and the second 3 Arens
products defined by (a ∈ A, f ∈ A∗,Φ,Ψ ∈ A∗∗):

〈Φ2Ψ, f〉 = 〈Φ,Ψ · f〉, 〈Φ3Ψ, f〉 = 〈Ψ, f · Φ〉,
〈Ψ · f, a〉 = 〈Ψ, f · a〉, 〈f · Φ, a〉 = 〈Φ, a · f〉.

A Banach algebra A is called Arens regular if 2 and 3 coincide on A∗∗.
The left topological centre of A∗∗ is defined by

Z
(l)
t (A∗∗) = {Φ ∈ A∗∗ : Φ2Ψ = Φ3Ψ for all Ψ ∈ A∗∗}.

A Banach algebra is called left strongly Arens irregular if Z
(l)
t (A∗∗) = A

(cf. [5]). The right topological centre of A∗∗ is defined similarly. When
A is commutative, the left and right topological centres both coincide
with the algebraic centre of A∗∗ (with respect to either of the products).

Let A be a Banach algebra and X = Span
‖·‖
A∗ · A. Then A∗ is a

left Banach X∗-module with the action

〈ξ � f, a〉 = 〈ξ, f · a〉 (ξ ∈ X∗, f ∈ A∗, a ∈ A).

Moreover it is easily verified that ξ � f = ξ̃ · f , where ξ̃ is any Hahn-
Banach extension of ξ to a continuous linear functional on A∗.

For the definition of introverted subspaces of A∗ and the topological
centres of their duals we refer to Işik–Pym–Ülger [29] or Lau–Dales

[5]. The space X = Span
‖·‖
A∗ · A is a left introverted subspace of

A∗ and X∗ = (A∗∗,2)/X◦ is a quotient algebra of (A∗∗,2). We de-
note the quotient product on X∗ by 2. In this paper we shall also
consider the special case where A = A(G), A∗ = V N(G), and X =

UC2(G) = Span
‖·‖
V N(G) · A(G) = V N(G) · A(G)

‖·‖
(see [37, p. 4]).

The C∗-algebra UC2(G) can be identified with the algebra of bounded
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uniformly continuous functions UC(Ĝ) ifG is abelian. IfG is amenable,
then by the Cohen’s factorization theorem, UC2(G) = V N(G) · A(G).
For more information on these spaces see Lau [33, 34].

For detailed properties of the Fourier algebra A(G) and the Fourier–
Stieltjes algebra B(G) we refer to [8]. For our purposes, we recall that
if T ∈ V N(G) and u = g ∗ f̌ ∈ A(G) where f, g ∈ L2(G), then 〈T, u〉 =
(Tf |g). The function Tu ∈ A(G) is defined by Tu(x) = 〈T, x−1ǔ〉 for
each x ∈ G.

3. A Factorization Theorem for V N(G)

Throughout this paper (unless otherwise stated) we shall assume
that G is a compact group whose local weight b(G) has uncountable
cofinality. For example, if H is a non-trivial compact group and m
is a cardinal with uncountable cofinality, then the product group Hm

satisfies our requirements; another example is the semidirect product
G = Tm nDn, where T is the circle group and Dn is the dihedral group
(whose rotations and reflections are automorphisms of the circle group).
It is known that every compact, non-metrizable group contains a de-
creasing family (Nα) of closed normal subgroups such that ∩αNα = {e}
(see Lemma 3.1). The assumption that b(G) has uncountable cofinality
allows us to show the existence of ‘sufficiently many’ irreducible uni-
tary representations of fixed dimension over the subgroups Nα (Lemma
3.3). We shall use the cluster points Cλ

kl of the coordinate functions of
these representations to obtain our factorization formula (23).

The following result (which we shall need in this section) is due to
Hu [24, Proposition 4.3] which itself is a stronger version of an earlier
result of Lau–Losert [37, Lemma 4.8]. Since there will be no fear of
confusion, in what follows, we shall use b(G) to denote also the initial
ordinal µ such that |µ| = b(G).

Lemma 3.1. Let G be a σ-compact, non-metrizable, locally compact
group with unit element e. Let {Oα : 0 ≤ α < b(G)} be an open base
at e. Then there exists a decreasing family (Nα)0≤α≤b(G) of normal
subgroups of G (that is, Nβ ⊂ Nα whenever α ≤ β) such that

(i) N0 = G and Nb(G) = {e},
(ii) Nα+1 ⊂ Nα ∩Oα for all 0 ≤ α < b(G),
(iii) Nα is compact for each α > 0,
(iv) Nα/Nα+1 is metrizable but Nα+1 6= Nα for all α < b(G);
(v) Nγ = ∩α<γNα for every limit ordinal γ < b(G);
(vi) b(Nα) = b(G) for all 0 ≤ α < b(G).

For each α > 0, let λα be the normalized Haar measure on Nα. As in
[37, 24] we consider the family (Pα)0≤α<b(G) of orthogonal projections
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in V N(G), where P0 = 0 and Pα is defined by

Pα : L2(G) −→ L2(G), (Pαf)(x) =

∫
Nα

f(t−1x)dλα(t) (a.e.). (1)

If f is continuous, then so is Pαf , and we may assume (1) holds for all
x ∈ G. It is easy to verify that (Pα)α is an increasing family of central
orthogonal projections in V N(G), that is, PαPβ = PβPα = Pα for all
0 ≤ α ≤ β < b(G).

Lemma 3.2. Let G be a compact, non-metrizable group. Let u ∈ A(G)
and u · Pα ∈ V N(G) be defined by the usual module action of A(G) on
its dual V N(G). Then, for all f ∈ L2(G),

(u · Pα)f(x) =

∫
Nα

u(t)f(t−1x) dλα(t) (a.e.). (2)

Proof. Let f, g ∈ L2(G), then

〈(u · Pα)f |g〉 = 〈Pα, (g ∗ f̌)u〉 = Pα((g ∗ f̌)u)̌(e),

thus by (1), we can write

((u · Pα)f |g) =

∫
Nα

u(t)(g ∗ f̌)(t)dλα(t)

=

∫
Nα

∫
G

u(t)g(y)f̌(y−1t) dy dλα(t)

=

∫
G

g(y)

∫
Nα

u(t)f(t−1y) dλα(t) dy = (F |g),

where F ∈ L2(G) is defined (a.e.) by

F (x) =

∫
Nα

u(t)f(t−1x) dλα(t).

Therefore (u · Pα)f = F . �

For each α < b(G), let N̂α be the set of all equivalence classes of
irreducible unitary representations of Nα. Since for each α < b(G), Nα

is compact, representations in N̂α are all finite-dimensional. We note
that ∣∣∣N̂α

∣∣∣ = b(Nα) = b(G)

by Hewitt–Ross [21, Theorem 28.2 and Remark 28.58(b)]. Let Ĝ =
{Vγ : γ < b(G)}, with V0 the trivial one-dimensional representation
defined by V0(t) = 1 (t ∈ G). For every 0 < α < b(G), we define

Ĝα = {Vγ ∈ Ĝ : 0 ≤ γ < α}.

