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Abstract— This paper considers consensus-seeking of net-
worked agents in an uncertain environment where each agent
has noisy measurements of its neighbors’ states. We propose
stochastic approximation type algorithms with a decreasing step
size. We first establish consensus results in a two-agent model
via a stochastic double array analysis. Next, we generalize the
analysis to a class of well studied symmetric models and obtain
consensus results.

I. I NTRODUCTION

The recent years have witnessed an enormous growth
of research on the coordination and control of distributed
multi-agent systems, and specific topics appear in different
forms such as swarming of honeybees, flocking of birds, and
formation of autonomous vehicles; see e.g. [28], [9], [11],
[17], [24], [20]. A common feature to these systems is that
the constituent agents need to maintain a certain coordination
so as to cooperatively achieve a group objective.

For coordinating the agents’ behavior, it is usually im-
portant to propagate shared information within the system
by communication rules which may be supported by the
interconnection structure between the agents. In this context,
of fundamental importance is the so called consensus or
agreement problem. In the literature, almost all consensus
algorithms are constructed based on averaging rules, and this
usually leads to good convergence properties [14], [3].

In its basic formulation, a consensus model consists of a
fixed network in which each agent updates its state by form-
ing a convex combination of the states of its neighbors and
itself. Starting from this formulation, many generalizations
are possible. For instance, the state update may take place
asynchronously [21], [2]. In other scenarios, the network
topology may change with time [21]. For convergence anal-
ysis, stochastic matrix analysis is an important tool [14],and
in models with time-dependent communications, set-valued
Lyapunov theory is also useful [19].

In this paper, we are interested in consensus-seeking in
an uncertain environment. In contrast to most existing work,
in our model each agent can only obtain noisy measure-
ments for the states of its neighbors while knowing its own
state. Such modelling reflects many practical properties in
distributed networks. For instance, the information exchange
between different agents may involve the usage of sensors,
quantization, and wireless fading channels, which makes it
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unlikely to have noise free data delivery. The communication
noise issue also arises in the setting of distributed function
computation in sensor networks [12]. We note that most
previous research on consensus problems has focused on
models with perfect measurements, with only a few ex-
ceptions (see, e.g., [29], [23], [5]). In particular, the work
[29] considered an averaging rule with additive noise and
attempted to minimize the long term mean square error by
optimizing the coefficients in averaging. In the consensus
algorithm of [5], multiplicative noises are introduced to
model logarithmic quantization error. In the early work [4],
[26], [27] convergence of consensus problems was studied in
a stochastic setting, but the inter-agent exchange of random
messages was assumed to be error-free; see [13] for more
detailed discussions.

In models with noisy measurements, one may easily
construct an averaging rule with a constant coefficient matrix.
However, this in general leads to no convergence results. For
consensus seeking in the stochastic models, the key featureof
our algorithm is a decreasing step size, and the algorithm has
a gradient descending interpretation. We begin by analyzing a
two-agent model. As it turns out, this simple model provides
a rich structure for developing convergence analysis and
motivates the solution to more general models. In this setup,
the key technique is the stochastic double array analysis [25],
[7], [22]. Next, we consider the stochastic consensus problem
for a class of symmetric networks. In fact, many symmetric
models have arisen in practical applications including robot
teams, unicycle pursuit models [18], [17], cooperative sensor
network deployment for tracking [1] or sampling [16], and
consensus problems [5]. Hence, the symmetry assumption
not only simplifies the computation, but also has practical
importance. For consensus analysis on networks without
symmetry, a different approach is developed in [13] via a
stochastic Lyapunov analysis.

II. T HE PROBLEM FORMULATION

Consider a set ofn agents distributed according to a
directed graph (or digraph)G= (N ,E ) consisting of a set of
nodesN = {1,2, · · · ,n} and a set of edgesE ⊂ N ×N .
In the digraph, an edge from nodei to node j is denoted
as an ordered pair(i, j) where i 6= j (so there is no edge
between a node and itself). A path (fromi1 to i l ) consists of
a sequence of nodesi1, i2, · · · , i l , l ≥ 2, such that(ik, ik+1)∈ E

for k= 1· · · , l −1. We say nodei is connected to nodej(6= i)
if there exists a path fromi to j. The graphG is said to be
strongly connected if for any two distinct nodesi and j, there
exist a path fromi to j and also a path fromj to i.
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Fig. 1. Measurement with noisewik
t .

