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Abstract

Suppose G is a connected real reductive group, G(R) is its group
of real points, and θ is an automorphism of G. The theory of twisted
endoscopy associates to the pair (G, θ) real reductive groups H. The
Local Langlands Correspondence partitions the admissible representations
of G(R) and H(R) into L-packets. We prove twisted character identities
between tempered L-packets of H(R) and G(R).

1 Introduction

The theory of endoscopy expresses the harmonic analysis of an algebraic group
in terms of the harmonic analysis of smaller so-called endoscopic groups. The
group in the present work is a connected real reductive algebraic group G and
the endoscopic groups are denoted by H.

In standard endoscopy there are several established identities connecting
the harmonic analysis of G to H. Two of the main types of identities are often
called geometric transfer and spectral transfer. Both of them are identities of
distributions which rely on correspondences between the conjugacy classes of
the groups G and H. The most basic geometric transfer identities are of the
form

(1.1)
∑
γ

Oγ1(fH) =
∑
δ

∆(γ, δ) Oδ(f), f ∈ C∞c (G(R)).

Here, O· denotes an orbital integral, γ a conjugacy class of H(R) which corre-
sponds to a conjugacy class δ in G(R), ∆(γ, δ) are scalars, and f → fH is a
map to C∞c (H(R)). The sum run over stable conjugacy classes.

The tempered spectral transfer identities are dual to the geometric identities
above and have the basic form

(1.2)
∑

πH∈ΠϕH

ΘπH (fH) =
∑
π∈Πϕ

∆(ϕH , π) Θπ(f), f ∈ C∞c (G(R)).
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Here, the orbital integrals are replaced by characters Θ· of tempered repre-
sentations in L-packets. The terms ∆(ϕH , π) are scalars called spectral transfer
factors. They are defined relative to the geometric transfer factors ∆(γ, δ) given
in (1.1). The definition of these factors and the proofs of these identities were
given by Shelstad originally in [She82], and revised more recently in [She08a]
and [She10].

In twisted endoscopy the group G is supplied with an algebraic automor-
phism θ and a continuous quasicharacter ω. The endoscopic groups H are
influenced by the action of the twisting data (θ, ω). So too are the under-
lying conjugacy classes and representations. The the foundations of twisted
endoscopy were set down by Kottwitz and Shelstad in [KS99]. They included a
conjectural twisted geometric transfer identity extending (1.1). This geometric
transfer identity was proved recently by Shelstad in the real case ([She12]).

Extensions of (1.2) to base change were proved in in [Clo82], [Bou89] and
[Clo11]. More generally, the real twisted case of (1.2) was proved in [Mez12]
under the assumptions that ω was trivial, θ was of finite order, and the L-packets
consisted of (essential limits of) discrete series ([Mez12]). There was one further
technical assumption in [Mez12] which we will ignore momentarily and return
to later in the introduction. The purpose of this paper is to extend (1.2) to the
twisted case only under this technical assumption and the assumption that θ
acts semisimply on the centre of G. Our extension of (1.2) is given in Theorem
6.7.

The assumptions of ω being trivial and θ being finite in [Mez12] were required
to satisfy the hypotheses of a twisted version of Harish-Chandra’s uniqueness
theorem (Theorem 15.1 [Ren97], Theorem 1 [Mez12]). This twisted uniqueness
theorem has been extended here in appendix A to allow for arbitrary ω and θ.
The assumption of θ being semisimple on the centre remains due to changes of
variable made in [Mez12].

The passage from (essential limits of) discrete series to tempered represen-
tations in the case of standard endoscopy is a simple application of Harish-
Chandra’s principle of parabolic descent (14 [She10]). To see that something
more is required in the twisted case, consider the example of G(R) = SL(3,R).
Let ω be trivial and set the automorphism θ equal to inverse-transpose composed
with conjugation by a representative w0 ∈ SL(3,R) for the long element in the
Weyl group. The dual group Ĝ is equal to PGL(3,C). There is a tempered
L-packet Πϕ attached to the homomorphism ϕ : WR → Ĝ defined by

ϕ(reit) =

[
eit 0 0
0 1 0
0 0 e−it

]
Z, reit ∈ C×, ϕ(σ) =

[
0 0 −1
0 1 0
1 0 0

]
Z.

Here, Z is the centre of GL(3,C), and WR = C× ∪C×σ is the real Weil group.
The image of ϕ is contained in the proper Levi subgroup

M̂ =
{[
∗ 0 ∗
0 1 0
∗ 0 ∗

]
Z
}
∼= GL(2,C)

and this Levi subgroup is dual to the following Levi subgroup of SL(3,R)

M(R) =
{[
∗ 0 ∗
0 ∗ 0
∗ 0 ∗

]}
∼= GL(2,R).

2



Regarding ϕ as a homomorphism into M̂ one obtains an L-packet Πϕ,M of
discrete series representations of M(R). In addition, the representations in Πϕ

are the irreducible subrepresentations of the representations induced from Πϕ,M

(11.3 [Bor79]). The element

s =
[

0 0 −1
0 1 0
1 0 0

]
w0Z ∈ PGL(3,C)

corresponds to an endoscopic group H(R) = PGL(2,R), and the tempered L-
packet Πϕ corresponds to an L-packet ΠϕH of discrete series representations (p.
24 [KS99]).

In standard endoscopy (7 [She08a]), one may take the centralizer of the
split component of an elliptic maximal torus in H(R) to produce a Levi sub-
group M∗(R) ⊆ G(R) which corresponds endoscopically to H(R) and yields
an L-packet Πϕ,M∗ of discrete series. One then uses parabolic descent to M∗.
Unfortunately, in our case the elliptic tori of H(R) have trivial split component
so that M∗ = SL(3,R) and Πϕ,M∗ = Πϕ does not consist of discrete series
representations.

One might nevertheless associate H with the Levi subgroup M above, for M
is preserved by θ and Πϕ,M consists of discrete series. One might then attempt
to derive a spectral character identity by parabolic descent to M . The problem
here is that in the twisted case the characters on the right-hand side of (1.2)
are twisted by an intertwining operator. Although M is preserved by θ, none of
its associated parabolic subgroups are. This necessitates the introduction of a
Knapp-Stein intertwining operator (6 XIV [Kna86]) into the twisted character,
and this operator hinders the usual process of parabolic descent (3 X [Kna86]).
As a matter of fact, there is no proper maximal parabolic subgroup of SL(3,R)
which is preserved by θ.

One way out of this bind is to recognize that the representations in Πϕ are
fundamental series representations (III.3 [Duf82]). Work of Duflo and Bouaziz
afford us with characterizations of, and twisted characters expansions for, the
fundamental series. Using this work, one may prove a twisted spectral transfer
identity between H(R) and SL(3,R) without appealing to parabolic descent.
This is the approach we use in general. We have learnt from Clozel that this
approach was already present in 2.5 [CC09].

For the remainder of this introduction assume that H is any endoscopic
group for a general twisting datum (G, θ, ω). Our proof of spectral transfer fol-
lows in three stages. In the first stage the L-packet ΠϕH consists of (essential)
discrete series representations and Πϕ consists of fundamental series representa-
tions (Theorem 4.11). In the second stage the method of coherent continuation
is applied to extend spectral transfer to the case that ΠϕH consists of (essential)
discrete series representations and Πϕ consists of limits of fundamental series
representations (Theorem 5.3). In the final stage it is shown that there is a
parabolic subgroup of G(R) which allows us to imitate the parabolic descent
argument of standard endoscopy (14 [She10]). The main theorem is Theorem
6.7. These three stages run parallel to the three stages of the spectral transfer
theorem in standard case endoscopy (13-14 [She10], 11 [She]).
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One of the shortcomings of the present work is the aforementioned technical
assumption, which concerns the Galois equivariance of the endoscopic corre-
spondence of conjugacy classes (cf. 3.1 [KS99]). It is stated in (3.10). This
assumption simplifies spectral comparisons, for it avoids any twisting of the
endoscopic groups (cf. 5.4 [KS99]). The assumption is satisfied for quasisplit
groups when θ fixes an R-splitting.

Another shortcoming is inherited from [Mez12], in which spectral transfer
factors are defined without showing that they are canonical. Indeed, there are
certain choices made in the definition of these transfer factors (6.3 [Mez12]) and
one wishes to show that the transfer factors are independent of these choices.
This type of canonicity holds for geometric transfer factors (§4.6 [KS99]), and
the analogous canonicity for spectral transfer factors is heralded by the preprint
[She] (see also §12 [She10]).

We close with some anticipated consequences of tempered twisted spectral
transfer. As in standard endoscopy, one expects to invert the spectral trans-
fer identities for a fixed L-packet Πϕ (5.4 [She82], [She08b]). In so doing, one
expects to pair Πϕ with a group-theoretic structure fine enough to isolate indi-
vidual representations (6 [Art08]). Such a pairing is of fundamental importance
to twisted trace formula comparisons. This is evidenced by Arthur’s recent work
in classifying automorphic representations of symplectic and orthogonal groups
(remarks following Theorem 2.2.1 [Art13]).

We thank the referee of an earlier version of this paper for suggested im-
provements.

2 Notation

In this section only G is a real Lie group which acts upon a non-empty set J .
We set

NG(J) = {g ∈ G : g · J ⊆ J},

ZG(J) = {g ∈ G : g · j = j for all j ∈ J}.

In the sequel, the set NG(J1) always forms a group. We set Ω(G, J) equal to
the resulting factor group NG(J)/ZG(J).

For an automorphism θ of G we set 〈θ〉 equal to the group of automorphisms
generated by θ. There is a corresponding semidirect product G o 〈θ〉. When
elements of G are written side-by-side with elements in 〈θ〉 we consider them to
belong to this semidirect product.

The inner automorphism of an element δ ∈ G is defined by

Int(δ)(x) = δxδ−1, x ∈ G.

It shall be convenient to denote the fixed-point set of Int(δ) ◦ θ in G by Gδθ.
We shall abbreviate the notation Int(δ) ◦ θ to Int(δ)θ or δθ habitually.

Unless otherwise mentioned, we denote the real Lie algebra of a Lie group
using Gothic script. For example the real Lie group of G is denoted by g.
Suppose that J is Cartan subgroup of a reductive group G. Then the pair of
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complex Lie algebras (g⊗C, j⊗C) determines a root system which we denote
by R(g⊗C, j⊗C). We denote the Lie algebra dual to g by g∗. The differential
of the inner automorphism Int(δ) is the adjoint automorphism Ad(δ) on g. The
adjoint automorphism induces an automorphism on g∗ in the usual way. Often,
it shall be convenient to write δ ·X in place of Ad(δ)(X) for X ∈ g. Similarly,
we write θ · X to mean the differential of θ acting on X ∈ g. We extend this
slightly abusive notation to the dual spaces, writing δ · λ or even simply δλ in
place of the coadjoint action of δ on λ ∈ g∗.

Finally, if we take H to be an algebraic group defined over R, we denote its
identity component by H0 and derived subgroup by Hder. The group of real
points of H is denoted by H(R). This is a real Lie group and we denote the
identity component of H(R) in the real manifold topology by H(R)0.

3 The foundations of real twisted endoscopy

This section is a digest of some early material in [KS99], in the special case that
the field of definition is equal to R. It is essentially a reproduction of chapter 3
[Mez12] and is included for convenience and completeness.

3.1 Groups and automorphisms

Let G be a connected reductive algebraic group defined over R. We take θ to be
an algebraic automorphism of G defined over R and assume additionally that it
acts semisimply on the centre ZG of G. Set G(R) to be the group of real points
of G. Let Γ be the Galois group of C/R and σ be its non-trivial element.

Let us fix a triple

(3.1) (B0, T0, {X})

in which B0 is a Borel subgroup of G, T0 ⊆ B0 is a maximal torus of G, and {X}
is a collection of root vectors corresponding to the simple roots determined by
B0 and T0 . Such triples are called splittings of G. If (B0, T0, {X}) is preserved
by Γ then it is called an R-splitting.

There is a unique quasisplit group G∗ of which G is an inner form (Lemma
16.4.8 [Spr98]). This is to say that there is an isomorphism ψ : G → G∗ and
ψσψ−1σ−1 = Int(u′) for some u′ ∈ G∗. We shall choose uσ in the simply
connected covering group G∗sc of the derived group G∗der of G∗ so that its im-
age under the covering map is u′. We shall then abuse notation slightly by
identifying uσ with u′ in equations such as

(3.2) ψσψ−1σ−1 = Int(uσ).

As G∗ is quasisplit, there is a Borel subgroup B∗ defined over R. Applying
Theorem 7.5 [Ste97] to B∗ and σ, we obtain an R-splitting (B∗, T ∗, {X∗}).
Following the convention made for uσ ∈ G∗sc, we may choose gθ ∈ G∗sc so that
the automorphism

(3.3) θ∗ = Int(gθ)ψθψ
−1

5



preserves (B∗, T ∗, {X∗}) (Theorems 6.2.7 and 6.4.1 [Spr98], 16.5 [Hum94]).
Since

σ(θ∗) = σθ∗σ−1 = Int(σ(gθuσ)g−1
θ θ∗(uσ))θ∗

preserves (B∗, T ∗, {X∗}), and the only inner automorphisms which do so are
trivial, it follows in turn that Int(σ(gθuσ)g−1

θ θ∗(uσ)) is trivial and σ(θ∗) = θ∗.
This means that the automorphism θ∗ is defined over R.