Let {Ũα}α<b(G) be a family of irreducible unitary representations of
G. For each β < b(G) and γ < b(G), the finite-dimensional repre-

sentation (Vγ ⊗ Ũβ)
∣∣
Nβ

can be decomposed (in a unique way up to
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equivalence) into a finite direct sum of irreducible unitary representa-
tions of Nβ (cf. Folland [15, Theorem 5.2]). We denote by Pγ,β the set
consisting of representations appearing in such a decomposition. Sim-
ilarly, when restricted to Nα (α > β), every representation in Pγ,β can
be written as a finite direct sum of irreducible unitary representations
of Nα. Let Rα

γ,β consists of all irreducible unitary representations of
Nα appearing in such a decomposition of members of Pγ,β.

Lemma 3.3. Let G be a compact group such that b(G) has uncountable
cofinality. Then there exist two families of irreducible unitary represen-

tations {Uα}α<b(G), {Ũα}α<b(G), and there exist n, n′ ∈ N such that for
each α < b(G) we have

(i) Uα ∈ N̂α and Ũα ∈ Ĝ;

(ii) Ũα is an extension of Uα;
(iii) Uα 6∈

⋃
β,γ<αRα

γ,β;

(iv) dimUα = n and dim Ũα = n′ for α > 0.

Proof. Let U0 = Ũ0 = V0 be the trivial one-dimensional representation

of G. Let α < b(G) and suppose that Uβ and Ũβ are chosen for every
β < α. Then ∣∣∣∣∣ ⋃

β,γ<α

Rα
γ,β

∣∣∣∣∣ ≤ ℵ0 · |α|2 < b(G) = |N̂α|.

Using transfinite induction, we can choose a representation Uα ∈ N̂α

such that
Uα 6∈

⋃
β,γ<α

Rα
γ,β. (3)

By Hewitt–Ross [21, Theorem 27.46] we can extend Uα to an irreducible

unitary representation of G, which we denote by Ũα.
Since each Uα has finite dimension, if we define Em = {α : dimUα =

m}, then ∪∞m=1Em = {α : α < b(G)}. It follows from our assumptions
that for at least one m, say m = n, En has cardinality b(G) (cf. Jech
[30, Lemma 3.6]). Thus by replacing the family of subgroups {Nα} (0 <
α < b(G)) and its associated family of representation {Uα} with those
that are indexed by the set En, we obtain a family of irreducible unitary
representations, which for simplicity we still denote by (Uα)α<b(G), such
that dimUα = n for all α < b(G). Having fixed the dimensions of the

representations Uα, we can repeat this argument for the family {Ũα},
and therefore, we may assume as well that dim Ũα = n′, where n′ ≥ n
is a fixed positive integer. �

Representations Uα and Ũα of dimensions independent of α play an
important role in our factorization Theorem 3.11. In the case that
cofinality of b(G) is countable, the situation seems more complicated,
since in this case we have been unable to fix the dimensions of the
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representations. In fact, the only case so far known is the special case
of a countable product G = G0 ×

∏∞
i=1Gi where each Gi is a compact

nontrivial group for i ≥ 1, dealt with in Lau–Losert [38], in which case
there exits a countable filtration {Nk}, where Nk =

∏∞
i=k Gi.

We shall writeHα and H̃α for the representation spaces of Uα and Ũα,

respectively. If {e1, . . . , en′} is an orthonormal basis for H̃α, we shall
always assume that {e1, . . . , en} form a basis for the subspace Hα. In

such an orthonormal basis, we can write Ũα = (ũα
ij)1≤i,j≤n′ , where ũα

ij

are the coordinate functions of Ũα. Similarly, we write Uα = (uα
ij)1≤i,j≤n

and more generally V = (vp′q′)1≤p′,q′≤dim Vγ if V ∈ Ĝ.
To avoid unnecessary constants in the statements of our results, we

substitute each representation Ũα with the representation nŨα (where
n is the fixed dimension of the representations Uα). For simplicity, we
shall continue to denote these ‘normalized’ representations and their

coordinate functions by Ũα and ũα
ij. We remark that since Ũα is a

unitary extension of Uα, if t ∈ Nα, then Ũα(t) = (ũα
kl(t)) is a block

matrix, whose upper left corner is the n×n matrix (nuα
ij(t)) and in its

lower left and upper right corners have zero entries:

Ũα(t) =



nuα
11(t) · · · nuα

1n(t) 0 · · · 0
...

...
...

...
nuα

n1(t) · · · nuα
nn(t) 0 · · · 0

0 · · · 0 ũα
n(n+1)(t) · · · ũα

nn′(t)
...

...
...

...
0 · · · 0 ũα

n′(n+1)(t) · · · ũα
n′n′(t)


n′×n′

.

(4)
We note that since G is compact, we have ũα

kl ∈ A(G) for all α < b(G)
and all k, l ∈ {1, 2, . . . , n′}. In addition, by Eymard [8, Lemma 2.14],
the family of coordinate functions ũα

kl is bounded, in fact

‖ũα
kl‖A(G) = n‖(Ũα(·)el|ek)‖A(G) ≤ n‖el‖‖ek‖ = n.

Lemma 3.4. Let G be a compact group such that b(G) has uncountable

cofinality. Let V ∈ Ĝ be arbitrary and let V be the conjugate repre-

sentation of V . Let α be large enough so that V, V ∈ Ĝα. If β 6= α,
1 ≤ i, k ≤ n′, 1 ≤ j, l ≤ n and 1 ≤ p′, q′ ≤ dimV , then∫

Nβ

ũα
ij(t)ũ

β

kl(t)vp′q′(t) dλβ(t) = 0. (5)

Proof. First we assume that α > β and therefore Nα ⊂ Nβ. Note that

ũβ
klvp′q′ is a coordinate function of V ⊗ Ũβ. Let

Ũα

∣∣
Nβ

= W1 ⊕ · · · ⊕Ws, (6)

(V ⊗ Ũβ)
∣∣
Nβ

= R1 ⊕ · · · ⊕Rs′ , (7)
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be the decompositions of Ũα

∣∣
Nβ

and (V ⊗ Ũβ)
∣∣
Nβ

into direct sums of
irreducible unitary representations of Nβ. Let {eij : 1 ≤ i ≤ s, 1 ≤ j ≤
ni} be an orthonormal basis for H̃α corresponding to the decomposition

(6). Let Ei = Span {eij : 1 ≤ j ≤ ni}. Since Hα ⊂ H̃α and Hα ∩ Ei is
invariant under Uα, it follows from the irreducibility of Uα that either
Hα ∩ Ei = {0} or Hα ⊂ Ei. Hence, without loss of generality, we may
assume that Hα ⊂ E1. By a similar argument, we may assume that
Uα is contained in W1|Nα , in fact, if W1|Nα = W11 ⊕ · · · ⊕W1q is the
decomposition of W1|Nα into irreducible components, with F1, . . . , Fq

the corresponding subspaces of E1, then each Hα ∩ Fj is an invariant
subspace of Hα under W1(t) = Uα(t) for t ∈ Nα. Hence the irreducibil-
ity of Uα implies that either Hα ∩ Fj = {0} or else Hα = Fj. Since Hα

cannot have trivial intersection with all the Fj, we must Hα = Fj and
hence Uα = W1j for some j.