For convenience of exposition, the two names, agent and
node, will be used alternatively. The agentAk (resp., nodek)
is a neighbor ofAi (resp., nodei) if (k, i) ∈ E wherek 6= i,
i.e., there exists an edge from nodek to nodei. Denote the
neighbors of nodei by Ni = {k|(k, i) ∈ E }. Throughout the
paper we consider digraphs. Note that any undirected graph
model1 can be equivalently represented as a directed graph.

For agentAi , we denote its state at timet by xi
t ∈R, where

t ∈ Z
+ = {0,1,2, · · ·}. For eachi ∈ N , agentAi receives

noisy measurements of the states of its neighbors. We denote
the resulting measurement by agentAi of agentAk’s state by

yik
t = xk

t +wik
t , t ∈ Z

+, k∈ Ni , (1)

wherewik
t ∈R is the additive noise; see Fig. 1 for illustration.

The underlying probability space is denoted by(Ω,F ,P).
We call yik

t the observation of the state ofAk obtained by
Ai , and assume eachAi knows its own statexi

t exactly.
There may be various interpretations for the additive noise; a
natural one is thatxi

t is corrupted by noise during inter-agent
communication [23]. We introduce the assumption:

(A1) The noises{wik
t , t ∈Z

+, i ∈N ,k∈Ni} are indepen-
dent and identically distributed with respect to the indices
i,k, t and also independent of the initial statesxi

0, i ∈ N .
In addition, supi∈N E|xi

0|2 < ∞, and eachwik
t has zero mean

and varianceQ≥ 0.
Condition (A1) means that the noises are i.i.d. with respect

to both space (associated with distributed agents) and time.
The state of each agent is updated by:

xi
t+1 = (1−at)x

i
t +

at

|Ni | ∑
k∈Ni

yik
t , (2)

wherei ∈N , t ∈Z
+ andat ∈ [0,1]. This gives an averaging

rule in that the right hand side is a convex combination
of the agent’s state and its|Ni | observations, where|S| is
used to denote the cardinality of a setS. The objective of
the consensus problem is to select{at , t ≥ 0} so that then
individual statesxi

t converge to a common limit in a certain
sense.

To get some insight into the algorithm (2), we rewrite it
in the form

xi
t+1 = xi

t +at(m
i
t −xi

t), (3)

1The edge in an undirected graph is denoted as an unordered pair; for
definiteness it is assumed there is no self-loop at any node.
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Fig. 2. In the noise free case, the states of the three nodes quickly converge
to the same constant level≈ 2.143. Under Gaussian measurement noises
with varianceσ2 = 0.01, the three state trajectories have large fluctuations.

where

mi
t =

1
|Ni | ∑

k∈Ni

yik
t . (4)

Note that the structure of (3) is very similar to the recur-
sion in classical stochastic approximation algorithms in that
mi

t − xi
t provides a correction term with the step sizeat .

Indeed, by introducing a suitable local potential involving
Ai and its neighbors,mi

t −xi
t may be interpreted as the noisy

measurement of a scaled negative gradient along the state of
Ai ; see [13] for details. Since the additive noise is contained
in {mi

t , t ≥ 0}, each statexi
t will fluctuate randomly. These

fluctuations will not die off if the step sizeat is selected as
a constant. We introduce an example for illustration.

Example 1:We consider a strongly connected digraph
with three nodes{1,2,3} arranged on a line where node
2 is at the intermediate position andN1 = {2}, N2 = {1,3},
N3 = {2}. We follow the notation introduced in this section,
and the scalar states are updated by:x1

t+1 = (x1
t + y12

t )/2,
x2

t+1 = (x2
t +y21

t +y23
t )/3, andx3

t+1 = (x3
2+y32

t )/2, t ≥ 0. The
i.i.d. Gaussian noises satisfy (A1) with varianceσ2 = 0.01.