We wish to describe the action of θ induced on the L-group of G. The
splitting (3.1) determines a based root datum (Proposition 7.4.6 [Spr98]) and
an action of Γ on the Dynkin diagram of G (1.3 [Bor79]). To the dual based root
datum there is attached a dual group Ĝ defined over C, a Borel subgroup B ⊆ Ĝ
and a maximal torus T ⊆ B (2.12 [Spr79]). Let us fix a splitting (B, T , {X})
of Ĝ. This allows us to transfer the action of Γ from the Dynkin diagram of
Ĝ to an algebraic action of Ĝ (Proposition 2.13 [Spr79]). This action may be
extended trivially to the Weil group WR, which as a set we write as C× ∪ σC×
(9.4 [Bor79]). The L-group LG is defined by the resulting semidirect product
LG = ĜoWR.

In a parallel fashion, θ induces an automorphism of the Dynkin diagram
of G, which then transfers to an automorphism θ̂ on Ĝ. We define Lθ to be
the automorphism of LG equal to θ̂ × 1WR

. By definition, the automorphism θ̂
preserves (B, T , {X}).

We close this section with some remarks concerning Weyl groups. Let us
assume for the moment that B0 and T0 are preserved by θ, and T 1 is the identity
component of T θ ⊆ T0. The torus T 1 contains strongly regular elements (pp.
227-228 [Art88]), so its centralizer in G is the maximal torus T0. Setting the
identity component of Gθ equal to G1 and the Weyl group of G1 relative to T 1

equal to Ω(G1, T 1), we see that we have an embedding

Ω(G1, T 1)→ Ω(G,T )θ

into the θ-fixed elements of the Weyl group Ω(G,T ). In fact, this embedding is
an isomorphism (Lemma II.1.2 [Lab04]).

3.2 Endoscopic data and z-pairs

Endoscopic data are defined in terms of the group G, the automorphism θ, and a
cohomology class a ∈ H1(WR, ZĜ), where ZĜ denotes the centre of Ĝ. Let ω be
the quasicharacter of G(R) determined by a (pp. 122-123 [Lan89]), and let us
fix a one-cocycle a in the class a. By definition (pp. 17-18 [KS99]), endoscopic
data for (G, θ,a) consist of

1. a quasisplit group H defined over R

2. a split topological group extension

1→ Ĥ → H
c
�WR → 1,

whose corresponding action of WR on Ĥ coincides with the action given
by the L-group LH = Ĥ oWR
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3. an element s ∈ Ĝ such that Int(s)θ̂ is a semisimple automorphism (7
[Ste97])

4. an L-homomorphism (p. 18 [KS99]) ξ : H → LG satisfying

(a) Int(s) Lθ ◦ ξ = a′ · ξ (8.5 [Bor79]) for some one-cocycle a′ in the class
a

(b) ξ maps Ĥ isomorphically onto the identity component of Ĝsθ̂, the

group of fixed points of Ĝ under the automorphism Int(s)θ̂.

Despite requirement 2 of this definition, it might not be possible to define
an isomorphism between H and LH which extends the identity map on Ĥ. One
therefore introduces a z-extension (2.2 [KS99], [Lan79])

(3.4) 1→ Z1 → H1
pH→ H → 1

in which H1 is a connected reductive group containing a central torus Z1. The
surjection pH restricts to a surjection H1(R)→ H(R).

Dual to (3.4) is the extension

(3.5) 1→ Ĥ → Ĥ1 → Ẑ1 → 1.

Regarding Ĥ as a subgroup of Ĥ1, we may assume that LH embeds into LH1

and that Ĥ1 → Ẑ1 extends to an L-homomorphism

p : LH1 → LZ1.

According to Lemma 2.2.A [KS99], there is an L-homomorphism ξH1
: H →

LH1 which extends the inclusion of Ĥ → Ĥ1 and defines a topological isomor-
phism between H and ξH1

(H). Kottwitz and Shelstad call (H1, ξH1
) a z-pair

for H.
Observe that the composition

(3.6) WR
c→ H

ξH1→ LH1
p→ LZ1

determines a quasicharacter λZ1
of Z1(R) via the Local Langlands Correspon-

dence (9 [Bor79]).

3.3 Norm mappings

Our goal here is to fix endoscopic data (H,H, s, ξ) as defined in the previous
section and to describe a map from the semisimple conjugacy classes of the
endoscopic group H to the semisimple θ-conjugacy classes of G. The map uses
the quasisplit form G∗ as an intermediary. The reference for this section is
chapter 3 [KS99].

Since we are interested in semisimple conjugacy classes, and semisimple
elements lie in tori, we shall begin by defining maps between the tori of H and
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G∗. Suppose BH is a Borel subgroup of H containing a maximal torus TH
and (BH , TH , {XH}) is the splitting of Ĥ used in the definition of LH (section
3.1). Suppose further that B′ is a Borel subgroup of G∗ containing a maximal
torus T ′, and that both are preserved by θ∗.1 We may assume that s ∈ T ,

ξ(TH) = (T θ̂)0 and ξ(BH) ⊆ B. The pairs (B̂H , T̂H) and (BH , TH) determine
an isomorphism T̂H ∼= TH . Similarly, through the pairs (B̂′, T̂ ′) and (B, T ),
we conclude that T̂ ′ ∼= T . We may combine the former isomorphism with
requirement 4b of §3.2 for the endoscopic map ξ to obtain isomorphisms

T̂H ∼= TH
ξ∼= (T θ̂)0.

To connect (T θ̂)0 with T ′, we define T ′θ∗ = T ′/(1 − θ∗)T ′ and leave it as an

exercise to prove that ((T̂ ′)θ̂)0 ∼= T̂ ′θ∗ . Combining this isomorphism with the
earlier ones, we obtain in turn that

(3.7) T̂H ∼= TH
ξ∼= (T θ̂)0 ∼= ((T̂ ′)θ̂)0 ∼= T̂ ′θ∗ ,

and TH ∼= T ′θ∗ .
The isomorphic groups TH and T ′θ∗ are related to the conjugacy classes,

which we now define. The θ∗-conjugacy class of an element δ ∈ G∗ is defined
as {g−1δθ∗(g) : g ∈ G∗}. The element δ is called θ∗-semisimple if the automor-
phism Int(δ)θ∗ preserves a Borel subgroup of G∗ and maximal torus thereof.
A θ∗-semisimple θ∗-conjugacy class is a θ∗-conjugacy class of a θ∗-semisimple
element. Let Cl(G∗, θ∗) be the set of all θ∗-conjugacy classes and Clss(G

∗, θ∗)
be the subset of θ∗-semisimple θ∗-conjugacy classes. With this notation in hand,
we look to Lemma 3.2.A [KS99], which tells us that there is a bijection

Clss(G
∗, θ∗)→ T ′θ∗/Ω(G∗, T ′)θ

∗
,

given by taking the coset of the intersection of a θ∗-conjugacy class with T ′.
The aforementioned map specializes to give the bijections on either end of

(3.8) Clss(H)↔ TH/Ω(H,TH)→ T ′θ∗/Ω(G∗, T ′)θ
∗
↔ Clss(G

∗, θ∗).

To describe the remaining map in the middle of (3.8), recall from (3.7) that
the isomorphism between TH and T ′θ∗ is obtained by way of ξ. Using these
ingredients and the closing remarks of §3.1, we obtain maps

Ω(H,TH) ∼= Ω(Ĥ, T̂H) ∼= Ω(Ĥ, TH)→ Ω(Ĝ∗, T )θ̂ ∼= Ω(G∗, T ′)θ
∗
.

This completes the description of the map from Clss(H) to Clss(G
∗, θ∗).

We proceed by describing the map from Clss(G
∗, θ∗) to Clss(G, θ). The

function m : G→ G∗ defined by

(3.9) m(δ) = ψ(δ)g−1
θ , δ ∈ G

1Readers of [KS99] should note that we write T ′ for the torus T occurring there.
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passes to a bijection from Cl(G, θ) to Cl(G∗, θ∗), since

m(g−1δθ(g)) = ψ(g)−1m(δ) θ∗(ψ(g)).

We abusively denote this map on θ∗-conjugacy classes by m as well. It is pointed
out in 3.1 [KS99] that this bijection need not be equivariant under the action
of Γ. One of our key assumptions is that the element gθ of (3.3) may be chosen
so that

(3.10) gθuσσ(g−1
θ )θ∗(uσ)−1 ∈ (1− θ∗)ZG∗sc .

Under this assumption m is Γ-equivariant ((3) Lemma 3.1.A [KS99])). Finally,
we may combine this bijection with (3.8) to obtain a map

AH\G : Clss(H)→ Clss(G, θ).

In keeping with 3.3 [KS99], we define an element δ ∈ G to be θ-regular if
the identity component of Gδθ is a torus. It is said to be strongly θ-regular
if Gδθ itself is abelian. An element γ ∈ H is said to be (strongly) G-regular
if the elements in the image of its conjugacy class under AH\G are (strongly)
regular. An element γ ∈ H(R) is called a norm of an element δ ∈ G(R) if the
θ-conjugacy class of δ equals the image of the conjugacy class of γ under AH\G.
It is possible for AH\G(γ) to be a θ-conjugacy class which contains no points
in G(R) even though γ ∈ H(R). In this case one says that γ is not a norm.
These definitions are carried to the z-extension H1 in an obvious manner. For
example, we say that γ1 ∈ H1(R) is a norm of δ ∈ G(R) if the image of γ1 in
H(R) under (3.4) is a norm of δ.

As in 3.3 [KS99], we conclude with a portrayal of the situation when a
strongly regular element γ ∈ H(R) is the norm of a strongly θ-regular element
δ ∈ G(R). We may let TH = Hγ as γ is strongly regular. The maximal torus TH
is defined over R since γ lies in H(R). Lemma 3.3.B [KS99] allows us to choose
BH , B′ and T ′ as above so that θ∗(B′) = B′, and both T ′ and the isomorphism
TH ∼= T ′θ∗ are defined over R. The resulting isomorphism

(3.11) TH(R) ∼= T ′θ∗(R)

is called an admissible embedding in 3.3 [KS99]. The image of γ under this
admissible embedding defines a coset in T ′/Ω(G∗, T ′)θ

∗
. This coset corresponds

to the θ∗-conjugacy class of m(δ). In fact, by Lemma 3.2.A [KS99] there exists
some gT ′ ∈ G∗sc such that (after gT ′ has been identified with its image in G∗),
this coset equals gT ′m(δ)θ∗(gT ′)

−1Ω(G∗, T ′)θ
∗
. The element

(3.12) δ∗ = gT ′ m(δ) θ∗(gT ′)
−1

belongs to T ′ and it is an exercise to show that Int(gT ′)◦ψ furnishes an isomor-
phism between Gδθ and (G∗)δ

∗θ∗ . Since Int(δ∗)◦θ∗ preserves (B′, T ′), the torus
(G∗)δ

∗θ∗ contains strongly G-regular elements of T ′ (pp. 227-228 [Art88]) so we
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see in turn that the centralizer of (G∗)δ
∗θ∗ in G∗ is T ′, and (G∗)δ

∗θ∗ = (T ′)θ
∗
.

By (3.3.6) [KS99], the resulting isomorphism

(3.13) Gδθ
Int(gT ′ )ψ−→ (T ′)θ

∗

is defined over R.

3.4 Twisted geometric transfer

Twisted geometric transfer is laid out generally in 5.5 [KS99]. For real groups,
it has been proven in [She12]. It shall be convenient for us to state twisted
geometric transfer in the framework of orbital integrals on the componentG(R)θ
of the group G(R)o 〈θ〉. Let δ ∈ G(R) be θ-semisimple and strongly θ-regular,
and assume that the quasicharacter ω is trivial on Gδθ(R). Let C∞c (G(R)θ) be
the space of smooth compactly supported functions on the component G(R)θ.
Define the twisted orbital integral of f ∈ C∞c (G(R)θ) at δθ ∈ G(R)θ to be

Oδθ(f) =

∫
Gδθ(R)\G(R)

ω(g) f(g−1δθg) dg.

We wish to match functions in C∞c (G(R)θ) with functions on the z-extension
H1. Specifically, let C∞c (H1(R), λZ1) be the space of smooth functions fH1 on
H1(R) whose support is compact modulo Z1(R) and which satisfy

fH1
(zh) = λZ1

(z)−1fH1
(h), z ∈ Z1(R), h ∈ H1(R)

(see the end of §3.2). The definition of orbital integrals easily carries over to
functions of this type at semisimple regular elements.

Suppose γ1 ∈ H1(R) is a norm of a θ-semisimple strongly θ-regular element
δ ∈ G(R). According to Corollary 2.2 [She12], for every f ∈ C∞c (G(R)θ) there
exists a function fH1 ∈ C∞(H1(R), λZ1) as above such that

(3.14)
∑
γ′1

Oγ′1(fH1) =
∑
δ′

∆(γ1, δ
′)Oδ′θ(f).

The sum on the left is taken over representatives in H1(R) of H1(R)-conjugacy
classes contained in the H1-conjugacy class of γ1. The sum on the right is taken
over representatives in G(R) of θ-conjugacy classes under G(R) contained in
the θ-conjugacy class of δ. The terms ∆(γ1, δ

′) are geometric transfer factors
and are defined in chapter 4 [KS99]. Normalization is required for the measures
in the orbital integrals to be compatible (p. 71 [KS99]). We assume that the
map f 7→ fH1 induces a map from stably invariant distributions on H1(R) to
distributions on G(R) as in standard endoscopy (Remark 2, 6 [Bou94]).