For 1 ≤ i ≤ n′, 1 ≤ j ≤ n, and t ∈ Nβ we have

ũα
ij(t) = (Ũα(t)ej|ei) = (Ũα(t)(

n1∑
p=1

ξj
pe1p)|

s∑
r=1

nr∑
q=1

ξi
rqerq)

=

n1∑
p=1

s∑
r=1

nr∑
q=1

ξj
pξ

i
rq(Ũα(t)e1p|erq)

(by (6)) =

n1∑
p=1

n1∑
q=1

ξj
pξ

i
1q(Ũα(t)e1p|e1q)

=

n1∑
p=1

n1∑
q=1

ξj
pξ

i
1q(W1(t)e1p|e1q), (8)

since by (6), (Ũα(t)e1p|erq) = 0 for r ≥ 2, and Ũα(t)|E1 = W1(t) when
t ∈ Nβ.

On Nβ the functions ũβ
klvp′q′ are linear combinations of coordinate

functions of the representations Rr (r = 1, . . . , s′). However Rr � W1

for every r, since by our assumptions Uα 6∈
⋃

β,γ<αRα
γ,β. Thus each

ũβ
klvp′q′ is a linear combination of coordinate functions of irreducible

unitary representations of Nβ none of which are equivalent to W1. Thus
by (8) and by the orthogonality relations in Hewitt–Ross [21, Theorem
27.19], the equation (5) holds.

It remains to assume that β > α. In this case Nβ ⊂ Nα. We choose
γ so that V = Vγ. Then by the choice of Uβ, we have Uβ 6∈ Rβ

γ,α.
The functions ũα

ijvp′q′ are coordinate functions of the representation

V ⊗ Ũα, which on Nβ breaks into a direct sum of irreducible unitary
representations, all in Rβ

γ,α. Thus on Nβ, the functions ũα
ijvp′q′ are

linear combinations of the coordinate functions of representations in
Rβ

γ,α. These latter functions are orthogonal to ũβ
kl on Nβ (since for
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1 ≤ l ≤ n we have ũβ
kl = 0 on Nβ if k > n, and moreover ũβ

kl = nuβ
kl if

1 ≤ k ≤ n), and therefore so are the functions ũα
ijvp′q′ . Hence

0 =

∫
Nβ

ũβ
kl(t)ũ

α
ij(t)vp′q′(t) dλβ(t) =

∫
Nβ

ũα
ij(t)ũ

β

kl(t)vp′q′(t) dλβ(t),

which completes the proof of the lemma. �

Lemma 3.5. If 1 ≤ i, j, k ≤ n and 1 ≤ l ≤ n′, then

(ũα
ij · Pα)(ũβ

kl · Pβ) = δαβ δjk (ũα
il · Pα). (9)

Proof. It suffices to show that the actions of both sides of (9) on an
arbitrary element f ∈ L2(G) are the same.

If l > n, then by Lemma 3.2, and the fact that for 1 ≤ i, k ≤ n,
ũα

il(t) = 0 (t ∈ Nα) and ũβ
kl(s) = 0 (s ∈ Nβ) (see (4)), it follows that

the action of both sides of (9) on f will be equal to 0 and our claim
follows immediately.

If remains to consider the case that 1 ≤ l ≤ n. Let α ≤ β, then
Nβ ⊂ Nα. By Lemma 3.2, we have

((ũα
ij · Pα)(ũβ

kl · Pβ)f)(x) = (ũα
ij · Pα)((ũβ

kl · Pβ)f)(x)

=

∫
Nα

ũα
ij(t)[(ũ

β
kl · Pβ)f ](t−1x) dλα(t)

=

∫
Nα

ũα
ij(t)

∫
Nβ

ũβ
kl(s)f(s−1t−1x) dλβ(s) dλα(t)

=

∫
Nα

nuα
ij(t)

∫
Nβ

nuβ
kl(s)f(s−1t−1x) dλβ(s) dλα(t)

= n2

∫
Nβ

∫
Nα

uα
ij(t)u

β
kl(s)f(s−1t−1x) dλα(t) dλβ(s)

= n2

∫
Nβ

∫
Nα

uα
ij(ys

−1)uβ
kl(s)f(y−1x) dλα(y) dλβ(s),

where the fourth equality was obtained since for 1 ≤ i, j, k, l ≤ n we
have ũα

ij(t) = nuα
ij(t) if t ∈ Nα, and ũβ

kl(s) = nuβ
kl(s) if s ∈ Nβ; the

last equality was obtained by the change of variable t = ys−1 in Nα.
However,

uα
ij(ys

−1) =
(
Uα(ys−1)ej|ei

)
= (Uα(s)∗ej|Uα(y)∗ei) =

n∑
r=1

uα
jr(s)u

α
ir(y).

Therefore,

((ũα
ij · Pα)(ũβ

kl · Pβ)f)(x)

= n2

n∑
r=1

(∫
Nβ

uα
jr(s)u

β
kl(s)dλβ(s)

)(∫
Nα

uα
ir(y)f(y−1x) dλα(y)

)
.
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By Lemma 3.4 (in which we take V to be the trivial one-dimensional
representation V0) and by the orthogonality relations in Hewitt–Ross
[21, Theorems 27.19] we have∫

Nβ

uα
jr(s)u

β
kl(s)dλβ(s) =

1

n2

∫
Nβ

ũ
α

jr(s)ũ
β
kl(s)dλβ(s) =

1

n
δαβδjkδrl.

Thus,

((ũα
ij · Pα)(ũβ

kl · Pβ)f)(x) = nδαβδjk

∫
Nα

uα
il(y)f(y−1x) dλα(y)

= δαβδjk

∫
Nα

ũα
il(y)f(y−1x) dλα(y)

= δαβδjk(ũ
α
il · Pα)f(x).

It follows that (ũα
ij · Pα)(ũβ

kl · Pβ) = δαβδjk(ũ
α
il · Pα).

The argument for the case that β < α is similar. �

Lemma 3.6. For every α < b(G) and 1 ≤ k, l ≤ n, (ũα
kl ·Pα)∗ = ũα

lk ·Pα.
In particular, ũα

kk · Pα is an orthogonal projection.

Proof. If f, g ∈ L2(G) are arbitrary, then using Lemma 3.2 we have

((ũα
kl · Pα)f |g) =

∫
G

g(x)((ũα
kl · Pα)f)(x) dx

=

∫
G

g(x)

∫
Nα

ũα
kl(t)f(t−1x) dλα(t) dx.

Changing the order of the integrations and making the substitution
x→ tx, we have

((ũα
kl · Pα)f |g) =

∫
Nα

ũα
kl(t)

∫
G

g(tx)f(x) dx dλα(t)

=

∫
G

f(x)

∫
Nα

ũα
kl(t

−1)g(t−1x) dλα(t) dx

=

∫
G

f(x)

∫
Nα

ũα
lk(t)g(t

−1x) dλα(t) dx

=

∫
G

f(x)((ũα
lk · Pα)g)(x) dx

= (f |(ũα
lk · Pα)g) .