The simulation for Example 1 is shown in Fig. 2 with
initial condition [x1

0,x
2
0,x

3
0] = [4,1,2]. For the noise free case,

we change the state updating rule in Example 1 by replacing
yik

t by xk
t , which reduces to a standard algorithm in the litera-

ture; see, e.g., [14]. Fig. 2 shows that the measurement noise
causes a dramatic loss of convergence for this algorithm
where the step size for nodei is in facta(i) = |Ni |/(|Ni |+1)
to give equal weights 1−a(i) = a(i)/|Ni | = 1/(|Ni |+1).

With the aim of getting a stable behavior for the agents,
a decreasing sequence{at , t ≥ 0} will be used below.

(A2) The sequence{at , t ≥ 0} satisfies i)at ∈ [0,1] and ii)
there existsT0 ≥ 1 such that

α
tγ ≤ at ≤

β
tγ (5)

for all t ≥ T0, whereγ ∈ (0.5,1] and 0< α ≤ β < ∞.
By starting from a suitableT0 and requiringα

tγ ≤ at only
for t ≥T0, whereat ∈ [0,1], we may allow large values forα.
This gives more flexibility in choosing the step size sequence
and otherwiseα greater than one would be excluded. Here
the segment{at , t < T0} may be chosen freely as long as



at ∈ [0,1]. In further analysis, the parametersT0,α,β ,γ are
treated as fixed constants associated with{at , t ≥ 0}.

Note that (A2) implies
∞

∑
t=0

at = ∞,
∞

∑
t=0

a2
t < ∞, (6)

which is a typical property for the step size sequences used
in classical stochastic approximation theory [6], [15].

We introduce the following definitions on the asymptotic
behavior of the agents’ state evolution.

Definition 2: (mean square consensus) The agents are
said to reach mean square consensus ifE|xi

t |2 < ∞, t ≥ 0,
i ∈ N , and there exists a random variablex∗ such that
limt→∞ E|xi

t −x∗|2 = 0 for all i ∈ N .
Definition 3: (strong consensus) The agents are said to

reach strong consensus if there exists a random variablex∗

such that with probability one limt→∞ xi
t = x∗ for all i ∈N .

If a sequence converges with probability one (w.p.1), we
also say it converges almost surely (a.s.). In both mean square
and strong consensus, the limitx∗ may depend on the initial
states, the noise sequence and the consensus algorithm.

A. The Generalization to Vector States

We give some discussions for the vector case where each
individual statexk

t ∈ R
d with dimensiond > 1. It is easy to

extend (1)-(2) to the vector case by taking a vector noise
term. For the vector version of (2), we see that each of
the d components inxk

t is decoupled from the otherd−1
components during the iteration. Hence we may decompose
the vector equation tod scalar equations. After adapting
assumption (A2) to the vector case, the consensus result in
the paper is easily generalized to vector individual states.

III. M EAN SQUARE CONSENSUS IN ATWO-AGENT

MODEL

In this section we analyze a two-agent model. Apart from
enabling sharp estimates and shedding light on the selection
of the step size, the techniques developed for such a system
will provide motivation for analyzing more general models.

For the two agent case, we haven = 2 andN = {1,2}.
Defineξt = x1

t −x2
t . We notice the relation

ξt+1 = (1−2at)ξt +atvt , (7)

wherevt = w12
t −w21

t . By the lower and upper bound condi-
tion in (5), we may find an integerT1 > T0 such that

1− 2α
tγ ≥ 1−2at > 0, for all t ≥ T1. (8)

Denote ¯at = 2at . In the estimate below, we start withT1

as the initial time. Fort ≥ T1, it follows from (7) that

ξt+1 = (1− āt)(1− āt−1) · · ·(1− āT1)ξT1

+(1− āt) · · ·(1− āT1+1)aT1vT1

...

+(1− āt)at−1vt−1

+atvt .