4 Spectral transfer for the fundamental series

The first step in proving spectral transfer in standard endoscopy for real groups
is the case of essentially square-integrable representations (13 [She10], 4.4 [She82]).
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This was done in for twisted endoscopy for θ of finite order and trivial quasichar-
acter ω (Theorem 1 [Mez12]). It amounts to an identity of the form∫

H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh(4.1)

=
∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ (f)

for all f ∈ C∞c (G(R)θ). The restrictions on θ and ω were due to the lack of
a sufficiently general version of Harish-Chandra’s Uniqueness Theorem in the
twisted case. The required version of this theorem is proven in the appendix
(Proposition A.4) . The spectral transfer theorem (4.1) therefore now holds for
arbitrary quasicharacter ω and θ of any order when Πϕ consists of essentially
square-integrable representations.

The purpose of this section is to prove (4.1) when Πϕ consists more gen-
erally of fundamental series representations. By “fundamental series” we have
in mind the representations presented in III.3 [Duf82]. For convenience, let
us call the essentially square-integrable representations the discrete series, and
highlight some differences with the fundamental series. The discrete series is
determined by regular forms of elliptic tori. By contrast the fundamental series
is determined by regular forms of fundamental tori. The main difference here is
that elliptic tori are compact modulo the centre, whereas fundamental tori are
merely maximally compact modulo the centre. The compact portion of a fun-
damental torus takes on the role of an elliptic torus in the discrete case, and a
fundamental series representation is obtained by inducing the resulting discrete
series representation.

Luckily, the character expansions of Bouaziz (Proposition 6.1.2 [Bou87]),
which lie at the core of the spectral transfer theorem for the discrete series,
remain the same for the fundamental series. Thus, the foremost tasks in proving
spectral transfer for the fundamental series are to convert the language of Duflo
into endoscopic parameters, and then to show that this conversion retains the
hypotheses necessary for Bouaziz’ character expansions. We begin by providing
the said endoscopic parameters. We shall do so in the form of six assumptions.

The quadruple (H,H, s, ξ) is a fixed set of endoscopic data together with
a z-pair (H1, ξH1

) as in section 3.2. We take an L-parameter ϕH1 which is
the Ĥ1-conjugacy class of an admissible homomorphism ϕH1

: WR → LH1 (8.2
[Bor79]). We suppose that the composition of ϕH1 with LH1 → LZ1 corresponds
to the quasicharacter λZ1 : Z1(R) → C× of (3.6) under the Local Langlands
Correspondence. The endoscopic Langlands parameter ϕH1 corresponds to a
Langlands parameter ϕ∗ of the quasisplit form G∗ (6 [Mez12]). Our first as-
sumption is that ϕH1

is not contained in a proper parabolic subgroup of LH1.
This is equivalent to the assertion that the L-packet ΠϕH1

consists of essentially
square-integrable representations ((3) 10.3 [Bor79]).

Our second assumption is that there exists a strongly θ-regular element δ ∈
G(R) which has a norm γ ∈ H(R) (section 3.3), and (Gδθ/ZθG)(R) is compact.
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A strongly θ-regular element inG(R) satisfying the latter compactness condition
is called θ-elliptic (p. 5 [KS99]). This compactness condition may be translated
to a maximal torus. We say that a maximal torus S in G, which is defined
over R, is fundamental if R(G,S) has no real roots. This is equivalent to S(R)
being a maximally compact Cartan subgroup in G(R) (Lemma 2.3.5 [Wal88]).
Similarly, on the level of Lie algebras, one says that s is fundamental if R(g ⊗
C, s,⊗C) has no real roots.

Lemma 4.1. The element δ ∈ G(R) determines a unique maximal torus S of G
which contains Gδθ. Moreover, the torus S is defined over R and is fundamental.

Proof. By definition of strongly θ-regular, Gδθ is an abelian group. It contains
strongly G-regular elements (pp. 227-228 [Art88]), so that the identity com-
ponent of ZG(Gδθ) is a maximal torus of G, which is uniquely determined by
δ. Suppose first that the centre ZG is trivial. Then Gδθ(R) is compact, for
δ is θ-elliptic. The Lie algebra of Gδθ(R) is therefore contained in a Cartan
subalgebra of the Lie algebra of a maximally compact subgroup of G(R). The
centralizer of this Cartan subalgebra in g is a fundamental Cartan subalgebra s
of g (Proposition 6.60 [Kna96]). The exponential of s ⊗C is a maximal torus
S in G (Corollary 15.3 [Hum94]). By construction, the torus S is defined over
R and S(R) is maximally compact. Furthermore, S contains Gδθ so that it is
equal the uniquely determined torus mentioned above.

Now we remove the assumption that ZG is trivial and observe that there
is a canonical bijection between the set of maximal tori of G and the set of
maximal tori of the semisimple algebraic group G/ZG, which is induced by the
quotient map. The quotient map is defined over R (Theorem 12.2.1 [Spr98]).
This bijection therefore passes to a bijection of maximal R-tori. In addition,
the quotient map sends δ to an element of (G/ZG)(R), and it is immediate that
this element retains the analogues of the properties of strong θ-regularity and
θ-ellipticity. By our earlier argument, we obtain a maximal torus of G/ZG. The
pre-image of this torus under the quotient map is a maximal torus in G with
the desired properties.

By construction, the torus S of Lemma 4.1 is stable under Int(δ)θ and iso-
morphism (3.13) passes an isomorphism

Sδθ(R)0 Int(gT ′ )ψ−→ (T ′)θ
∗
(R)0.

In fact, this map extends to an isomorphism of the respective centralizers

(4.2) S(R)
Int(gT ′ )ψ∼= T ′(R),

as the commutator of σ and Int(gT ′)ψ lies in Int(T ′) ((3.3.6) [KS99]) and acts
trivially on T ′.

One may decompose S into a product of a maximally split subtorus Sd and a
maximally anisotropic subtorus Sa (Proposition 8.15 [Bor91]). The centralizer
M = ZG(Sd) is a Levi subgroup of G which is defined over R (Proposition 20.4
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[Bor91]). By construction, ZM ⊇ Sd and it therefore follows that S is elliptic
in M . The torus Sd is also the split component of the centre of M (Proposition
20.6 [Bor91]). The usual notation for the latter is AM . Observe that since
Int(δ)θ is defined over R and preserves S, it also preserves Sd = AM and M .

Our third assumption is that ϕ∗ has a representative homomorphism ϕ∗

whose image is minimally contained in a parabolic subgroup of LG, and that
this parabolic subgroup is dual, in the sense of 3.3 (2) [Bor79], to an R-parabolic
subgroup P of G with Levi component M . In the language of 8.2 [Bor79], this
translates as the the parabolic subgroup of LG being relevant, and ϕ∗ being
admissible with respect to G. Under this assumption, we set ϕ = ϕ∗ with the
intention that ϕ be regarded as a Langlands parameter of G.

We choose a Levi subgroupM of Ĝ and an admissible homomorphism ϕ ∈ ϕ
such that M ∼= M̂ and M o WR is a standard Levi subgroup of LG which
contains ϕ(WR) minimally (3.4 [Bor79], 4.1 [Mez12]). We may thus regard ϕ
as an admissible homomorphism into MoWR and derive from it an L-packet
Πϕ,M of essentially square-integrable representations of M(R) (10.3 (3) and
11.3 [Bor79]).

Our fourth assumption is that the representations in Πϕ,M have unitary
central character. From this, the Local Langlands Correspondence prescribes
that the representations in Πϕ are the irreducible subrepresentations of the
representations induced from those in Πϕ,M (11.3 [Bor79]).

Before making our fifth assumption we must recall some facts about the
homomorphism ϕ and the L-packet Πϕ,M . The homomorphism ϕ is determined

by a pair µ, λ ∈ X∗(Ŝ)⊗C (3 [Lan89], 4 [Mez12]). One may regard the elements
in this pair as elements in the dual of the complex Lie algebra of S via the
isomorphisms X∗(Ŝ) ∼= X∗(S) and

(4.3) X∗(S)⊗C ∼= s∗ ⊗C.

To be more precise isomorphism (4.3) is an isomorphism of R[Γ]-modules, given
that Γ acts on both X∗(S) and C in the usual way (cf. 9.4 [Bor79]). In other
words, isomorphism (4.3) rests upon an isomorphism

(4.4) (X∗(Sa)⊗ iR)⊕ (X∗(Sd)⊗R) ∼= s∗

of R-vector spaces. The pair may be lifted to a quasicharacter of S(R) in the
following manner. The element µ is M̂ -regular and so determines a positive
system on R(M,S) (Lemma 3.3 [Lan89]). Let ιM ∈ X∗(Ŝ)⊗C be the half-sum
of the positive roots of R(M,S). The pair (µ − ιM , λ) corresponds to a linear
form on s, and satisfies a condition which allows one to lift to a quasicharacter
Λ = Λ(µ− ιM , λ) of S(R) (p. 132 [Lan89], 4.1 [Mez12]).

By the work of Harish-Chandra, the quasicharacter Λ corresponds to an es-
sentially square-integrable representation of ZM (R)Mder(R)0 ([HC66]). Induc-
ing this representation to M(R) produces an irreducible representation $Λ ∈
Πϕ,M (p. 134 [Lan89]). The remaining representations of Πϕ,M are obtained
by replacing Λ by w−1Λ = Λ(w−1 · (µ− ιM ), λ), where w ∈ Ω(M,S)/ΩR(M,S)
(see 4.1 [Mez12]).
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Let us consider the differential of the quasicharacter Λ. The differential
only records the behaviour of Λ on the identity component S(R)0 and this
behaviour is given precisely by µ− ιM (4.1 [She81]). The infinitesimal character
of $Λ corresponds to µ and the restriction of this infinitesimal character to
s ∩ [m,m] ⊆ sa is equal to the Harish-Chandra parameter of the underlying
representation of Mder(R)0 (p. 310 [Kna86]).

Our fifth assumption is really two separate regularity assumptions. The first
regularity assumption is that µ is Ĝ-regular, that is

〈µ, α〉 6= 0, α ∈ R(Ĝ, Ŝ).

The second regularity assumption pertains to Duflo’s characterization of fun-
damental series representations, and this depends on the behaviour of µ on the
anisotropic part Sa(R) of S(R)0 ((ii) III.1 [Duf82]). By identifying µ with a
linear form in s∗ ⊗C under (4.3), the second regularity assumption reads as〈

µ|sa , α
〉
6= 0, α ∈ R(Ĝ, Ŝ).

Holding this view, the second regularity assumption is equivalent to the g⊗C-
regularity of the s∗a⊗C-component of µ. Alternatively, the µ|sa may be regarded
as the restriction to Sa of µ ∈ X∗(S)⊗C.

We come to our sixth and final assumption. In order for twisted spectral
transfer to have any content, we assume that Πϕ is stable under twisting, that
is

Πϕ = ω ⊗ (Πϕ ◦ θ)

(see 4.3 [Mez12]).
We list the six assumptions of this section again for convenience.

Assumption 1 ϕH1
is not contained in a proper parabolic subgroup of LH1.

Assumption 2 There exists a strongly θ-regular and θ-elliptic element δ ∈
G(R) which has a norm γ ∈ H(R).

Assumption 3 ϕ∗ has a representative ϕ∗ whose image is minimally contained
in a parabolic subgroup of LG which is dual to an R-parabolic subgroup
P with Levi component M .

Assumption 4 The representations in Πϕ,M have unitary central character.

Assumption 5 The elements µ and µ|sa in X∗(Ŝ)⊗C are Ĝ-regular.

Assumption 6 Πϕ = ω ⊗ (Πϕ ◦ θ).

4.1 Fundamental series representations

Our goal here is to show that the L-packet Πϕ, given under the previous as-
sumptions, consists of fundamental series representations as defined by Du-
flo in III [Duf82]. By definition, the representations in Πϕ are (equivalence
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classes of) irreducible subrepresentations of ind
G(R)
P (R)$, where $ ∈ Πϕ,M (11.3

[Bor79], parabolic induction throughout is normalized). Recall that $Λ ∈ Πϕ,M

is induced from an irreducible representation of ZM (R)Mder(R)0. More pre-
cisely, there exists a square-integrable (i.e. discrete series) representation $0 of
Mder(R)0 such that

(4.5) $Λ
∼= ind

M(R)
ZM (R)Mder(R)0 (χϕ ⊗$0) ,

where χϕ is the central character of $Λ (or any other representation in Πϕ,M ).
Using isomorphism (4.3), one may identify the infinitesimal character of $Λ

with µ. In addition, since 〈µ, α∨〉 ∈ R for all α ∈ R(M,S) (proof of Lemma
3.3 [Lan89]) and χϕ is unitary on ZM (R) it follows from Corollary 6.49 [Kna96]
that iµ ∈ s∗ (cf. (4.4)). In particular

(4.6) σ(µ) = −µ.

This infinitesimal character must satisfy three criteria in order for ind
G(R)
P (R)$Λ to

be in the fundamental series. Two of the three criteria are covered by Assump-
tion 5. The g⊗C-regularity of µ fulfils the criterion that iµ be bien polarisable
(Lemma 7 II and III.1 [Duf82]). The g ⊗C-regularity of s∗a ⊗C-component of
µ fulfils the criterion of iµ being standard ((ii) III.1 [Duf82]).

To state the third criterion we define ρ to be the half-sum of positive roots
in R(g⊗C, s⊗C) determined by the regular element µ|sa . The third criterion
is that µ− ρ lifts to a quasicharacter of S(R)0 (Remark 2 II.2 [Duf82]). This is
equivalent to iµ being admissible in the parlance of Duflo.

Lemma 4.2. The linear form µ−ρ ∈ s∗⊗C lifts to a quasicharacter of S(R)0.