Therefore, (ũα
kl · Pα)∗ = ũα

lk · Pα. Moreover, by Lemma 3.5, we have

(ũα
kk · Pα)2 = ũα

kk · Pα.
�

In preparation for our next lemma, we note that if X is a Banach
space and if

∑
ϕ∈I ϕα is a w∗-unconditionally convergent series in X∗

(that is,
∑

α∈I |〈ϕα, x〉| <∞ for all x ∈ X) whose partial sums are uni-
formly norm-bounded, then these partial sums form a w∗-Cauchy net
in X∗, and so the series is w∗-convergent in X∗ by Alaoglu’s theorem.
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Lemma 3.7. Let M ⊂ B(H) be a von Neumann algebra. Consider
a bounded family (Tα)α∈I of elements in M such that for all α ∈ I,
‖Tα‖ ≤ r (for some r > 0), and let (Pα)α∈I and (Qα)α∈I be two families
of orthogonal projections in M such that

PαPβ = QαQβ = 0, if α 6= β.

Then the w∗-limit ∑
α∈I

PαTαQα

exists in M, and defines a w∗-unconditionally convergent series. More-
over, the norm of the sum does not exceed r.

Proof. Fix ξ, η ∈ H. Then we have

∑
α∈I

|(PαTαQαξ|η)| =
∑
α∈I

|(TαQαξ|Pαη)|

≤ r
∑
α∈I

‖Qαξ‖‖Pαη‖

≤ r

(∑
α∈I

‖Qαξ‖2

) 1
2
(∑

α∈I

‖Pαη‖2

) 1
2

≤ r‖ξ‖‖η‖, (10)

where the last line follows of course from Bessel’s inequality. In partic-
ular, this entails that the partial sums

∑
α∈F PαTαQα, where F ⊂ I is

finite, are uniformly norm-bounded.
Now consider an arbitrary element ρ ∈ B(H)∗ = T (H) = H ⊗γ H

(the latter denotes the projective Banach space tensor product). We
have a series expansion ρ =

∑∞
i=1 ξi⊗ηi, where for all i ∈ N, ξi, ηi ∈ H,

and
∑∞

i=1 ‖ξi‖‖ηi‖ <∞. We note, thanks to this last property and the
estimation (10), for every finite subset F in I, the limit

∞∑
i=1

∑
α∈F

|〈PαTαQα, ξi ⊗ ηi〉|

exists uniformly on P(I)fin (that is, the collection of all finite subsets
of I). Hence by the classical theorem on the interchange of limits, we



14 M. FILALI, M. NEUFANG, AND M. SANGANI MONFARED

finally get ∑
α∈I

|〈PαTαQα, ρ〉| =
∑
α∈I

|〈PαTαQα,

∞∑
i=1

ξi ⊗ ηi〉|

≤
∑
α∈I

∞∑
i=1

|〈PαTαQα, ξi ⊗ ηi〉|

=
∞∑
i=1

∑
α∈I

|〈PαTαQα, ξi ⊗ ηi〉|

(10)

≤ r
∞∑
i=1

‖ξi‖‖ηi‖

<∞.

This shows that the sum
∑

α∈I PαTαPα is w∗-unconditionally conver-
gent in B(H). We deduce the asserted w∗-convergence of the sum in
B(H), and hence in M. Finally, due to inequality (10), the norm of
the sum is at most r. �

Lemma 3.8. For each Q ∈ V N(G), 1 ≤ k, l ≤ n, and 1 ≤ r ≤ n′, the
sum

Pklr =
1

n6

∑
β<b(G)

(ũβ
kr · Pβ)(ũβ

r1 ·Q)(ũβ
1l · Pβ) (11)

is w∗-convergent in V N(G).

Proof. By Lemma 3.5,

ũβ
kr · Pβ = (ũβ

kk · Pβ)(ũβ
kr · Pβ),

ũβ
1l · Pβ = (ũβ

1l · Pβ)(ũβ
ll · Pβ).

If we define Tβ = (ũβ
kr · Pβ)(ũβ

r1 ·Q)(ũβ
1l · Pβ), then

Pklr =
1

n6

∑
β<b(G)

(ũβ
kk · Pβ)Tβ(ũβ

ll · Pβ).

By Lemma 3.6, ũβ
kk ·Pβ and ũβ

ll·Pβ are orthogonal projections in V N(G).
Clearly, Tβ ∈ V N(G) and ‖Tβ‖ ≤ n3‖Q‖ for all β < b(G), since
‖Pβ‖ ≤ 1 and ‖ũβ

pq‖ ≤ n for 1 ≤ p, q ≤ n′ (see Eymard [8, Lemma 2.14]
and our discussion preceding Lemma 3.4). The convergence of the sum
in w∗-topology now follows from Lemma 3.7. �

Using (11), for each 1 ≤ k, l ≤ n, we define

Pkl =
n′∑

r=1

Pklr. (12)

Now we are ready to prove our first factorization theorem.



WEAK FACTORIZATIONS AND APPLICATIONS 15

Theorem 3.9. Let G be a compact group such that b(G) has uncount-
able cofinality. For each 1 ≤ k, l ≤ n, let Ckl be a cluster point of the
net (ũ

α

kl)α<b(G) in A(G)∗∗. Then, for every Q ∈ V N(G), we have

Q =
n∑

k=1

n∑
l=1

Ckl · Pkl. (13)

Proof. To prove the theorem we show that the actions of both sides of
(13) on an arbitrary element v of A(G) are equal. Since G is compact,
an arbitrary element of A(G) is a finite linear combination of coordinate
functions of irreducible unitary representations of G. So it suffices to
assume that

v(s) = vij(s) = (Vγ(s)ej|ei) (s ∈ G), (14)

where Vγ ∈ Ĝ, dimVγ = d, and {e1, . . . , ed} is the standard orthonor-
mal basis of Cd.

Without loss of generality we can assume that ũ
α

kl → Ckl in the
w∗-topology; hence by Eymard [8, Proposition 3.17] we can write

〈Ckl · Pklr, vij〉 = 〈Ckl, Pklr · vij〉

=
1

n6
lim

α
〈
∑

β<b(G)

(ũβ
kr · Pβ)(ũβ

r1 ·Q)(ũβ
1l · Pβ), vijũ

α

kl〉 (15)

=
1

n6
lim

α

∑
β<b(G)

[{
(ũβ

kr · Pβ)(ũβ
r1 ·Q)(ũβ

1l · Pβ)
}

(vijũ
α

kl)̌
]
(e)

=
1

n6
lim

α

∑
β<b(G)

[
(ũβ

kr · Pβ)
{

(ũβ
r1 ·Q)(ũβ

1l · Pβ)(vijũ
α

kl)̌
}]

(e)

=
1

n6
lim

α

∑
β<b(G)

∫
Nβ

ũβ
kr(t)

{
(ũβ

r1 ·Q)(ũβ
1l · Pβ)(vijũ

α

kl)̌
}

(t−1) dλβ(t)

=
1

n6
lim

α

∑
β<b(G)