Define

Πl ,k = (1− āl )(1− āl−1) · · ·(1− āk+1)ak, (9)

where l > k≥ T1. By convention,Πk,k = ak.
Lemma 4:For Πl ,k defined by (9) withk≤ l , we have the

upper bound estimate: (i) Ifγ = 1, we have

Πl ,k ≤ exp

{

−2α
l

∑
t=k+1

t−1

}

β
k
≤ β (k+1)2α

k(l +1)2α . (10)

(ii) If 1
2 < γ < 1, we have

Πl ,k ≤ exp

{−2α
1− γ

[(l +1)1−γ − (k+1)1−γ ]

}

β
kγ . (11)

Let {c(t), t ≥ t0} and {h(t), t ≥ t0} be two sequences of
real numbers indexed by the integert ≥ t0, andh(t) > 0 for
all t ≥ t0. We denotec(t) = O(h(t)) (resp.,c(t) = o(h(t))) if

lim
t→∞

|c(t)|
h(t)

≤Cd < ∞,
(

resp., lim
t→∞

|c(t)|
h(t)

= 0
)

.

Here Cd is called a dominance constant. In practice, it is
desirable to pick up a smaller value forCd when possible.

Lemma 5:We have the upper bound estimate: (i) Ifγ = 1,

t

∑
k=T1

Π2
t,k =







O( 1
t4α ) if 0 < α < 1

4
O( ln t

t ) if α = 1
4

O(1
t ) if α > 1

4,

(12)

and (ii) If 1
2 < γ < 1,

t

∑
k=T1

Π2
t,k = O(

1
tγ ). (13)

Remark. We give some discussions on estimating the
dominance constantCd in Lemma 5. For (12), whenα 6= 1

4
is close to1

4 from left (resp., right), we need to take a large
Cd associated withO( 1

t4α ) (resp., 1
t ). For the caseα = 1

4
in (12), we may takeCd = β 2. For (13), we takeCd = 4α,
regardless of the particular value ofγ ∈ (1

2,1].
Theorem 6:Assume a system of two agents with the

initial condition xi
0, i = 1,2, each with noisy measurements

of the state of the other, and assume (A1)-(A2). Then there
exists a limit random variablex∗ such that

lim
t→∞

E|xi
t −x∗|2 = 0,

where i = 1,2. This implies mean square consensus.
Proof: Letting zt = 1

2(x1
t +x2

t ) for t ≥ 0, we have

zt+1 = zt +atw̃t , t ≥ 0, (14)

where w̃t = 1
2(w12

t + w21
t ). By iterating (14), it follows that

zt+1 = z0 + ∑t
k=0akw̃k. Since ∑∞

t=0a2
t < ∞, there exists a

random variablez∗ such that limt→∞ E|zt −z∗|2 = 0.
Now we estimateξt = x1

t −x2
t . We see that

Eξ 2
t+1 ≤ (Eξ 2

T1
Πt

k=T1
|1−2ak|2 + sup

k≥T1

Ev2
k ×

t

∑
k=T1

Π2
t,k)

and it readily follows from Lemma 5 that limt→∞ Eξ 2
t+1 = 0.

The mean square consensus property follows easily.
The i.i.d. noise assumption in Theorem 6 may be relaxed.



IV. STRONG CONSENSUS FORTWO AGENTS

So far we have shown that the states of the agents converge
to the same limit in mean square. It is well known that in
classical stochastic approximation theory [6], [15], similarly
structured algorithms have sample path convergence proper-
ties under reasonable conditions. It is tempting to analyze
sample path behavior in this consensus context. Compared
to the mean square consensus analysis, the proof of strong
consensus requires far more analytic labor.

The following lemma is instrumental for our analysis. The
proving technique relies on asymptotic analysis of the sum
of random variables with weights in a double array.

Lemma 7: [25] Let {w,wt , t ≥ 1} be i.i.d. real-valued
random variables with zero mean and varianceQ, and
{aki,1 ≤ i ≤ lk ↑ ∞,k ≥ 1} a double array of constants.
Assume (i) max1≤i≤lk |aki|= O((l1/p

k logk)−1), 0< p≤ 2, and
loglk = o(log2k), (ii) E|w|p < ∞. Then

lim
k→∞

lk

∑
i=1

akiwi = 0, a.s. (15)

This lemma is an immediate consequence of Theorem 4
and Corollary 3 in [25] (pp. 331 and pp. 340) which dealt
with the sum of weighted random variables.