Proof. Since Sd(R)0Sa(R) is a closed connected subgroup of the same dimension
as S(R)0, we see that S(R)0 = Sd(R)0Sa(R). It is clear from the isomorphism
sd ∼= Sd(R)0 that (µ−ρ)|sd lifts to a quasicharacter of Sd(R)0. To lift (µ−ρ)|sa
we observe that −σ(µ|sa) = µ|sa (cf. (4.6)). It follows that −σ(ρ) = ρ and

ρ =

1

2

∑
imaginary

α

+

1

2

∑
complex

α+ (−σ(α))

 .

The sum on the left corresponds to ιM (Lemma 15.3.2 [Spr98]). By 4.1 [She81],
the form (µ − ιM )|sa lifts to Λ = Λ(µ − ιM , λ) on Sa(R). The lemma will
therefore be complete once we show that the second sum lifts to Sa(R). For
this, we compute that

1

2

∑
complex

(α− σ(α))|sa =
1

2

∑
complex

α|sa + α|sa =
∑

complex

α|sa

and note that all integer combinations of roots lift to S(R) ((4.15) [Kna86]).

We have now verified the criteria µ must satisfy for us to describe Πϕ in
Duflo’s framework.
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Lemma 4.3. The representation ind
G(R)
P (R)$Λ is irreducible and equivalent to

(4.7) ind
G(R)
ZG(R)G(R)0

(
(χϕ)|ZG(R) ⊗ ind

G(R)0

P (R)∩G(R)0$1

)
where $1 is defined in terms of (4.5) as

$1 = ind
M(R)∩G(R)0

ZM (R)0Mder(R)0((χϕ)|ZM (R)0 ⊗$0).

Proof. The reader may verify that the distribution characters of ind
G(R)
P (R)$Λ and

(4.7) agree on the regular subset of S(R). The equivalence of the two represen-
tations then follows from Harish-Chandra’s Uniqueness Theorem (Theorem 12.6
[Kna86]). The irreducibility of (4.7) follows in two steps. First we show that it
is equal to representation (8) on page 172 [Duf82]. The latter representation is
written as

(4.8) Ind
G(R)
ZG(R)G(R)0(τ ⊗ TG(R)0

g ).

Here, g ∈ g∗ is an element which is admissible, bien polarisable and standard.

As discussed above, we may take g = iµ. The expression T
G(R)0

g is defined as

ind
G(R)0

P (R)∩G(R)0$1 (p. 164 [Duf82]). The term τ is an irreducible representation

of a metaplectic group, but only its restriction to ZG(R) is relevant in (4.8). We
may take τ|ZG(R) = (χϕ)|ZG(R). With these substitutions, one sees that (4.7) is
equal to (4.8).

The irreducibility of (4.8) follows from from Lemma 8 (i) III.6 [Duf82] once
we show that S(R) = ZG(R)S(R)0 (Remark 2 III.5 [Duf82]). When G is
semisimple this identity follows from Lemma 10.4 [Kot86]. When G is reductive,
the semisimple case reduces the exact sequence

H2(Γ, X∗(Z
0
G))→ H2(Γ, X∗(S))→ H2(Γ, X∗(S/Z

0
G))

to a surjection
Z0
G(R)/ZG(R)0 → S(R)/S(R)0 → 1

(cf. 4.1 [She81]). This surjection implies S(R) = ZG(R)S(R)0.

Corollary 4.4. Every representation of G(R) parabolically induced from an
irreducible representation in Πϕ,M is irreducible.

Proof. The representations of Πϕ,M are obtained by replacing $Λ by $w−1Λ,
where w ∈ Ω(M,S)/ΩR(M,S) (see 4.1 [Mez12]). The arguments of the proof are
unaffected by replacing Λ with ẇ−1Λ and µ by ẇ−1 ·µ for any ẇ ∈ Ω(M,S).

Corollary 4.4 tells us that parabolic induction furnishes a bijection between
Πϕ,M and Πϕ. Moreover, every representation in in Πϕ has an expansion as in
(4.7). From the perspective of III [Duf82], this equivalent to saying that every
representation in Πϕ belongs to the fundamental series of G(R).

16



4.2 Twisted characters

As claimed earlier, the character expansions of Bouaziz (Proposition 6.1.2 [Bou87])
apply equally well to discrete series and fundamental series representations. We
shall address this claim in the context of the twisted characters. In this section
we suppose that that representation

π = ind
G(R)
P (R)$Λ ∈ Πϕ

is stable under twisting. More precisely, we suppose that there exists a unitary
linear operator U = Uπ on the space Vπ of π such that

(4.9) U ◦ π(x) = ω(x)πθ(x) ◦ U, x ∈ G(R).

We define the twisted character Θπ,U as the distribution on G(R) given by

f 7→ tr

∫
G(R)

f(xθ)π(x) U dx, f ∈ C∞c (G(R)θ)

(see (34) [Mez12]). This is the kind of distribution which appears on the right
of (4.1).

There is a technical point we must verify in order to use Bouaziz’ character
formula later on. By the reduction of 5.1 [Mez12], this point needs only to
be verified the case that G(R) is semisimple and connected in the manifold
topology. Let us assume for the rest of §4.2 that this is so. In this way, we
temporarily remove the quasicharacter ω from the picture and associate the
representation π to a representation of the larger disconnected Lie group

L = G(R) o 〈δθ〉.

In the context of this group Θπ,U may be identified with the restriction of the
distribution character to the connected component G(R) o δθ ⊆ L. Under this
identification, Bouaziz’ character formula on L delivers an explicit formula for
Θπ,U on θ-regular and θ-elliptic elements of G(R) (Lemma 6 [Mez12]). This was
explained in great detail in 5 [Mez12] for discrete series representations. The
only noteworthy difference in the case of the fundamental series is in proving
that the parameter µ occurring in Λ = Λ(µ − ιM , λ) is elliptic, i.e. that its
restriction to Sd is trivial (5.2 [Bou87]). Indeed, in the case of discrete series
the torus S is elliptic so that Sd is itself trivial and there is nothing to prove.
This is the technical point alluded to above.

Lemma 4.5. The parameter µ is elliptic.

Proof. The element µ ∈ X∗(S)⊗C is obtained from µH1
∈ X∗(TH1

)⊗C. To be
more precise, µH1

lies in the image of X∗(TH)⊗C ↪→ X∗(TH1
)⊗C (6 [Mez12]),

and µ is obtained through the sequence of Γ-module homomorphisms

X∗(TH) = X∗(TH)
ξ∼= X∗((T θ̂)0) ∼= X∗(T ′θ∗) ↪→ X∗(T ′)

(4.2)∼= X∗(S).
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There is a surjection Sδθ(R)→ TH(R) (proof of Lemma 12 [Mez12]) and under
our assumptions Sδθ(R) is compact. It follows in turn that TH(R) is compact,
X∗(TH)1−σ = X∗(TH) (9.4 [Bor79]), σ(µH1

) = −µH1
σ(µ) = −µ, and µ|Sd =

0.

4.3 A parameterization of stable data

There are two sorts of stable data underlying the spectral transfer identity (4.1).
The first sort is geometric and is related to the pair of elements δ ∈ G(R) and
γ1 ∈ p−1

H (γ) ⊆ H1(R). Explicitly, the stable geometric data are the θ-conjugacy
classes under G(R) of elements in G(R) whose norm is γ1, that is the collection
of sets

{x−1δ′θ(x) : x ∈ G(R)}

where δ′ ∈ G(R) runs through the representatives which have norm γ1. By
Assumption 2, δ is a representative of such a conjugacy class. This collection
of sets is basic to geometric transfer (5.5 [KS99]). When S is elliptic in G and
θ is trivial, this collection of stable data is parameterized by the collection of
cosets Ω(G,S)/ΩR(G,S) (6.4 [Lab08]). Our first effort will be to describe how
this parameterizing set is altered when S is fundamental and θ is non-trivial.

The second sort of stable data is spectral and is related to representations
in the L-packet Πϕ. Again, when S is elliptic in G and θ is trivial these rep-
resentations are parameterized by Ω(G,S)/ΩR(G,S) (7.1 [Lab08]). We shall
describe in the general case how this spectral parameterizing set is altered and
becomes object attached to M .

Upon having described parameterizing sets of the stable geometric and spec-
tral sorts, we connect them through a canonical surjection. This is indispensable
in the proof of (4.1) for it connects the data of geometric transfer map f 7→ fH1

to the L-packets Πϕ and ΠϕH1
.

Let us begin geometric parameterization by looking back to some cosets
presented in 6.1 [Mez12]. One may dissect Ω(G,S)/ΩR(G,S) and extract the
coset space NG(S)/NG(R)(S). When S is elliptic in G the elements in NG(S)
act as R-automorphisms of S (Lemma 6.4.1 [Lab08]). This is not so in general,
and the elements of NG(S) which act as R-automorphisms form the subgroup
NG(Sσ) = NG(S(R)). A moment’s reflection reveals that NG(R)(S) and S are
subgroups of NG(S(R)) so that we may consider the collection of double cosets

S\NG(Sσ)/NG(R)(S).

This collection may be identified with

(4.10) Ω(G,S)σ/ΩR(G,S).

This will be seen to be the parameterizing set of the stable geometric data when
θ is trivial. However, as seen in 6.1 [Mez12], twisting by θ forces us to consider
the collection of double cosets

Sδθ\NG(Sσ)/NG(R)(S).
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In fact, the only double cosets SδθxNG(R)(S) which are of interest are those
which satisfy

(4.11) x−1δθx(δθ)−1 ∈ G(R).

This being so, we define

(4.12) Sδθ\(NG(Sσ)/NG(R)(S))δθ

to be the collection of double cosets whose representatives x ∈ NG(Sσ) satisfy
(4.11). The following two results justify the above claims.

Lemma 4.6. Suppose x ∈ G and x−1δθ(x) ∈ G(R). Then Int(x−1)|S is defined
over R. In particular, if x also belongs to NG(S) then x ∈ NG(Sσ).

Proof. It suffices to show that Int(xσ(x−1))|S is the identity map. From (3.12)

we know that γ1 being a norm of δ entails that δ∗ = gT ′m(δ)θ∗(g−1
T ′ ) for some

gT ′ ∈ G∗sc. According to Lemma 4.4.A [KS99] the element gT ′uσσ(g−1
T ′ ) belongs

to T ′sc. Likewise, x−1δθ(x) has norm γ1. Indeed, following the computations of
3.1 [KS99] we observe that

m(x−1δθ(x)) = ψ(x−1)m(δ) θ∗(ψ(x))

so that
δ∗ = gT ′ψ(x)m(x−1δθ(x)) θ∗(gT ′ψ(x))−1.

We may thus apply Lemma 4.4.A [KS99] to the element gT ′ψ(x) in place of gT ′ ,
to find that gT ′ψ(x)uσσ(gT ′ψ(x))−1 belongs to T ′sc. Therefore conjugation of
T ′ by gT ′ψ(x)uσσ(gT ′ψ(x))−1 is trivial. Under transport by (4.2), this implies
that the restriction to S of

ψ−1Int(gT ′)
−1 Int(gT ′ψ(x)uσσ(gT ′ψ(x))−1) Int(gT ′)ψ

is the identity map. For simplicity, we write g = gT ′ and compute

ψ−1Int(g)−1 Int(gψ(x)uσσ(gψ(x))−1) Int(g)ψ

= Int(x)ψ−1Int(uσ) Int(σ(ψ(x−1)g−1)) Int(g)ψ

= Int(x)σ−1ψ−1σ Int(σ(ψ(x−1)g−1)) Int(g)ψ

= Int(xσ(x−1)) (σ−1(Int(g)ψ)−1σInt(g)ψ)

= Int(xσ(x−1)),

where the last equality follows from (4.2) being defined over R.

The next lemma is a slightly amended version of Lemma 14 [Mez12]. Only
the surjectivity argument is affected when S is not elliptic in G.

Proposition 4.7. Suppose x ∈ NG(Sσ) satisfies (4.11). Then the map defined
by

x 7→ x−1δθ(x)

passes to a bijection from (4.12) to the collection of θ-conjugacy classes under
G(R) of elements in G(R) whose norm is γ1.

19



Proof. Suppose x ∈ NG(Sσ) satisfies (4.11). Since δ belongs to G(R), property
(4.11) is equivalent to x−1δθ(x) ∈ G(R). As γ1 is a norm of δ it is also a
norm of x−1δθ(x). It is simple to verify that any element in the double coset
Sδθ\x/NG(R)(S) maps to an element which is θ-conjugate to x−1δθ(x) under
G(R). Thus, we have a well-defined map from (4.12) to the desired collection
of θ-conjugacy classes.

To show that this map is surjective, suppose now that x ∈ G is any element
satisfying x−1δθ(x) ∈ G(R), that is, an element in G(R) whose norm is γ1.
The automorphism Int(x−1δθ(x))θ is defined over R. Therefore, the group

Gx
−1δθ(x)θ is defined over R. The property that x−1δθ(x) ∈ G(R) implies in

turn that xσ(x−1) ∈ Gδθ and

Gx
−1δθ(x)θ(R) = (x−1Gδθx)(R) = x−1Gδθ(R)x.

The quotient Gx
−1δθ(x)θ(R)/ZθG(R) = x−1(Gδθ(R)/ZθG(R))x is compact, for δ

is θ-elliptic. Using Lemma 2.3.4 [Wal88] and the arguments of Lemma 4.1, one

may show that there exists g ∈ G(R) such that g−1Gx
−1δθ(x)θ(R)g lies in the

torus S(R). Hence,

S ⊇ g−1Gx
−1δθ(x)θg = (xg)−1Gδθ xg = (xg)−1Sδθ xg.