∫
Nβ

ũβ
kr(t)〈ũ

β
r1 ·Q, t[{(ũβ

1l · Pβ)(vijũ
α

kl)̌}̌]〉 dλβ(t), (16)

where to obtain the fifth equation we have used Lemma 3.2. On the
other hand, for every s ∈ G we have

t[{(ũβ
1l · Pβ)(vijũ

α

kl)̌}̌](s) = {(ũβ
1l · Pβ)(vijũ

α

kl)̌}(s−1t−1)

=

∫
Nβ

ũβ
1l(x)(vijũ

α

kl)̌(x
−1s−1t−1) dλβ(x)

=

∫
Nβ

ũβ
1l(x)(vijũ

α

kl)(tsx) dλβ(x)

=

∫
Nβ

ũβ
1l(x) t(vijũ

α

kl)x(s) dλβ(x). (17)
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In turn, writing Ũα = (ũα
lk)1≤l,k≤n′ and using (14),

t(vijũ
α

kl)x =
d∑

p=1

n′∑
q=1

d∑
p′=1

n′∑
q′=1

ũ
α

kq(t)ũ
α

qq′ũ
α

q′l(x)vip(t)vpp′vp′j(x). (18)

Accordingly, by (17) and (18)

t[{(ũβ
1l · Pβ)(vijũ

α

kl)̌}̌](s) =

d∑
p=1

n′∑
q=1

d∑
p′=1

n′∑
q′=1

ũ
α

kq(t)ũ
α

qq′(s)vip(t)vpp′(s)

∫
Nβ

ũβ
1l(x)ũ

α

q′l(x)vp′j(x) dλβ(x).

Therefore, by (16) and Lemma 3.4 we have

〈Ckl · Pklr, vij〉 =
1

n6
lim

α

d∑
p=1

n′∑
q=1

d∑
p′=1

n′∑
q′=1

∑
β<b(G)

〈ũβ
r1 ·Q, ũ

α

qq′vpp′〉∫
Nβ

ũβ
kr(t)ũ

α

kq(t)vip(t) dλβ(t)

∫
Nβ

ũβ
1l(x)ũ

α

q′l(x)vp′j(x) dλβ(x)

=
1

n6
lim

α

d∑
p=1

n∑
q=1

d∑
p′=1

n∑
q′=1

〈ũα
r1 ·Q, ũ

α

qq′vpp′〉∫
Nα

ũα
kr(t)ũ

α

kq(t)vip(t) dλα(t)

∫
Nα

ũα
1l(x)ũ

α

q′l(x)vp′j(x) dλα(x), (19)

in the last equation the summations over q and q′ were carried up to n
since by (4), ũ

α

kq(t) = ũ
α

q′l(x) = 0 if t, x ∈ Nα, and q, q′ > n. Hence

n∑
k=1

n∑
l=1

〈Ckl · Pklr, vij〉 =

1

n6
lim

α

d∑
p=1

n∑
q=1

d∑
p′=1

n∑
q′=1

∫
Nα

n∑
k=1

ũα
kr(t)ũ

α

kq(t)vip(t) dλα(t)〈ũα
r1 ·Q, ũ

α

qq′vpp′〉

∫
Nα

n∑
l=1

ũα
1l(x)ũ

α

q′l(x)vp′j(x) dλα(x)

=
1

n6
lim

α

d∑
p=1

n∑
q=1

d∑
p′=1

n∑
q′=1

∫
Nα

n2δrqvip(t) dλα(t)〈ũα
r1 ·Q, ũ

α

qq′vpp′〉∫
Nα

n2δ1q′vp′j(x) dλα(x)

=
1

n2
lim

α

d∑
p=1

d∑
p′=1

∫
Nα

vip(t) dλα(t)〈Q, ũα
r1ũ

α

r1vpp′〉
∫

Nα

vp′j(x) dλα(x).

(20)
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Finally, summing over r leads to

n′∑
r=1

n∑
k=1

n∑
l=1

〈Ckl · Pklr, vij〉

=
1

n2
lim

α

d∑
p=1

d∑
p′=1

∫
Nα

vip(t) dλα(t)〈Q,
n′∑

r=1

ũα
r1ũ

α

r1vpp′〉
∫

Nα

vp′j(x) dλα(x),

=
1

n2
lim

α

d∑
p=1

d∑
p′=1

∫
Nα

vip(t) dλα(t)〈Q,n2vpp′〉
∫

Nα

vp′j(x) dλα(x),

= lim
α

d∑
p=1

d∑
p′=1

∫
Nα

vip(t) dλα(t)〈Q, vpp′〉
∫

Nα

vp′j(x) dλα(x), (21)

=
d∑

p=1

d∑
p′=1

vip(e)〈Q, vpp′〉vp′j(e)

= 〈Q, vij〉. (22)

Thus,

Q =
n′∑

r=1

n∑
k=1

n∑
l=1

Ckl · Pklr =
n∑

k=1

n∑
l=1

Ckl · Pkl.

�

The following definition generalizes the concept of factorization prop-
erty of level κ introduced by Neufang in [45].

Definition 3.10. Let A be a Banach algebra, and let κ be a cardinal
number. We say that A∗ has the weak left A∗∗ factorization property
of level κ [property (WFκ)] if for each family of functionals {hα : α ∈
I} ⊂ Ball(A∗) with |I| = κ, there exists a family {Ψi

α : α ∈ I, i =
1, . . . ,m} ⊂ Ball(A∗∗) and a family of functionals {hi : i = 1, . . . ,m}
in A∗ such that

hα =
m∑

i=1

Ψi
α · hi (α ∈ I).

If Ψi
α can be chosen independent of hα, then we say that A∗ has

the weak left uniform A∗∗ factorization property of level κ [property
(WUFκ)].

Theorem 3.11. Let G be a compact group such that b(G) has uncount-
able cofinality. Then A(G)∗ = V N(G) has property (WUFb(G)). In
other words, there exists a family {Cλ

kl : λ < b(G), 1 ≤ k, l ≤ n} of func-
tionals in A(G)∗∗ such that for every bounded family {Qλ : λ < b(G)}
of operators in V N(G), there exists a family of operators {P̂kl : 1 ≤
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k, l ≤ n} in V N(G) with

Qλ =
n∑

k=1

n∑
l=1

Cλ
kl · P̂kl (λ < b(G)). (23)

Proof. We partition b(G) into b(G) subsets Iλ such that each Iλ is
cofinal in b(G) (see [49, Lemma, p. 61]). To avoid confusion, we use
λ, γ, . . . to index the sets Iλ partitioning b(G), and we write α ∈ Iλ,
β ∈ Iγ, . . . , for elements of these sets. Note that the cofinality of Iλ
ensures that ∩{Nα : α ∈ Iλ} = {e} (this is crucial in the proof of
Theorem 3.9). For each λ < b(G) and each 1 ≤ k, l ≤ n, let Cλ

kl be a
cluster point of {ũα

kl : α ∈ Iλ} in A(G)∗∗. As in Lemma 3.8 we define:

P γ
klr =

1

n6

∑
β∈Iγ

(ũβ
kr · Pβ)(ũβ

r1 ·Qγ)(ũ
β
1l · Pβ)

=
1

n6

∑
β∈Iγ

(ũβ
kk · Pβ)T β

γ (ũβ
ll · Pβ) (w∗-limits), (24)

where
T β

γ = (ũβ
kr · Pβ)(ũβ

r1 ·Qγ)(ũ
β
1l · Pβ).