We need to estimate the magnitude of the individual terms
Πt,k. Note that for eacht ≥ T1, Πt,k is defined fork starting
from T1 up to t. Hereafter, for notational brevity, we make
a convention by settingΠt,k ≡ 0, for 1≤ k < T1 when t ≥
T1, and Πt,k ≡ 0, for 1≤ k ≤ t when 1≤ t < T1. After this
extension, all the entriesΠt,k constitute a triangular array.

Lemma 8:For case (i) withγ = 1, we have

sup
1≤k≤t

Πt,k =

{

O( 1
t2α ) if 0 < α < 1

2,

O(1
t ) if α ≥ 1

2,
(16)

and for case (ii) with1
2 < γ < 1, we have sup1≤k≤l Πt,k =

O(1/tγ).
Theorem 9:Assume all conditions in Theorem 6 hold, and

α > 1
4 in the caseγ = 1. We have (a)zt converges a.s.. (b)

limt→∞ ξt = 0 a.s.. (c) The two sequences{x1
t , t ≥ 0} and

{x2
t , t ≥ 0} converge to the same limit a.s., which implies

strong consensus.
Proof: Recall thatzt+1 = z0 + ∑t

k=0akw̃k, where w̃t =
1
2(w12

t +w21
t ). Since{w̃k,k≥ 0} is a sequence of independent

random variables withEw̃k = 0, E|w̃k|2 < ∞, by Khintchine-
Kolmogorov convergence Theorem (see [8], pp. 110), if
∑∞

k=0E|akw̃k|2 < ∞, then ∑t
k=0akw̃k converges a.s.. Indeed,

∑∞
k=0E|akw̃k|2 < ∞ follows from (A2) and supt≥0Ew̃2

t < ∞.
Hencezt converges a.s..

Now we prove (b). Recalling the expression forξt+1, we
see that limt→∞ ξt = 0 a.s., if limt→∞ ∑t

k=1 Πt,kvk = 0 a.s.. By
Lemma 8 we have sup1≤k≤t Πt,k = O((t1/2 logt)−1), for both
cases: (i)1

2 < γ < 1, (ii) γ = 1 andα > 1
4.

To apply Lemma 7, we takelk = k andp= 2, which yields
limt→∞ ∑t

k=1 Πt,kvk = 0, a.s. Hence limt→∞ ξt = 0 a.s., and (b)
follows. Assertion (c) then follows from (a) and (b).

Fig. 3. A ring network where each agent has two neighbors.

The requirementα > 1
4 for the caseγ = 1 is a mild

condition, and from an algorithmic point of view, it is not
an essential restriction since in applications{at , t ≥ 0} is a
sequence to be designed.

V. NETWORKS WITH SYMMETRY STRUCTURES

In this section we consider models where the neighboring
relation for then agents displays a certain symmetry. A
simple example is shown by Fig. 3 with ring-coupled agents.

We specify the associated digraph as follows. First, the
n nodes are listed by the order 1,2, · · · ,n. Here i and i +
1 are unnecessarily neighbors to each other. Theith node
has a set of neighborsNi listed as(α i

1,α
i
2, · · · ,α i

L) which
is a subset ofN = {1,2, · · · ,n}. The fixed constantL ≥
1 denotes the number of neighbors, which is the same for
all nodes. Then the(i +1)th node’s neighbors are given by
(α i

1+1,α i
2+1, · · · ,α i

L +1). In other words, by incrementing
each ofα i

k by one, where 1≤ k≤ L, we obtain the neighbor
set for nodei +1, and after a total ofn steps, we retrieve
node i and its neighborsNi . In fact, the underlying graph
may be realized by arranging then nodes on a ring and
adding the edges appropriately. For this reason, we may term
this symmetry as the circulant invariance property for the
neighboring structure. Throughout this section, if an index
(e.g., α i

k + 1) for a node or agent exceedsn, we identify it
as an integer between 1 andn by taking mod(n).

The above symmetry assumption does not ensure strong
connectivity of the graph, which may be illustrated by simple
examples. For this section, we make the assumption:

(A3) The digraphG = (N ,E ) has both the circulant
invariance property and strong connectivity.