The group Sδθ contains strongly G-regular elements (pp. 227-228 [Art88]). The
previous containment therefore implies that xg ∈ NG(S). Furthermore, the
element (xg)−1δθ(xg) belongs to G(R) so that xg ∈ NG(Sσ) by Lemma 4.6.
It is clear that xg ∈ NG(Sσ) maps to the same θ-conjugacy class as x−1δθ(x)
under G(R), and surjectivity is proven.

To prove injectivity, suppose that x1, x2 ∈ G are representatives for dou-
ble cosets in (4.12) such that x−1

1 δθ(x1) and x−1
2 δθ(x2) belong to the same

θ-conjugacy class under G(R). Then there exists g ∈ G(R) such that

x−1
1 δθ(x1) = (x2g)−1δθ(x2g)

and it follows that
x2gx

−1
1 ∈ Gδθ = Sδθ.

This implies that g ∈ NG(R)(S), and x1 and x2 represent the same double coset
in (4.12).

Let us point out that there is some redundancy in the notation of (4.12). If
x ∈ NG(S) satisfies (4.11) then it satisfies x−1δθ(x) ∈ G(R). Lemma 4.6 then
tells us that x ∈ NG(Sσ). As a result, (4.12) could have been written more
simply as

Sδθ\(NG(S)/NG(R)(S))δθ.

We prefer the notation of (4.12) as it highlights a distinction which is absent for
elliptic tori, and reduces more readily to (4.10) when θ is trivial.

We now turn to the parameterization of the spectral data Πϕ. Our assump-
tions on ϕ dictate that induction furnishes a bijection between Πϕ,M and Πϕ
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(Lemma 4.3). The L-packet Πϕ,M of essentially square-integrable representa-
tions of M(R) is parameterized by the coset space Ω(M,S)/ΩR(M,S) (see (21)
[Mez12]). We wish to ascertain the cosets which parametrize the representations
in Πϕ which are stable under twisting by (ω, θ). Define (Ω(M,S)/ΩR(M,S))δθ

to be the subset of those cosets in Ω(M,S)/ΩR(M,S) which have a representa-
tive w ∈ Ω(M,S) satisfying

(4.13) w−1 δθ w(δθ)−1 ∈ ΩR(M,S).

Suppose $Λ is a representation in Πϕ,M which is stable under twisting. Sup-
pose w ∈ Ω(M,S) is a representative of a coset in Ω(M,S)/ΩR(M,S). Then
according to Lemma 15 [Mez12]

$w−1Λ
∼= ω|M(R) ⊗$δθ

w−1Λ

if and only if w satisfies (4.13).

Proposition 4.8. Without loss of generality, the representation ind
G(R)
P (R)$Λ ∈

Πϕ is stable under twisting. Furthermore, the subset of representations in Πϕ

which are stable under twisting is{
ind

G(R)
P (R) $w−1Λ : w ∈ (Ω(M,S)/ΩR(M,S))δθ

}
.

Proof. The first assertion follows by applying the arguments of Corollary 2

[Mez12] to ind
G(R)
P (R)$Λ in place of $Λ (cf. the proof of Proposition 4.1 [Mez07]).

There is no loss of generality, since Λ may be replaced by any w−1Λ, w ∈
Ω(M,S) without affecting the assumptions of section 4.

To prove the second assertion suppose w ∈ Ω(M,S) and ind
G(R)
P (R) $w−1Λ is

stable under (δθ, ω). According to the Langlands Disjointness Theorem (pp.
149-151 [Lan89]), there exists k ∈ NG(R)(AM ) such that $w−1Λ is stable under
(kδθ, ω|M(R)). Since k ∈ G(R) the maximal torus kSk−1 is defined over R and
also elliptic in M . As all elliptic tori of M are M(R)-conjugate, we may assume
that k normalizes S while maintaining the stability of $w−1Λ under twisting.
This stability implies

ω|S(R)(kδθw
−1 · Λ) = w−1 · Λ.

By assumption ω|S(R)(δθ ·Λ) = Λ so that we may rewrite the above equation as

w−1
1 k · Λ′ = Λ′

where Λ′ = δθw−1(δθ)−1 · Λ and w1 = w−1δθw(δθ)−1. The differential of the
quasicharacter Λ′ is G-regular so that w−1

1 k is the identity in Ω(G,S) (Lemma B
10.3 [Hum94]). It follows that w1 is represented by an element in G(R). Look-
ing back to (4.13), this means that w ∈ (ΩR(M,S)/ΩR(M,S))δθ. Conversely,
given w ∈ (ΩR(M,S)/ΩR(M,S))δθ, the intertwining operators in the proof of

Proposition 4.1 [Mez07] exhibit the stability of ind
G(R)
P (R) $w−1Λ.
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This proposition tells us that (Ω(M,S)/ΩR(M,S))δθ is a spectral parame-
terizing set for Πϕ. Despite appearances, it is not so different from the geometric
parameterizing set Sδθ\(NG(Sσ)/NG(R)(S))δθ. The intermediary between the
two sets is

Sδθ\(NM (S)/NM(R)(S))δθ

whose definition is given by substituting M = G in (4.11). According to Propo-
sition 2 [Mez12], there is a canonical surjection

(4.14) Sδθ\(NM (S)/NM(R)(S))δθ → (Ω(M,S)/ΩR(M,S))δθ.

To complete the comparison between the spectral and geometric parameterizing
sets, we observe that there is a canonical map from Sδθ\(NM (S)/NM(R)(S))δθ

to Sδθ\(NG(Sσ)/NG(R)(S))δθ. We conclude this section by proving that this
map is a bijection.

Lemma 4.9. Suppose x ∈ G such that x−1δθ(x) ∈ G(R). Then there exists
y ∈ G(R) such that xy ∈M .

Proof. Fix a maximally R-split torus S′ containing Sd and a positive system
on R(G,S′). Choose β∨ ∈ X∗(Sd) ⊆ X∗(S

′) as regular as possible in the
positive chamber and let P (β∨) be its corresponding R-parabolic subgroup (see
Proposition 20.4 [Bor91]). By construction P (β∨) has Levi decomposition MU .
According to Lemma 4.6, the map Int(x−1)|S is defined over R so that x−1Sdx
is an R-split torus. Consequently, x−1P (β∨)x = P (x·β∨) is also an R-parabolic
subgroup. By Theorem 15.2.6 [Spr98] and Theorem 20.9 [Bor91], there exists
y ∈ G(R) such that (xy)−1Sdxy ⊆ S′ and (xy)−1P (β∨)xy = P (β∨). The latter
equation implies that xy ∈ P (β∨) (Theorem 11.16 [Bor91]). Writing xy = mu
according to the Levi decomposition P = MU , the earlier containment implies
that

u−1m−1smus−1 = u−1sus−1 ∈ S′ ∩ U = {1}, s ∈ Sd.

In other words, the element u belongs to M = ZG(Sd) and so xy ∈M .

We remark that Lemma 4.6 and Lemma 4.9 do not rely on the θ-ellipticity
of δ and so remain true without the assumption that S is fundamental in G.
This fact will be used in section 6.

Lemma 4.10. The canonical map

Sδθ\(NM (S)/NM(R)(S))δθ → Sδθ\(NG(Sσ)/NG(R)(S))δθ

is a bijection.

Proof. The injectivity of this map follows from NG(R)(S)∩M = NM(R)(S). To
prove surjectivity, suppose x ∈ NG(Sσ) is a representative of a double coset on
the right. Then x−1δθ(x) ∈ G(R) by Proposition 4.7. Choosing y ∈ G(R) as in
Lemma 4.9, we see that xy ∈M . The map Int((xy)−1)|S is defined over R. Con-
sequently, the torus (xy)−1S(xy) is also elliptic in M . After possibly multiplying
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y on the right by an element of M(R) we may assume that (xy)−1S(xy) = S
(Lemma 2.3.4 [Wal88]) so that xy ∈ NM (S) and y ∈ NG(R)(S). Finally, as M
is preserved by Int(δ)θ we have (xy)−1δθxy(δθ)−1 ∈M , and

(xy)−1δθxy(δθ)−1 = y−1 x−1δθ(x) θ(y)δ−1 ∈ G(R) ∩M = M(R).

This proves that xy ∈ NM (S) is a representative of a double coset on the left
and that the canonical injection is surjective.

4.4 Spectral comparisons

We shall provide a brief overview of the proof of the spectral transfer identity
(4.1). The proof is essentially the same as the one given in 6 [Mez12] for discrete
series representations. We therefore tailor our overview around those points
which are influenced by accommodating fundamental series representations.

There are two pieces to the proof. The first is the proof of (4.1) for functions
f with small elliptic support about δθ (6.3 [Mez12]). The second piece of the
proof is an extension to all f ∈ C∞c (G(R)θ) using a twisted version of Harish-
Chandra’s Uniqueness Theorem (6.4 [Mez12]). The second piece is not affected
by the move to the fundamental series, and the required uniqueness theorems
are given in the appendix. For this reason we shall only examine the proof in
the case of small elliptic support (6.3 [Mez12]).

The proof begins with the left-hand side of (4.1). The sum over the dis-
crete L-packet ΠϕH1

may be converted to one over Ω(H1, TH1)/ΩR(H1, TH1).
The latter set also parametrizes the stable conjugacy class on the left of (3.14).
Using the Weyl integration formula it then becomes possible to substitute the
geometric transfer identity (3.14). The resulting substitution ((100) [Mez12])
yields a sum over Sδθ\(NG(Sσ)/NG(R)(S))δθ (Proposition 4.7) which may be

replaced by Sδθ\(NM (S)/NM(R)(S))δθ (Lemma 4.10). The substitution also
introduces geometric transfer factors, which we may choose as in 6.2 [Mez12].
After this point, one may continue precisely as in section 6.3 [Mez12] to arrive at
the right-hand side of (4.1). In particular, the surjection (4.14) accounts for the
desired sum over Πϕ (Proposition 4.8). The twisted characters Θπ,Uπ are ob-
tained by replacing Λ in section 4.2 by w−1Λ where w ∈ (Ω(M,S)/ΩR(M,S))δθ.
The use of Bouaziz’ character formula is also justified in section 4.2.

Theorem 4.11. The spectral transfer identity (4.1) holds for the fundamental
series ( i.e. under Assumptions 1-6).

5 Spectral transfer for limits of fundamental se-
ries

In this section we adjust the framework of section 4 by weakening Assumption
3 and removing Assumption 5. Let us concentrate on Assumption 5 for the
moment. If we remove the Ĝ-regularity of the parameters µ and µ|sa then the
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irreducible representations in Πϕ need no longer be fundamental series repre-
sentations. As we shall see, these representations may be obtained using the
method of coherent continuation or Zuckerman tensoring. When the Levi sub-
group M of section 4 is equal to G then this method produces (essential) limits
of discrete series (7 XII [Kna86]). By analogy, when M is allowed to be a
proper Levi subgroup we shall speak of (essential) limits of fundamental series.
The goal then is to prove Theorem 4.11 for L-packets Πϕ consisting of limits of
fundamental series. This was accomplished for limits of discrete series in 7.2-7.3
[Mez12]. The proof for the limits of fundamental series is basically the same
once the requisite objects are introduced.

We assume that we have the same endoscopic data as in section 4 with the
same Langlands parameter ϕH1 . The pair of elements δ ∈ G(R) and γ1 ∈
H1(R) are as before, and these bring with them the same fundamental torus S
and Levi subgroup M . However, our assumptions on the Langlands parameter
ϕ∗ for G∗ shall be weaker. We merely assume that ϕ∗ has a representative ϕ∗

which is an admissible homomorphism with respect to G (8.2 [Bor79]). This
amounts to the assumption that the image of ϕ∗ is minimally contained in a
parabolic subgroup of LG which is relevant (in the sense of 3.3 [Bor79]) with
respect to G.

Lemma 5.1. The image of ϕ∗ is contained in a Levi subgroup LM dual to M
(in the sense of (3) 3.3 [Bor79]).

Proof. Without loss of generality, we assume that ϕH1(C×) ⊆ TH (4 [Mez12]).
Let M be the centralizer in Ĝ of the subtorus equal to the identity component
of the fixed point subgroup of T under conjugation by ϕ∗(σ). ThenM is a Levi
subgroup of Ĝ (Proposition 20.4 [Bor91]). Let LM be the subgroup generated by
M and ϕ∗(σ). It is a Levi subgroup of LG by Lemma 3.5 [Bor79]. Furthermore,
the image of ϕ∗ is contained in the subgroup of LM generated by T and ϕ∗(σ).
The admissibility assumption on ϕ∗ ((ii) 8.2 [Bor79]) implies that LM is dual
to (a G(R)-conjugacy class of) an R-Levi subgroup M ′ of G ((3) 3.3 [Bor79]).
The action of ϕ∗(σ) on R(M, T ) is that of inversion (Lemma 15.3.2 [Spr98]).
In the proof of Lemma 3.1 [Lan89] one sees that this implies that M ′ contains
an elliptic maximal torus S′ such that LS′ ∼= 〈T , ϕ∗(WR)〉. By the conjugacy
theorems, Corollary 4.35 [Kna96] and Corollary 5.31 [Spr79], we may assume
that the anisotropic subtorus S′a of S′ is contained in Sa.