Thus each P γ
klr is defined so that if we set P γ

kl =
∑n′

r=1 P
γ
klr, then upon

replacing Q with Qγ and Pkl with P γ
kl, the factorization result in The-

orem 3.9 holds for Qγ, that is,

Qγ =
n∑

k=1

n∑
l=1

Cγ
kl · P

γ
kl for each γ < b(G). (25)

Next we define
P̂klr =

∑
γ<b(G)

P γ
klr (w∗-limit).

The convergence of the sum follows from Lemma 3.7 once we substitute
for P γ

klr from (24). We claim that for each 1 ≤ k, l ≤ n and each
λ < b(G) we have

Cλ
kl · P̂klr = Cλ

kl · P λ
klr. (26)

In fact, if v ∈ A(G) is such that v(x) = vij(x) = (V (x)ej|ei) where

V ∈ Ĝ, dimV = d, and {e1, . . . , ed} is the standard basis of Cd, then
as we obtained in the equation preceding to (19), we can write

〈Cλ
kl · P̂klr, vij〉 = lim

α∈Iλ

〈ũα

kl ·
∑

γ<b(G)

P γ
klr, vij〉 = lim

α∈Iλ

∑
γ<b(G)

〈ũα

kl · P
γ
klr, vij〉

=
1

n6
lim
α∈Iλ

∑
γ<b(G)

d∑
p=1

n′∑
q=1

d∑
p′=1

n′∑
q′=1

∑
β∈Iγ

〈ũβ
r1 ·Qγ, ũ

α

qq′vpp′〉∫
Nβ

ũβ
kr(t)ũ

α

kq(t)vip(t) dλβ(t)

∫
Nβ

ũβ
1l(x)ũ

α

q′l(x)vp′j(x) dλβ(x),
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where by Lemma 3.4, for α ∈ Iλ large enough, if β ∈ Iγ and γ 6= λ, we
have ∫

Nβ

ũβ
1l(x)ũ

α

q′l(x)vp′j(x) dλβ(x) = 0.

Thus repeating the calculations that led to (19) backward, we can write

lim
α∈Iλ

〈
∑

γ<b(G)

ũ
α

kl · P
γ
klr, vij〉 = lim

α∈Iλ

〈ũα

kl · P λ
klr, vij〉 = 〈Cλ

kl · P λ
klr, vij〉,

which proves (26). Using (26), for each λ < b(G), we have

n′∑
r=1

n∑
k=1

n∑
l=1

Cλ
kl · P̂klr =

n′∑
r=1

n∑
k=1

n∑
l=1

Cλ
kl · P λ

klr = Qλ.

Now our result follows easily from the preceding identity if we define

P̂kl =
∑n′

r=1 P̂krl. �

In order to apply our factorization Theorem 3.11 to the problem
of determining the centre of A(G)∗∗ we recall the following definition
([45]).

Definition 3.12. Let X be a Banach space and κ ≥ ℵ0 a cardinal
number.

(i) A functional f ∈ X∗∗ is called w∗-κ-continuous if for all nets
(xα)α ⊂ Ball(X∗) of cardinality ℵ0 ≤ |I| ≤ κ with xα → 0 in
w∗-topology, we have f(xα) → 0.

(ii) We say that X has the Mazur property of level κ [property (Mκ)]
if every w∗-κ-continuous functional f ∈ X∗∗ is an element of X.

Our next theorem is a generalization of two results by Neufang (see
[45, Theorem 2.3 and Theorem 4.2]). In our theorem, the factoriza-
tion property of level κ has been replaced with the weak factorization
property of level κ. The theorem can be proved by straightforward
modifications of the original proofs. We recall that given a Banach
algebra A, the right multiplier algebra of A is defined by

RM(A) = {T ∈ B(A) : T (ab) = aT (b) for all a, b ∈ A},
where B(A) is the Banach algebra of all bounded operators on A.

Theorem 3.13. Let A be a Banach algebra satisfying (Mκ) and whose
dual A∗ has the property (WFκ), for some κ ≥ ℵ0. Then

(i) A is left strongly Arens irregular; that is, Z
(l)
t (A∗∗) = A;

(ii) every left A∗∗-module homomorphism on A∗ is automatically bounded
and w∗-w∗-continuous; that is,

HomA∗∗(A∗) = Bσ
A∗∗(A∗);

(iii) if A has a right approximate identity bounded by 1, then the left
topological centre of (A∗ · A)∗ is isometrically isomorphic to the

algebra RM(A), that is, Z
(l)
t ((A∗ · A)∗) ∼= RM(A).
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Concerning the above theorem we remark that assuming the right
version of the weak factorization property (WFκ), one can deduce the
right strong Arens irregularity of A and the continuity of right A∗∗-
module maps on A∗.

It is shown by Hu–Neufang [28, Corollary 4.39(i)] that for all locally
compact groups G, A(G) has the Mazur property of level b(G) · ℵ0. It
is also known that for amenable groups the Fourier algebra A(G) has
an approximate identity bounded by 1. These results together with
our Theorems 3.11 and 3.13 imply the following corollary.

Corollary 3.14. Let G be a compact group such that b(G) has un-
countable cofinality. Then

(i) A(G) is strongly Arens irregular;
(ii) every left (right) A(G)∗∗-module homomorphism on A(G)∗ is au-

tomatically bounded and w∗-w∗-continuous;
(iii) Zt(UC2(G)∗) ∼= B(G).

For statement (iii) we note that since G is amenable, RM(A(G)) =
B(G) by Derighetti [7, Theorem 9]. We should also point out that by
Lau–Losert [37, Theorem 6.4], for all amenable groups the statement
(iii) implies (i).

Remark 3.15. F. Ghahramani and, independently, Hofmeier–Wittstock
[23] asked the question whether a left L∞(G)∗-module homomorphism
on L∞(G) is automatically bounded and, hence, normal (that is, w∗-w∗-
continuous, see Ghahramani–McClure [17]). This question (in a stronger
form) was answered affirmatively for all non-compact locally compact
groups by Neufang in [43, Theorem 3.1]. Our result in Corollary 3.14(ii)
shows that the dual version of the Ghahramani–Hofmeier–Wittstock
question, in which L∞(G) is replaced by V N(G), has an affirmative
answer if G is a compact group whose local weight has uncountable
cofinality (see also Corollary 4.7).

4. A Factorization Theorem for V N(G×H)

Throughout this section, we assume that G is a compact group whose
local weight has uncountable cofinality, and that H is an amenable
locally compact group. Using the results in the previous section, we
shall prove a factorization theorem for V N(G × H) and apply this
result to prove the strong Arens irregularity of A(G × H). We shall
continue to use the notation introduced in Section 3. If u ∈ B(G), we
define u ∈ B(G×H) to be the function defined by u(s, t) = u(s); that
is, u = u ⊗ 1H , where 1H is the function with the constant value 1 on

H. Also if T ∈ V N(G), we define T̃ = T ⊗ I where I is the identity

operator on L2(H); therefore, T̃ ∈ V N(G×H) and T̃ (f ⊗h) = Tf ⊗h
(f ∈ L2(G), h ∈ L2(H)). Note that in view of the above conventions,

we have ũα
ij = ũα

ij ⊗ 1H ∈ B(G×H) and P̃α = Pα ⊗ I ∈ V N(G×H).
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The proof of the following lemma is straightforward and is omitted.