Define the centroid for the state configuration(x1
t , · · · ,xn

t )
aszt = 1

n ∑n
i=1xi

t . Under (A3), we can show thatzt satisfies

zt+1 = zt +
at

nL ∑
i∈N

∑
k∈Ni

wik
t , t ≥ 0.

Lemma 10:Under (A1)-(A3), the sequence{zt , t ≥ 0}
converges both in mean square and almost surely.

We further denote the difference betweenxi+1
t andxi

t by

ξ i
t = xi+1

t −xi
t , (17)

for 1≤ i ≤ n, wherexn+1
t is identified asx1

t by taking mod(n)
for the superscript. Thusξ n

t = x1
t −xn

t . Hereξ i
t , 1≤ i ≤ n, are

not linearly independent sinceξ n
t = −∑n

i=1 ξ i
t . In formation



control the set ofn−1 variablesξ i
t , 1≤ i ≤ n−1, is usually

called the shape variables. Recall that we have|Ni |= L, for
all i ∈ N . Specializing the stochastic algorithm (2) to the
model of this section, we have

xi
t+1 = (1−at)x

i
t +

at

L ∑
k∈Ni

(xk
t +wik

t ) (18)

for eachi ∈ N , and

xi+1
t+1 = (1−at)x

i+1
t +

at

L ∑
k∈Ni+1

(xk
t +wi+1,k

t )

= (1−at)x
i+1
t +

at

L ∑
k∈Ni

(xk+1
t +wi+1,k+1

t ) (19)

where we get (19) by the circulant invariance property.
Subtracting both sides of (19) by (18) leads to

ξ i
t+1 = (1−at)ξ i

t +
at

L ∑
k∈Ni

ξ k
t +

at

L
w̃i

t , i ∈ N , (20)

where

w̃i,k
t = wi+1,k+1

t −wi,k
t , w̃i

t = ∑
k∈Ni

w̃i,k
t (21)

with k∈ Ni for w̃i,k
t .

Lemma 11:Assume (A3) and letξ i
t andw̃i

t be defined by
(17) and (21), respectively. We have the following zero-sum
property:∑i∈N ξ i

t = 0 and∑i∈N w̃i
t = 0 for all t ≥ 0.

We introduce then×n stochastic matrix

M(a) = I +aMc, a∈ [0,1]. (22)

The matrixMc is given in the form

Mc =



















−1 c1 c2 · · · cn−1

cn−1 −1 c1
. . .

...

cn−2 cn−1 −1
... c2

...
. . .

.. .
. . . c1

c1 · · · cn−2 cn−1 −1



















whereMc
ii = −1 for 1≤ i ≤ n, and for 2≤ k≤ n,

Mc
1k = ck−1 =

{

1
L if k∈ N1

0 otherwise.

SinceMc is a circulant matrix [10], it is well defined after
specifying the first row. BothMc and M(a) are circulant
matrices.

Proposition 12: Under (A3), M(a) is doubly stochastic
for any a∈ [0,1], i.e., bothM(a) and [M(a)]T are stochastic
matrices. In addition,M(a) is irreducible fora > 0.

Define twoR
n-valued vectorsζt = (ξ 1

t , · · · ,ξ n
t )T andw̃t =

(w̃1
t , · · · , w̃n

t )
T . We can show thatζt satisfies the recursion:

ζt+1 = M(at)ζt +
at

L
w̃t , t ≥ 0. (23)

Lemma 13:Assume (A2)-(A3) hold, and the real vector
θ = [θ1, · · · ,θn]

T has a zero column sum, i.e.,∑n
i=1 θi = 0.

Then for all t ≥ k≥ 0, we have:
(i) The column sum of M(at) · · ·M(ak)θ is

zero, i.e., ∑n
i=1Mθ

t,k(i) = 0, where we denote
Mθ

t,k = [Mθ
t,k(1), · · · ,Mθ

t,k(n)]T = M(at) · · ·M(ak)θ .