It follows from Assumption 1 on ϕH1 that ϕH1(σ) acts by inversion on the
root lattice in X∗(TH) ((17) [Mez12]). This implies that ϕ∗(σ) acts by inversion

on the corresponding root lattice in X∗((T θ̂)0) (see (3.7)). Since θ̂ preserves
the pair (B, T ), there exists an element β in the root lattice of R(Ĝ, T ) which

lies in the Weyl chamber fixed by B, and is invariant under the action of θ̂. In

particular, β is Ĝ-regular. The dual element β∨ (2.2 [Spr79]) belongs to X∗(T θ̂).
Since T θ̂/(T θ̂)0 is finite we may replace β by some integer multiple and assume

that β∨ ∈ X∗((T θ̂)0). From before we see that ϕ∗(σ) acts by inversion on
β∨. It therefore acts by inversion on β. This, together with the isomorphism
X∗(T ) ∼= X∗(S

′), allows us to identify β with a regular element in X∗(S
′
a)
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(Proposition 13.2.4 [Spr98]). The regularity of β implies that ZĜ(im(β)) is a
maximal torus of G. Since im(β) ⊆ S′a ⊆ Sa, we find that this maximal torus is
equal to both S′ and S.

We deduce in turn that S′ = S is elliptic in M ′, Sd ⊆ ZM ′ , and M =
ZG(Sd) ⊇M ′. On the other hand, the definition ofM and the duality between
M and M ′, and T and S, together imply that ZG(Sd) = M ′. We conclude that
M = M ′ and the lemma is complete.

According to Lemma 5.1, the group ϕ∗(WR) is minimally contained in a
Levi subgroup LM1 of LM . By a relevance assumption, there exists a Levi
subgroup M1 ⊆M defined over R which corresponds to LM1 (3.3-3.4 [Bor79]).
This produces an admissible homomorphism ϕ : WR → LG which we may view
as a representative of a Langlands parameter for any of G, M or M1.

Regardless of which perspective one takes, the admissible homomorphism ϕ
is determined by a pair µ, λ ∈ X∗(Ŝ)⊗C . This pair is begotten from a defining
pair µH1 , λH1 ∈ X∗(T̂H1) ⊗C for an admissible homomorphism ϕH1 ∈ ϕH1 (3
[Lan89], 4.1 [Mez12]), and an application of the maps in (3.4), (3.7) and (4.2)
(cf. 7 (b) [She10]). There are identifications of Borel subgroups implicit in
the maps of (3.7). We may assume that µH1

is in the positive Weyl chamber
determined by the Borel subgroup BH ⊇ TH of H (Lemma 3.3 [Lan89], 4.1
[Mez12]). It follows from the identification of B̂H with BH and the containment
ξ(BH) ⊆ B ∼= B̂′ (section 3.3) that µ lies in the Weyl chamber determined by
B̂′ ∩ M̂1. To say precisely what this means, let us denote by B the image of B′

under the inverse of Int(gT ′)ψ. Then the precise statement is that 〈µ, α∨〉 > 0
for all α ∈ R(B ∩M1, S) (Lemma 3.3 [Lan89]). This ensures the M̂1-regularity
of µ, but not its Ĝ-regularity.

5.1 Shifting to the context of the fundamental series

We shall approach the representations in Πϕ indirectly by first shifting µ by

a Ĝ-regular element ν ∈ spanZR(G,S) ⊆ X∗(S). This shift by ν will be con-
structed so as to produce a pair of matching admissible homomorphisms ϕν and
ϕνH1

which satisfy all of the assumptions of section 4. We may then apply coher-
ent continuation to recover the representations in Πϕ and the spectral transfer
identity (4.1).

Lemma 5.2. There exists ν ∈ spanZR(M,S) which is G-regular and is fixed
under the action of δθ.

Proof. We first prove the existence of G-regular ν. Suppose by way of contradic-
tion that for some α ∈ R(G,S)∨ and all ν ∈ spanZR(M,S) we have 〈ν, α〉 = 0.
Then, in particular, the image of α belongs to

(∩β∈R(M,S) kerβ)0 = Z0
M = Sd

(Proposition 8.1.8 (i) [Spr98], Proposition 20.6 (i) [Bor91]), and α ∈ X∗(Sd).
This implies that α is a real coroot (8.15 [Bor91]), which contradicts S being
fundamental.
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We may now choose G-regular ν′ ∈ spanZR(M,S) which is positive with
respect to R(B,S). Under transport by (4.2), we identify ν′ with an element
in spanZR(Ĝ, T̂ ′)∨ ∼= spanZR(G∗, T ′) which lies in the positive Weyl chamber
determined by B′. Recall from section 3.3 that the pair (B′, T ′) is preserved
by θ∗. Therefore the automorphism θ∗ has finite order on X∗(T ′) and we may

define ν =
∑|θ∗|
j=1(θ∗)j(ν′). The θ∗-invariance of ν translates to δθ-invariance

under transport by (4.2).

Let us fix ν as in Lemma 5.2. After possibly replacing it by some positive
integer multiple, we have Re〈µ + ν, α∨〉 > 0 for all α ∈ R(B,S) and so the
element µ + ν is Ĝ-regular. This takes care of half of Assumption 5 in section
4. The other half requires an understanding of the action of σ on ν. The
δθ-invariance of ν implies that ν ∈ X∗(Ŝ

δθ). Since Ŝδθ/(Ŝδθ)0 is finite, we
may again replace ν by some positive integer multiple and assume without loss
of generality that ν ∈ X∗((Ŝ

δθ)0). There is an isomorphism X∗((Ŝ
δθ)0) ∼=

X∗(Sδθ), where Sδθ = S/(1− δθ)S, and a surjection (Sδθ)0 → Sδθ (see proof of
Lemma 12 [Mez12]). Consequently, there is an injectionX∗(Sδθ) ↪→ X∗((Sδθ)0).
We may identify ν ∈ X∗((Ŝδθ)0) with its image under the map

X∗((Ŝ
δθ)0) ↪→ X∗((Sδθ)0)

of Γ-modules. In fact, ν belongs to the submodule X∗((Sδθ)0/(ZθG)0). By the
θ-ellipticity of δ, the automorphism σ acts as inversion on X∗((Sδθ)0/(ZθG)0) so
that σ(ν) = −ν. The decomposition

X∗(S)⊗R ∼= (X∗(Sa)⊗R)⊕ (X∗(Sd)⊗R)

(8.15 [Bor91]) allows us to identify ν with its restriction ν|sa (cf. (4.4)). As
before, we may assume that

Re〈(µ+ ν)|sa , α
∨〉 = Re〈µ|sa + ν, α∨〉 > 0

for all α ∈ R(B,S), so that the element (µ + ν)|sa is Ĝ-regular. At this point
we have shown that Assumption 5 of section 4 holds for µ+ ν.

We turn to the construction of matching admissible homomorphisms ϕν and
ϕνH1

which satisfy the remaining assumptions of section 4. First, since σ(ν) = −ν
is in the root lattice, it is easily verified that the pair µ + ν, λ ∈ X∗(Ŝ) ⊗ C
corresponds to an admissible homomorphism ϕν : WR → LG with ϕν(σ) = ϕ(σ)
(4 [Mez12]). The pair also corresponds to a quasicharacter Λ(µ+ ν − ιM , λ) of
S(R) ((18) [Mez12]). As in section 4 the L-packet Πϕν ,M consists of essentially
square-integrable representations of M(R).

The central character of the representations in Πϕν ,M differs from the unitary
central character of the representations in Πϕ,M by the restriction of Λ(µ+ ν −
ιM , λ)Λ(µ−ιM , λ)−1 to ZM (R). This restriction depends only on the restriction
of ν ∈ X∗(S)⊗C to ZM ⊆ S (9 [Bor79]). Therefore, to show that Assumption 4
of section 4 holds for the central character of Πϕν ,M it suffices to show that the
restriction of ν ∈ X∗(S)⊗R to the split component of ZM is trivial. This is true,
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as the split component of ZM is contained in Sd, the map (1 − σ) annihilates
X∗(Sd) (8.15 [Bor91]), and

ν|Sd =
1− σ

2
(ν)|Sd =

1− σ
2

(ν|Sd) = 0.

Thus far, we see Assumptions 2, 4 and 5 of section 4 hold for ϕν , and enough
has been shown to conclude that the L-packet Πϕν is comprised of fundamental
series representations (see 4.1). Assumption 6 of section 4 is follows from the
δθ-invariance of ν (cf. (136) [Mez12]).

It remains to construct an admissible homomorphism ϕνH1
such that As-

sumptions 1 and 3 hold. For this, we return to viewing ν as an element of

X∗(T ′θ∗)
∼= X∗((T θ̂)0) as in the proof of Lemma 5.2. Let νH1

∈ X∗(T̂H) be
the image of ν under the composition of the isomorphisms of (3.7). By (3.5)
we may regard νH1

as an element in X∗(T̂H1
). The positivity of ν with respect

to the Borel subgroup B transfers to the positivity of νH1 with respect to the
Borel subgroup BH . Let µH1 , λH1 ∈ X∗(T̂H1) ⊗ C be a defining pair for ϕH1

such that µH1
is positive with respect to BH . Then µH1

+νH1
is regular so that

the pair µH1
+ νH1

, λH1
∈ X∗(T̂H1

) ⊗C defines an admissible homomorphism
ϕνH1

: WR → LH1 (4.1 [Mez12]) such that Assumption 1 of section 4 holds for
ϕνH1

.
Finally, Assumption 3 of section 4 holds by virtue of the definition of (ϕν)∗

as ξ ◦ ξ−1
H1
◦ ϕνH1

(6 [Mez12]). Indeed, the image of µH1 + νH1 under the maps

induced by ξ ◦ ξ−1
H1

corresponds to µ + ν by the construction of νH , and the

regularity of µ+ ν in M̂ ensures that ϕν is minimally contained in LM .

5.2 Coherent continuation to limit of fundamental series
representations

Let us describe the relationship between the L-packets of ϕ and those of the
shifted admissible homomorphism ϕν , following 14 [She10] and 7 [Mez12]. The
representations in Πϕν ,M are essential discrete series representations. The repre-
sentations in Πϕ,M are essential limits of discrete series representations obtained
via Zuckerman tensoring a representations in Πϕν ,M ((1.10) [KZ84]). To explain
this relationship better, let w ∈ Ω(M,S)/ΩR(M,S) and $w−1Λ ∈ Πϕν ,M be as
in Proposition 4.8. Denote the distribution character of the representation ob-
tained from $w−1Λ through Zuckerman tensoring by Θ(w−1µ, λ,w−1 ·B̂). Then
the set of characters of the irreducible representations in Πϕ,M is equal to the
non-zero subset of characters in

{Θ(w−1µ, λ,w−1 · B̂) : w ∈ Ω(M,S)/ΩR(M,S)}.

Using Hecht-Schmid identities, one may determine this non-zero subset explic-
itly ((142) [Mez12], page 408 [She82]).

The irreducible representations in Πϕ and Πϕν are the irreducible subrep-
resentations of the representations induced from Πϕ,M and Πϕν ,M respectively.
In the present context parabolic induction and Zuckerman tensoring commute
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with one another (Corollary 5.9 [SV80]) and produce irreducible representations
(when non-zero) (Theorem 5.15 [SV80]). Hence, parabolic induction furnishes
a bijection between Πϕ,M and Πϕ, just as it does between Πϕν ,M and Πϕν . We
may write the characters of the representations occurring in Πϕ as

(5.1) ind
G(R)
P (R) Θ(w−1µ, λ,w−1 · B̂),

where w lies in (142) [Mez12]. We call the representations corresponding to
these characters limit of fundamental series representations. A limit of discrete
series character is the special case of (5.1) in which P = M = G. These are all
special cases of limit of generalized principal series representations given on p.
265 5 [SV80].

The spectral transfer identity (4.1) was proved for essential limits of discrete
series in 7.2.3 [Mez12]. The argument there hinges on Zuckerman tensoring a
discrete series representation $̄ν of the disconnected group Gder(R)0 o 〈δθ〉 to
a limit of discrete series representation $̄1. This argument is unaffected when
$̄ν is allowed to be a fundamental series representation. In consequence, if
π ∈ Πϕ is obtained from πν ∈ Πϕν by Zuckerman tensoring, we obtain a twisted
character Θπ,Uπ from the character of $̄1. Moreover, after defining

∆(ϕH1 , π) = ∆(ϕνH1
, πν),

the proof of Theorem 3 [Mez12] carries through and (4.1) holds. We record this
as a theorem.

Theorem 5.3. Suppose there exists a strongly θ-regular and θ-elliptic element
δ ∈ G(R) which has a norm γ ∈ H(R). Suppose further that ϕH1

is an ad-
missible homomorphism not contained in a proper parabolic subgroup of LH1.
Finally, suppose that ϕ∗ = ϕ is an admissible homomorphism such that the
representations in Πϕ,M have unitary central character and Πϕ = ω⊗ (Πϕ ◦ θ).
Then∫

H1(R)/Z1(R)

fH1
(h)

∑
πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Uπ (f)

for all f ∈ C∞c (G(R)θ).

6 Spectral transfer for tempered representations

In this section we show how the framework of the previous sections extends
to tempered representations. Suppose, that we have an endoscopic quadruple
(H,H, s, ξ) and a compatible z-pair (H1, ξH1) as above. Now we assume only
that ϕH1

: WR → LH1 is an admissible homomorphism such that ΠϕH1
consists

of irreducible tempered representations. As before we assume that the homo-
morphism ϕ∗ = ξ ◦ ξ−1

H1
◦ ϕH1 is admissible with respect to G and denote ϕ∗ by

ϕ. The condition that ΠϕH1
be tempered is equivalent to ϕH1 having bounded
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image ((4) 10.3 [Bor79]). It follows from the continuity of ξ and ξ−1
H1

that ϕ
has bounded image so that Πϕ is an L-packet consisting of irreducible tempered
representations of G(R). In order for this L-packet to have any bearing on
twisted endoscopy, we assume that Πϕ = ω ⊗Πϕ ◦ θ.