Lemma 4.1. Let Gi be a locally compact group, ui ∈ B(Gi), Ti ∈
V N(Gi) (i = 1, 2). Then,

(u1 ⊗ u2) · (T1 ⊗ T2) = (u1 · T1)⊗ (u2 · T2).

Lemma 4.2. The operators ũα
ij ·P̃α in V N(G×H) satisfy orthogonality

relations

(ũα
ij · P̃α)(ũβ

kl · P̃β) = δαβδjk(ũ
α
il · P̃α) (27)

whenever 1 ≤ i, j, k ≤ n and 1 ≤ l ≤ n′.

Proof. Using Lemma 4.1 and Lemma 3.5 we can write

(ũα
ij · P̃α)(ũβ

kl · P̃β) = (ũα
ij · Pα ⊗ I)(ũβ

kl · Pβ ⊗ I)

= (ũα
ij · Pα)(ũβ

kl · Pβ)⊗ I

= δαβδjk(ũ
α
il · Pα)⊗ I

= δαβδjk(ũ
α
il · P̃α).

�

Lemma 4.3. For every α < b(G) and 1 ≤ k, l ≤ n, (ũα
kl ·P̃α)∗ = ũα

lk ·P̃α.

In particular, ũα
kk · P̃α is an orthogonal projection.

Proof. By Lemma 4.1 and Lemma 3.6 we have

(ũα
kl · P̃α)∗ = (ũα

kl · Pα)∗ ⊗ I = (ũα
lk · Pα)⊗ I = ũα

lk · P̃α.

Of course, by Lemma 4.2 we have (ũα
kk · P̃α)2 = ũα

kk · P̃α, proving that
it is an orthogonal projection. �

The proof of our next lemma is similar to that of Lemma 3.8. We
omit the proof for briefness.

Lemma 4.4. Let Q ∈ V N(G×H) and let 1 ≤ k, l ≤ n and 1 ≤ r ≤ n′.
Then the sum

Pklr =
1

n6

∑
β<b(G)

(ũβ
kr · P̃β)(ũβ

r1 · Q)(ũβ
1l · P̃β) (28)

is w∗-convergent in V N(G×H).

Lemma 4.5. Let 1 ≤ k, l ≤ n and 1 ≤ r ≤ n′. Let ξkl be a w∗-
cluster point of the net (ũ

α

kl)α<b(G) in UC2(G × H)∗. Then, for every
Q ∈ V N(G×H), we have

Q =
n∑

k=1

n∑
l=1

ξkl � Pkl =
n∑

k=1

n∑
l=1

ξ̃kl · Pkl (29)

where Pkl =
∑n′

r=1Pklr and ξ̃kl is any Hahn-Banach extension of ξkl to
an element in V N(G×H)∗.
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Proof. Since G×H is amenable it follows from Lau–Losert [37, Propi-
sition 4.3] that B(G×H) embeds canonically into UC2(G×H)∗. Since

the net (ũ
α

kl)α<b(G) is bounded it has a w∗-cluster point, and indeed it

is possible to assume without loss of generality that ũ
α

kl → ξkl in the
w∗-topology of UC2(G×H)∗.

Let v ∈ A(G) and w ∈ A(H). As in the proof of Theorem 3.9 we

may assume that for s ∈ G, v(s) = vij(s) = (V (s)ej|ei), where V ∈ Ĝ,
dimV = d, and {e1, . . . , ed} is the standard basis of Cd. Suppose first
that Q = Q1 ⊗Q2. We can write

〈ξkl�Pklr, vij ⊗ w〉 = 〈ξkl,Pklr · (vij ⊗ w)〉

= lim
α
〈 1

n6

∑
β<b(G)

(ũβ
kr · P̃β)(ũβ

r1 · Q)(ũβ
1l · P̃β), (vij ⊗ w)ũ

α

kl〉. (30)

But

〈(ũβ
kr · P̃β)(ũβ

r1 · Q)(ũβ
1l · P̃β), (vij ⊗ w)ũ

α

kl〉
= 〈((ũβ

kr · Pβ)⊗ I)((ũβ
r1 ·Q1)⊗Q2)((ũ

β
1l · Pβ)⊗ I), vijũ

α

kl ⊗ w〉
= 〈(ũβ

kr · Pβ)(ũβ
r1 ·Q1)(ũ

β
1l · Pβ), vijũ

α

kl〉〈Q2, w〉. (31)

Then repeating the calculations that led to (15) and subsequently to
(22), we can write

n′∑
r=1

n∑
k=1

n∑
l=1

〈ξkl � Pklr, vij ⊗ w〉

=
1

n6
lim

α

n′∑
r=1

n∑
k=1

n∑
l=1

∑
β<b(G)

〈(ũβ
kr · Pβ)(ũβ

r1 ·Q1)(ũ
β
1l · Pβ), vijũ

α

kl〉〈Q2, w〉

= 〈Q1, vij〉〈Q2, w〉 = 〈Q1 ⊗Q2, vij ⊗ w〉. (32)

Now let Q ∈ V N(G×H) be arbitrary. Since by Effros–Ruan [9],

V N(G)⊗̄V N(H) ∼= (A(G)⊗̂opA(H))∗ ∼= A(G×H)∗ = V N(G×H),
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we can pick a net (QF ) such that QF =
∑

i∈F Q
i
1 ⊗Qi

2 for some finite
subset F of N and Q is the w∗-limit of (QF ). Then

〈ξkl � Pklr, vij ⊗ w〉

=
1

n6
lim

α

∑
β<b(G)

〈(ũβ
kr · P̃β)(ũβ

r1 · Q)(ũβ
1l · P̃β), (vij ⊗ w)ũ

α

kl〉

=
1

n6
lim

α

∑
β<b(G)

lim
F

∑
i∈F

〈(ũβ
kr · P̃β)(ũβ

r1 · (Qi
1 ⊗Qi

2))(ũ
β
1l · P̃β), (vij ⊗ w)ũ

α

kl〉

=
1

n6
lim

α

∑
β<b(G)

lim
F

∑
i∈F

〈(ũβ
kr · Pβ)(ũβ

r1 ·Qi
1)(ũ

β
1l · Pβ), vijũ

α

kl〉〈Qi
2, w〉

=
1

n6
lim

α

d∑
p=1

n′∑
q=1

d∑
p′=1

n′∑
q′=1

∑
β<b(G)

lim
F

∑
i∈F

〈ũβ
r1 ·Qi

1, ũ
α

qq′vpp′〉〈Qi
2, w〉∫

Nβ

ũβ
kr(t)ũ

α

kq(t)vip(t) dλβ(t)

∫
Nβ

ũβ
1l(x)ũ

α

q′l(x)vp′j(x) dλβ(x) (33)