(ii) There exist constantsδ ∗ ∈ (0,1) andT2 > 0 which are
independent ofθ , such that for allt ≥ k≥ T2,

|M(at) · · ·M(ak)θ | ≤ |(1−δ ∗at) · · ·(1−δ ∗ak)θ |,
whereT2 is chosen such thatat ≤ 1/2 for all t ≥ T2.

Let ωn = e2π i/n where i2 = −1, and denote

F =
1√
n











1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

...
...

...
...

...

1 ωn−1
n ω2(n−1)

n · · · ω(n−1)(n−1)
n











which is the so called Fourier matrix of ordern and satisfies
F∗

n Fn = I whereF∗
n is the complex adjoint matrix forFn. For

a∈ [0,1], we introduce the polynomial

ϕ(a,z) = (1−a)+a(c1z+c2z2 + · · ·+cn−1zn).

Then by well known results for circulant matrices [10], the
n eigenvalues{λ1,t , · · · ,λn,t} of M(at) are given by

λk,t = ϕ(at ,ωk−1
n )

wherek = 1, · · · ,n. Obviously,λ1,t = 1. Furthermore,M(at)
may be diagonalized in the form

M(at) = F∗
n ×Diag(λ1,t , · · · ,λn,t)×Fn.

Letting 1n = [1, · · · ,1]T , it is easy to verify that

M(at) · · ·M(ak) = F∗
n ×Πt

j=kDiag(λ1, j , · · · ,λn, j)×Fn

= F∗
n ×Πt

j=kDiag(0,λ2, j , · · · ,λn, j)×Fn +
1
n

1n1T
n .

Corollary 14: Let θ , T2 andδ ∗ be given as in Lemma 13
and denoteM(t,k) = M(at) · · ·M(ak) for t ≥ k ≥ T2. Then
the real matrixMo(t,k) , M(t,k)− 1

n1n1T
n satisfies

M(t,k)θ = Mo(t,k)θ

and |Mo(t,k)|∞ ≤CΠt
j=k(1−δ ∗a j) for someC > 0 indepen-

dent oft andk, where| · |∞ denotes the largest absolute value
of the elements in the matrix.

Theorem 15:Assume (A1)-(A3). Then the algorithm (2)
ensures (i) mean square consensus for anyα > 0; and (ii)
strong consensus for (a)γ ∈ (0.5,1) associated with anyα >
0 in (A2), and (b)γ = 1 provided thatα > 1/(2δ ∗).

Proof: We first recall thatzt converges in mean square
and a.s.. We write the recursion (23) forξt , and show its
mean square convergence to zero by Lemma 11, and Lemma
13-(ii). Then mean square consensus follows. For proving
almost sure convergence ofξt , we use Lemma 11, Corollary
14 and Lemma 7 to carry out the double array analysis..

Without measurement noises, if the coefficient matrix
in the consensus algorithm is doubly stochastic, the state
average is an invariant, and it is possible to establish average-
consensus [29] such that each individual state converges to
the initial state average. In our model, the noise causes the
limit state to deviate from the initial state average although
M(at) is doubly stochastic. We have the deviation estimate.

Proposition 16: Under (A1)-(A3), the state iterates in
the consensus algorithm satisfy limt→∞ E|xi

t − 1
n ∑n

k=1xk
0|2 =

O(Q), whereQ is the variance of the i.i.d. noises, andxi
0,

1≤ i ≤ n, denotes the initial state att = 0.
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Fig. 4. A digraph with 3 nodes.
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Fig. 5. Equal weights (i.e., 0.5) are used for each agent’s state and its
observation in the state iteration.

VI. SIMULATIONS

We consider the model in Fig. 4 whereN1 = {2}, N2 =
{3} andN3 = {1}. The initial condition forxt = [x1

t ,x
2
t ,x

3
t ]

is [4,3,1] at t = 0, and the i.i.d. Gaussian noise has variance
σ2 = 0.01. Fig. 5 shows the simulation with equal weights
(as in Example 1) in the averaging rule (x1

t+1 = (x1
t +y12

t )/2,
etc.), without obtaining consensus. Fig. 6 shows the strong
consensus result achieved by algorithm (2) with the step size
sequence{at = (t +5)−0.85, t ≥ 0}.
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