Let LM̄H1
be the smallest Levi subgroup of LH1 containing the image of

ϕH1 . By definition, the representations in ΠϕH1
are the irreducible subrep-

resentations of the representations induced from ΠϕH1
,M̄H1

(11.3 [Bor79]). In

addition, the admissible homomorphism ϕM̄1
: WR → LM̄H1 , defined by replac-

ing the codomain of ϕH1
with LM̄H1

, satisfies Assumption 1 of section 4. In
order to ensure that the other assumptions of sections 4 or 5 apply, we must
produce an R-Levi subgroup M̄ of G and a triple (M̄, θM̄ , ωM̄ ) corresponding
to an endoscopic quadruple (M̄H ,HM̄ , sM̄ , ξM̄ ), where M̄H1

is a z-extension of
M̄H .

6.1 Endoscopic data related to LM̄H1

We begin with the definition of M̄ . As H1 is a quasisplit group, there is an
R-Levi subgroup M̄H1

of H1 which is dual to LM̄H1
. The minimality of LM̄H1

implies that there exists a maximal torus TH1
of M̄H1

which is elliptic in M̄H1
.

Let TH,d be the split component of TH = pH(TH1
). Choose β∨ ∈ X∗(TH,d)

as regular as possible with respect to R(H,TH), and choose a Borel subgroup
BH ⊇ TH such that 〈α, β∨〉 ≥ 0 for all α ∈ R(BH , TH). The cocharacter β∨

is defined over R, and the Levi subgroup M̄H1
is the centralizer in H1 of any

pre-image of β∨ under pH . An application of Lemma 3.3.B gives us a θ∗-stable
pair (B′, T ′) and an admissible embedding (3.11) so that we have the following
maps of Γ-modules

β∨ ∈ X∗(TH,d) ↪→ X∗(TH) ∼= X∗(TH)
ξ
↪→ X∗((T θ̂)0) ∼= X∗(T

′
θ∗)

(cf. (3.7)). The image ξ ◦ β∨ of β∨ in X∗((T θ̂)0) is non-negative with respect
to the ordering defined by R(B, T ). We may suppose that β∨ has been chosen
so that ξ ◦ β∨ is as positive as possible with respect to this ordering. There
is a unique lift of (some positive multiple of) ξ ◦ β∨ to a character in X∗(T )

which is trivial on the torus complementary to (T θ̂)0 (Corollary 8.5 [Bor91]).
Let (β′)∨ ∈ X∗(T

′) be the cocharacter corresponding to this lift under the
isomorphism X∗(T

′) ∼= X∗(T ). By design, the cocharacter (β′)∨ is defined over
R and is non-negative with respect to the ordering defined by R(B′, T ′). Let
M̄∗ be the centralizer of the image of (β′)∨. It is the Levi subgroup of the
parabolic subgroup P̄ ∗ determined by (β′)∨ (13.4 [Spr98]). Both M̄∗ and P̄ ∗

are defined over R (Theorem 13.4.2 [Spr98]). These groups are also compatible
with θ∗.

Lemma 6.1. The automorphism θ∗ preserves both M̄∗ and P̄ ∗.

Proof. Recall that (β′)∨ corresponds to a lift of an character in X∗((T θ̂)0). The

θ̂-invariance of this character implies that θ∗ ◦ (β′)∨ = (β′)∨, and the lemma
follows.
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Now, by the admissibility of ϕ (8.2 (ii) [Bor79]), there exist R-subgroups M̄
and P̄ of G parallel to the subgroups M̄∗ and P̄ ∗ of G∗. From here on, we make
the assumption that there is a θ-regular element δ ∈ G(R) which has norm γ1 ∈
TH1

(R). It will be explained in section 6.4 why this is a negligible assumption.
With this assumption in force, we have recourse to the R-isomorphism (4.2). It
follows that M̄ and P̄ are given by the inverse image of (β′)∨ under Int(gT ′)ψ.
In addition, the δ∗θ∗-invariance of M̄∗ and P̄ ∗ (Lemma 6.1) translates to the
δθ-invariance of M̄ and P̄ .

We define the twisting data in the triple (M̄, θM̄ , ωM̄ ) by θM̄ = Int(δ)θ|M̄ and
ωM̄ = ω|M̄ . For the definition of the endoscopic data, we recall that the passage

from θ to the dual map θ̂ is insensitive to composition with inner automorphisms
(section 3.1, cf. 1.3 [Bor79]). Indeed, θ̂ is obtained via an action on based
root data and such an action is independent of inner automorphisms. The

upshot of this observation is that ̂Int(δ)θ = θ̂. This identity in turn justifies
that (M̄H ,HM̄ , s, ξM̄ ) is an endoscopic datum for (M̄, θM̄ , ωM̄ ), where M̄H =

pH(M̄H1
), HM̄ = ˆ̄MHoc(WR), and ξM̄ = ξ|HM̄ (cf. section 3.2). The surjection

p|M̄H1
: M̄H1

→ M̄H defines a z-extension of M̄H (2.2 [KS99]) and a z-pair

(M̄H1
, (ξH1

)|LM̄H1
).

This choice of endoscopic datum may be associated with the quasisplit group
M̄∗ through the isomorphism Int(gT ′)ψ|M̄ : M̄ → M̄∗ mentioned above. By

defining ψM̄ = Int(gT ′)ψ|M̄ , the element uσ of (3.2) is replaced by gT ′uσσ(g−1
T ′ ) ∈

T ′sc ⊂ M̄∗sc. Equation (3.3) is replaced by

θ∗M̄ = θ∗|M̄∗ = Int((δ∗)−1)ψM̄θM̄ψ
−1
M̄
,

in which some lift of (δ∗)−1 to M̄∗sc takes on the role of gθ. Finally, the element
in (3.10) is replaced by

(6.1) (δ∗)−1gT ′uσσ(g−1
T ′ )σ(δ∗) θ∗(σ(g)u−1

σ g−1
T ′ ).

One may compute that this element is equal to

θ∗(gT ′) gθuσσ(g−1
θ )θ∗(u−1

σ ) θ∗(g−1
T ′ ),

which by (3.10) is equal to gθuσσ(g−1
θ )θ∗(u−1

σ ) and therefore defines a cocycle
in (1 − θ∗)ZG∗sc ⊆ (1 − θ∗

M̄
)ZM̄∗sc . This shows that assumption (3.10) holds for

(M̄, θM̄ , ωM̄ ) in place of (G, θ, ω).
The image of ϕ is contained in the Levi subgroup LM̄ dual to M̄∗ under

the identification of R(B, T ) with R(B′, T ′)∨ (cf. proof of Lemma 5.1). By
substituting LM̄ for the codomain of ϕ, we may regard ϕM̄ : WR → LM̄ as an
admissible homomorphism of M̄ obtained from the admissible homomorphism
ϕM̄H1

of M̄H1
above.

6.2 Assumptions required for spectral transfer on M̄

At this stage, it makes sense to revisit the assumptions of section 4 with M̄ in
place of G. As already mentioned, Assumption 1 holds for ϕM̄H1

. The next
lemma is shows that Assumption 2 holds.
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Lemma 6.2. The strongly θ-regular element δ ∈ M̄ is θ-elliptic.

Proof. By isomorphism (4.2) it suffices to prove that the identity component
of (T ′)θ

∗
/Zθ

∗

M̄∗
is anisotropic. We shall accomplish this by producing a torus

T1 ⊆ Zθ
∗

M̄∗
such that ((T ′)θ

∗
/T1)(R) is compact. Essentially, T1 is the image of

TH,d under the maps used to define (β′)∨ ∈ X∗(T ′).
This is easiest to see in the special case that T ′θ∗

∼= (T ′)θ
∗
. In this case (3.11)

maps TH,d to a split subtorus T1 ⊆ (T ′)θ
∗

and (β′)∨ ∈ X∗(T1) is as regular as
possible with respect to R(B′, T ′). It follows that α ∈ R(M̄∗, T ′) if and only
if α|T1

is trivial (Lemma 15.3.2 (ii) [Spr98], Proposition 20.4 [Bor91]). This
implies that T1 ⊆ ZM̄∗ and we obtain a surjection

TH/TH,d
(3.11)∼= (T ′)θ

∗
/T1 → (T ′)θ

∗
/Zθ

∗

M̄∗

of elliptic tori.
In general, the canonical map (T ′θ

∗
)0 → T ′θ∗ is merely an isogeny (see proof

of Lemma 12 [Mez12]). The lift of ξ◦β∨ to (β′∨) amounts to a lift from X∗(T
′
θ∗)

to X∗((T
′θ∗)0), as may be seen from

X∗(T ) //

∼=
��

ξ ◦ β∨ ∈ X∗((T θ̂)0)

∼=
��

(β′)∨ ∈ X∗(T ′) // X∗(T ′θ∗)

and the proof of Lemma 6.1. Similarly, the image of TH,d in T ′θ∗ under (3.11)
lifts to a split torus T1 ⊆ (T ′θ

∗
)0 and (β′)∨ belongs to X∗(T1). As argued in

the special case above, the torus T1 is contained in ZM̄∗ . We now have two
surjections

(T ′θ
∗
)0/(Zθ

∗

M̄∗)
0 ← (T ′θ

∗
)0/T1 → TH/TH,d.

The surjection on the right is an isogeny induced by (T ′θ
∗
)0 → T ′θ∗ and (3.11).

As TH/TH,d is anisotropic, this isogeny ensures that (T ′θ
∗
)0/T1 is also anisotropic.

The surjection on the left now implies that (T ′θ
∗
)0/(ZM̄∗)

0 is anisotropic and
the lemma is proven.

A consequence of Lemma 6.2 and Lemma 4.1 is that S is a fundamental
torus in M̄ .

Assumption 3 was weakened in section 5 to ϕ being admissible. This admis-
sibility assumption is made in this section as well, so that ϕM̄ is admissible.

Assumption 4 must hold, for otherwise the central character of Πϕ,M would
force the image of ϕ to be unbounded and Πϕ would not be tempered.

Assumption 5 was removed in section 5 and so we may ignore it.
We must prove Assumption 6 for M̄ . We have assumed that the L-packet

Πϕ is stable under twisting. To deduce the same for the L-packet ΠϕM̄ it is
natural to make a connection between the two L-packets. The common ground
between the two packets Πϕ and ΠϕM̄ is the “minimal” packet Πϕ,M in the
following extension of Proposition 4.8.
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Lemma 6.3. Let Sd be the split component of the torus S, M = ZM̄ (Sd) and
P be a parabolic subgroup of G with M as a Levi subgroup. Suppose $,$′ ∈
Πϕ,M are essential limit of discrete series representations of M(R) such that

ind
G(R)
P (R)$

′ and ω⊗(ind
G(R)
P (R)$)δθ share equivalent irreducible subrepresentations.

Then $′ is equivalent to ω|M(R) ⊗$δθ.

Proof. Suppose first that $′ and $ are essentially square-integrable representa-
tions. As in section 4.3, we may write $ = $w−1Λ and $′ = $(w′)−1Λ, where S
is an elliptic torus of M = M̄ , Λ is an M -regular and δθ-stable quasicharacter of
S(R), and w,w′ ∈ Ω(M,S). The Langlands Disjointness Theorem (pp. 149-151
[Lan89]) provides k ∈ NG(R)(M) such that $′ is equivalent to ω|M(R) ⊗$kδθ.
As in Proposition 4.8, we may assume that k ∈ NG(R)(S) and identify it with
an element of ΩR(G,S). We have the equation

ω|S(R)(kδθw
−1 · Λ) = (w′)−1 · Λ.

which may be rewritten in the form

(6.2) w−1
1 k · Λ′ = Λ′,

where Λ′ = δθw−1(δθ)−1 · Λ and w1 = (w′)−1δθw(δθ)−1.
The (differential of the) quasicharacter Λ′ is M -regular. We choose a positive

system on R(G,S) so that its induced positive system on R(M,S) corresponds
to a Weyl chamber containing Λ′. Equation (6.2) implies that the element
w−1

1 k ∈ Ω(G,S) is a product of reflections generated by simple roots in R(G,S)
which are orthogonal to Λ′ (Lemma B 10.3 [Hum94]). Suppose α is such a
simple root and let ρM be the half-sum of the positive roots of R(M,S). The
simple reflection sα fixes Λ′ and therefore stabilizes the system of positive roots
for R(M,S). This implies that sα fixes ρM , or equivalently, that α is orthogonal
to ρM .

Using the terminology of 3 [Vog82], this proves that α is a quasisplit root and
that w−1

1 k lies in the quasisplit Weyl group generated by the quasisplit roots. We
also know that w1 ∈ Ω(M,S) is defined over R (Lemma 6.4.1 [Lab08]) so that
w−1

1 k belongs to the subgroup of the quasisplit Weyl group whose elements are
defined over R. According to Vogan, this subgroup is a semidirect product of two
groups (p. 961 [Vog82]) and each of these two is contained in ΩR(G,S) (Lemma
3.1 [Vog82]). In short, w−1

1 k belongs to ΩR(G,S) so that w1 ∈ ΩR(M,S) and

w′ΩR(M,S) = (δθ · w)ΩR(M,S).

We deduce from 6.4 [Lab08] and a character comparison that

$′ = $(w′)−1Λ
∼= ω|M(R) ⊗$δθ·w−1Λ

∼= ω|M(R) ⊗ ($w−1Λ)δθ = ω|M(R) ⊗$δθ.