=
1

n6
lim

α

d∑
p=1

n′∑
q=1

d∑
p′=1

n′∑
q′=1

lim
F

∑
i∈F

〈ũα
r1 ·Qi

1, ũ
α

qq′vpp′〉〈Qi
2, w〉∫

Nα

ũα
kr(t)ũ

α

kq(t)vip(t) dλα(t)

∫
Nα

ũα
1l(x)ũ

α

q′l(x)vp′j(x) dλα(x). (34)

As in the proof of (20) and (22), summing over k and l and then over
r, we obtain:

n′∑
r=1

n∑
k=1

n∑
l=1

〈ξkl � Pklr, vij ⊗ w〉

= lim
α

d∑
p=1

d∑
p′=1

lim
F

∑
i∈F

〈Qi
1, vpp′〉〈Qi

2, w〉
∫

Nα

vip(t) dλα(t)

∫
Nα

vp′j(x) dλα(x)

= lim
α

d∑
p=1

d∑
p′=1

lim
F

∑
i∈F

〈Qi
1 ⊗Qi

2, vpp′ ⊗ w〉
∫

Nα

vip(t) dλα(t)

∫
Nα

vp′j(x) dλα(x)

= lim
α

d∑
p=1

d∑
p′=1

〈Q, vpp′ ⊗ w〉
∫

Nα

vip(t) dλα(t)

∫
Nα

vp′j(x) dλα(x)

= 〈Q, vij ⊗ w〉, (35)

leading to the identities

Q =
n′∑

r=1

n∑
k=1

n∑
l=1

ξkl � Pklr =
n∑

k=1

n∑
l=1

ξkl � Pkl =
n∑

k=1

n∑
l=1

ξ̃kl · Pkl.

�
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By a similar argument to that in the previous section, Lemma 4.5
can be used to prove that A(G×H)∗ has property (WUFb(G)).

Theorem 4.6. Let G be a compact group whose local weight has un-
countable cofinality. Let H be an amenable locally compact group. Then
A(G × H)∗ = V N(G × H) has property (WUFb(G)). In other words,

there exists a family {ξ̃λ
kl : λ < b(G), 1 ≤ k, l ≤ n} of functionals

in A(G × H)∗∗ such that for every bounded family {Qλ : λ < b(G)}
of operators in V N(G × H), there exists a finite family of operators
{Pkl : 1 ≤ k, l ≤ n} in V N(G×H) such that for each λ < b(G),

Qλ =
n∑

k=1

n∑
l=1

ξ̃λ
kl · Pkl. (36)

The proof of this theorem is similar to that of Theorem 3.11 and
therefore is omitted for briefness. As a consequence of Theorem 3.13
and Theorem 4.6 we obtain

Corollary 4.7. Let G be a compact group whose local weight has un-
countable cofinality, and let H be an amenable locally compact group.
Then

(i) A(G×H) is strongly Arens irregular;
(ii) every left (right) A(G×H)∗∗-module homomorphism on A(G×H)∗

is automatically bounded and w∗-w∗-continuous;
(iii) Zt(UC2(G×H)∗) = B(G×H).
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[29] N. Işik, J. Pym, and A. Ülger, The second dual of the group algebra of a

compact group, J. London Math. Soc. 35 (1987), 135–158.
[30] T. Jech, Set Theory, Academic Press, New York, 1978.
[31] E. Kaniuth and A. T.-M. Lau, Fourier algebras and amenability, Banach alge-

bras and their applications, 181-192, Contemp. Math., 363, Amer. Math. Soc.,
Providence, RI, 2004.

[32] J. Kraus and Z-J. Ruan, Multipliers of Kac algebras, Internat. J. Math. 8
(1997), 213–248.

[33] A. T.-M. Lau, Continuity of Arens multiplication on the dual space of bounded
uniformly continuous functions on locally compact groups and topological semi-
groups, Math. Proc. Cambridge Phil. Soc. 99(1986), 273–283.

[34] A. T.-M. Lau, Uniformly continuous functionals on Banach algebras, Collo-
quium Math. 51(1987), 195–205.



26 M. FILALI, M. NEUFANG, AND M. SANGANI MONFARED

[35] A. T.-M. Lau, Fourier and Fourier-Stieltjes algebras of a locally compact group
and amenability, Topological vector spaces, algebras and related areas (Hamil-
ton, ON, 1994), 79-92, Pitman Res. Notes Math. Ser., 316, Longman Sci. Tech.,
Harlow, 1994.

[36] A. T.-M. Lau and V. Losert, On the second conjugate algebra of L1(G) of a
locally compact group, J. London Math. Soc. 37 (1988), 464–470.

[37] , The C∗-algbera generated by the operators with compact support on a
locally compact group, J. Funct. Anal. 112 (1993), 1–30.

[38] , The centre of the second conjugate algebra of the Fourier algebra for
infinite products of groups, Math. Proc. Camb. Phil. Soc. 138 (2005), 27–39.

[39] A. T.-M. Lau and J. C. S. Wong, Weakly almost periodic elements in L∞(G)
of a locally compact group, Proc. Amer. Math. Soc. 107 (1989), 1031–1036.

[40] V. Losert, The centre of the bidual of Fourier algebras (discrete groups),
Preprint.

[41] , Properties of the Fourier algebra that are equivalent to amenability,
Proc. Amer. Math. Soc. 92 (1984), 347–354.

[42] , Further results on the centre of the bidual of Fourier algebras, Lecture
given at the Meeting “Harmonic Analysis, Operator Algebras and Represen-
tations”, CIRM, 03-07/11/2008.

[43] M. Neufang, Solution to a conjecture by Hofmeier–Wittstock, J. Funct. Anal.
217 (2004), 171–180.

[44] , A unified approach to the topological centre problem for certain Banach
algebras arising in abstract harmonic analysis, Arch. Math. 82 (2004), 164–
171.

[45] , On a conjecture by Ghahramani–Lau and related problems concerning
topological centres, J. Funct. Anal. 224 (2005), 217–229.

[46] A. Yu. Ol’shanskii, An infinite simple Noetherian group without torsion, Math.
U.S.S.R.-Izv. 15 (1980), 531–588.

[47] G. Pisier, Multipliers and lacunary sets in non-amenable groups, Amer. J.
Math. 117 (1995), 337–376.

[48] G. Pisier, Similarity Problems and Completely Bounded Maps, Second, ex-
panded edition, Lecture Notes in Mathematics, 1618, Springer-Verlag, Berlin,
2001.

[49] E. K. van Douwen, The number of cofinal ultrafilters, Topol. Appl. 39 (1991),
61–63.

[50] N. J. Young, The irregularity of multiplication in group algebras, Quarterly J.
Math. Oxford 24 (1973), 59–62.

Department of Mathematical Sciences, University of Oulu, Oulu
90014, Finland

E-mail address: mahmoud.filali@oulu.fi

School of Mathematics and Statistics, Carleton University, Ot-
tawa, ON, K1S 5B6, Canada.

E-mail address: mneufang@math.carleton.ca

Department of Mathematics and Statistics, University of Windsor,
Windsor, ON, N9B 3P4, Canada.

E-mail address: monfared@uwindsor.ca