Suppose now that$,$′ ∈ Πϕ,M are essential limit of discrete series represen-

tations. In the notation of 7.2.3 [Mez12], we may write $ = Ψ
w−1·(µ+ν′)
w−1·µ $w−1Λ

and $′ = Ψ
(w′)−1·(µ+ν′)
(w′)−1·µ $(w′)−1Λ, where $w−1Λ and $(w′)−1Λ are essentially
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square-integrable representations as above. As in the previous case, the Lang-
lands Disjointness Theorem supplies k ∈ NG(R)(S) such that $′ is equivalent

to ω|M(R) ⊗ $kδθ. By Theorem 1.1 (c) [KZ84], there exists k1 ∈ NM̄(R)(S)

such that k1kδθw
−1 · Λ = (w′)−1 · Λ. The previous argument for essentially

square-integrable representations therefore applies after replacing k with k1k.
We conclude in turn that $(w′)−1Λ

∼= ω|M(R) ⊗ ($w−1Λ)δθ and $′ is equivalent
to

ω|M(R)⊗Ψ
δθ·w−1·(µ+ν′)
δθ·w−1·µ ($w−1Λ)δθ ∼= ω|M(R)⊗(Ψ

w−1·(µ+ν′)
w−1·µ $w−1Λ)δθ = ω|M(R)⊗$δθ.

Corollary 6.4. The L-packet ΠϕM̄ = Πϕ,M̄ equals the L-packet ωM̄⊗ΠϕM̄ ◦θM̄ .

Proof. Suppose$ ∈ Πϕ,M̄ . Then the irreducible subrepresentations of ind
G(R)

P̄ (R)
$

belong to Πϕ (11.3 [Bor79]). We are assuming that Πϕ = ω ⊗ Πϕ ◦ θ so

that there exists $′ ∈ Πϕ,M̄ such that ind
G(R)

P̄ (R)
$′ and ω ⊗ (ind

G(R)

P̄ (R)
$)δθ have

some equivalent irreducible subrepresentations. By Lemma 6.3 and the fact
that the irreducible representations in Πϕ,M̄ are induced from irreducible rep-
resentations in Πϕ,M (Corollary 4.4), the representation $′ is equivalent to
ωM̄ ⊗$δθ ∈ ωM̄ ⊗Πϕ,M̄ ◦ θM̄ . Since L-packets with non-empty intersection are
equal, the corollary is complete.

Corollary 6.4 shows that Assumption 6 holds for M̄ , and we are now in the
position to apply Theorem 5.3 on the level of M̄ . This will be done in the
following section. We record one more corollary which aligns twisting on Πϕ

with twisting on ΠϕM̄ .

Corollary 6.5. Suppose π ∈ Πϕ and $ ∈ Πϕ,M̄ such that π is a subrepresenta-

tion of ind
G(R)

P̄ (R)
$ (11.3 [Bor79]). If π is (θ, ω)-stable then $ is (θM̄ , ωM̄ )-stable.

6.3 Parabolic descent

Suppose P̄H1
is an R-parabolic subgroup of H1 which has M̄H1

as a Levi sub-
group. The parabolic descent of a compactly supported (mod centre) function

f1 on H1(R) with respect P̄H1
will be written as f

(P̄H1
)

1 ((10.22) [Kna86]). It is
a function on M̄H1(R). When f1 = fH1 for some f ∈ C∞c (G(R)θ), the left-hand
side of the spectral transfer identity (4.1) equals

(6.3)

∫
M̄H1

(R)/Z1(R)

(fH1
)(P̄H1

)(h)
∑

πM̄H1
∈ΠϕM̄H1

ΘπM̄H1

(h) dh

((10.23) [Kna86]). This reduces the sum over the tempered L-packet ΠϕH1
in

(4.1) to a sum over the (essentially) discrete series L-packet ΠϕM̄H1
. We shall

take the same approach to the right-hand side of (4.1), using the parabolic
subgroup P̄ of G and then apply Theorem 5.3. This approach must take into
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account the inconvenience that although P̄ is preserved by Int(δ)θ it might not
be preserved by θ. To account for this we replace the twisting data (θ, ω) in this
section by the twisting data (Int(δ)θ, ω), but make no distinction in notation.
That this shift from θ to Int(δ)θ ultimately has no effect on the spectral transfer
identity (4.1) is justified in appendix B.

Let P̄ = M̄N̄ be a Levi decomposition of P̄ . Suppose $ is an irreducible
tempered representation of M̄(R) such that

(6.4) U ◦$(x) = ω(x)$δθ(x) ◦ U, x ∈ M̄(R)

for a non-zero intertwining operator U. The representation ω⊗ (ind
G(R)

P̄ (R)
$)δθ is

equivalent to ω ⊗ ind
G(R)

P̄ (R)
$δθ ∼= ind

G(R)

P̄ (R)
$. Indeed, we may define an operator

T on the functions φ in the representation space of ind
G(R)

P̄ (R)
$ by

(Tφ)(g) = Uφ(Int(δ)θ(g)), g ∈ G(R).

The reader may verify that

T ◦ ind
G(R)

P̄ (R)
$(x) = ω(x) (ind

G(R)

P̄ (R)
$)δθ(x) ◦ T, x ∈ G(R)

(cf. proof of Proposition 3.1 [Mez07] and Lemma 5 (i)-(ii) [DM08]).
We wish to compute the twisted character Θ

ind
G(R)

P̄ (R)
$,T

defined by

f 7→ tr

∫
G(R)

f(xθ) ind
G(R)

P̄ (R)
$(x) T dx, f ∈ C∞c (G(R)θ)

in terms of the twisted character of $. This amounts to a twisted version of
(6.3), and the techniques are entirely the same. Suppose f ∈ C∞c (G(R)θ) and
n̄ is the real Lie algebra of the unipotent group N̄(R). Define

f (P̄ )(xθM̄ ) = |det Ad(x)|n̄|1/2
∫
K

∫
N̄(R)

f(kxnδθk−1) dn dk, x ∈ M̄(R).

The crucial fact that P̄ is preserved by Int(δ)θ allows one to imitate the analytic
manipulations given for descent in 3 X [Kna86]. The result is

(6.5) Θ
ind

G(R)

P̄ (R)
$,T

(f) = Θ$,U(f (P̄ )).

We wish to apply the descent argument of (6.5) to the right-hand side of
(4.1), where Πϕ is our tempered L-packet. This argument is valid since Corollary
6.5 tells us that every representation in π′ ∈ Πϕ which is stable under twisting

is a subrepresentation of ind
G(R)

P̄ (R)
$ with $ as in (6.4). One may then define the

twisted character Θπ′,Tπ′ by taking Tπ′ to be the restriction of T above to the
space of π′ (This uses multiplicity one, Theorem 2.3 (b) [KZ79]).
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One must also define spectral transfer factors which are compatible with
parabolic descent. Accordingly, we define

∆(ϕH1 , π
′) = ∆(ϕM̄H1

, $),

whenever π′ ∈ Πϕ is a (δθ, ω)-stable subrepresentation of ind
G(R)

P̄ (R)
$ and $ ∈

ΠϕM̄ . When π′ is not stable under twisting we set ∆(ϕH1 , π
′) = 0. The

parabolic descent argument applied to the right side of (4.1) yields∑
π′∈Πϕ

∆(ϕH1 , π
′) Θπ′,Tπ′ (f) =

∑
$∈Πϕ,M̄

∆(ϕM̄H1
, $) Θ

ind
G(R)

P̄ (R)
$,T$

(f)

=
∑

$∈Πϕ,M̄

∆(ϕM̄H1
, $) Θ$,U$ (f (P̄ ))(6.6)

What remains to continue (6.6) to (6.3), and complete the spectral transfer
identity, is to show that parabolic descent is compatible with twisted geometric
transfer. In other words, one would like to define geometric transfer factors
∆M̄ (γ1, δ

′) for M̄ so that

(6.7) (f (P̄ ))M̄H1
= (fH1)(P̄H1

).

This is proven in Lemma B.1, by essentially restating ideas from a recent
preprint of Shelstad (11 [She12]). Thus we may continue (6.6)∑
π′∈Πϕ

∆(ϕH1 , π
′) Θπ′,Tπ′ (f) =

∑
$∈Πϕ,M̄

∆(ϕM̄H1
, $) Θ$,U$ (f (P̄ ))

=

∫
M̄H1

(R)/Z1(R)

(f (P̄ ))M̄H1
(h)

∑
πM̄H1

∈ΠϕM̄H1

ΘπM̄H1

(h) dh

=

∫
M̄H1

(R)/Z1(R)

(fH1
)(P̄H1

)(h)
∑

πM̄H1
∈ΠϕM̄H1

ΘπM̄H1

(h) dh,

where the expression on the right is equal to (6.3).

Theorem 6.6. Suppose ϕH1 and ϕ are admissible homomorphisms with tem-
pered L-packets. Let LM̄H1

⊆ LH1 be a Levi subgroup minimally containing
the image of ϕH1

and TH1
be an elliptic maximal tours in M̄H1

. If there is a
strongly regular element of TH1

(R) which is a norm then∫
H1(R)/Z1(R)

fH1
(h)

∑
πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Tπ (f)

for all f ∈ C∞c (G(R)θ).
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6.4 No norms

The purpose of this section is to remove the hypothesis in Theorem 6.6 of norms
existing in TH1

. Suppose that no strongly regular element of TH1
(R) is a norm of

an element in G(R). In this case, we set all spectral transfer factors ∆(ϕH1 , π)
on the right of (4.1) equal to zero. We shall argue that the distribution Θ which
sends f ∈ C∞c (G(R)θ) to the left side of (4.1) is also zero. In this way, spectral
transfer reduces to an identity of zeros.

First, note that the (tempered) distribution characters of ΘπM̄H1

in (6.3)

allow us to regard Θ as a function supported on those elements of δ′θ ∈ G(R)θ
for which strongly θ-regular δ′ has a norm γ′1 ∈ M̄H1

(R). Thought of in this way,
the distribution Θ is determined by its values on subsets of the form Gδ

′θ(R)δ′θ.
If no such δ′ exist then Θ vanishes.

Fix then such a δ′ ∈ G(R) and let T ′H = pH(M̄
γ′1
H1

). The maximal torus

T ′H ⊆ M̄H contains ZM̄H
⊇ TH,d. We may therefore repeat the construction

of section 6.1 with δ replaced by δ′, but with the same β∨ ∈ X∗(TH,d), to
arrive at a triple (M̄ ′, θM̄ ′ , ωM̄ ′) with endoscopic datum (M̄H ,HM̄ ′ , s, ξM̄ ′). We
also have Gδ

′θ ⊆ M̄ ′ as before. Thus, it suffices to show that Θ vanishes on
M̄ ′(R)δ′θ′ ⊇ Gδ′θ(R)δ′θ′.

Let ΘM̄ ′ = Θ|M̄ ′(R)δ′θ. The distribution ΘM̄ ′ is a tempered, ωM̄ ′ -equivariant,
eigendistribution (Lemma 24 [Mez12] and Proposition 30 (38) 6 [Var77]). Since
no strongly regular element of TH1

(R) is a norm, the distribution vanishes on
the θM̄ ′ -elliptic elements. Proposition A.4 therefore applies to ΘM̄ ′ and so it
vanishes. In conclusion Θ vanishes and Theorem 6.6 now extends to the follow-
ing.

Theorem 6.7. Suppose ϕH1
and ϕ are admissible homomorphisms with tem-

pered L-packets. Then∫
H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Tπ (f)

for all f ∈ C∞c (G(R)θ).

A Twisted uniqueness theorems

Spectral transfer in [Mez12] did not include twisting by a general quasicharacter
ω of G(R) and was limited to θ being of finite order. This resulted from the
hypotheses required for the use of a twisted version of Harish-Chandra’s unique-
ness theorem (Theorem 15.1 [Ren97]). The hypotheses require θ to be finite and
the distributions to be G(R)-invariant. The purpose of this appendix is to ex-
tend this uniqueness theorem to allow for arbitrary θ and then to use methods
of Waldspurger to handle the lack of G(R)-invariance due to non-trivial ω. As
a consequence we may extend Theorem 1 [Mez12] to include non-trivial ω and
θ of any order.
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We assume that δ ∈ G(R) is strongly θ-regular and θ-elliptic and S is the
torus of Lemma 4.1. We begin with the extension to arbitrary θ.

Proposition A.1. There exists g0 ∈ Gder(R) such that Int(g0)θ has finite order
on Gder(R) and preserves a maximally R-split maximal torus T of G.

Proof. We may assume without loss of generality that G = Gder. We may
suppose T = T0 of (3.1) is defined over R and contains a maximal R-split torus
of G. In other words, the split component of T is a maximal R-split torus in
G. The split component of the maximal torus θ(T ) is also a maximal R-split
torus of G, as θ is defined over R. Therefore there exists x1 ∈ G(R) such
that Int(x1)θ preserves T (Theorem 15.2.6 [Spr98]). We may therefore assume
without loss of generality that θ itself preserves T . Splitting (3.1) affords a
decomposition of Aut(G) as a split semidirect product of the group of inner
automorphisms and the group of graph automorphisms of the Dynkin diagram
(Corollary 2.14 [Spr79]). As the latter group is finite, there exists some positive
integer `1 and an element x2 ∈ G such that θ`1 = Int(x2). Since θ preserves
T , so does Int(x2) and this is the same as saying that x2 is a representative
of an element in Ω(G,T ). The Weyl group Ω(G,T ) is finite so that for some
positive integer `2 we have θ`1`2 = Int(x3) where x3 = x`22 belongs to T . The
automorphism θ`1`2 commutes with σ and consequently Int(σ(x3)x−1

3 ) is the
identity automorphism. This implies that σ(x3)x−1

3 lies in the centre of the
semisimple group G. The centre is finite, so there exists a positive integer `3
such that

σ(x`33 )x−`33 = (σ(x3)x−1
3 )`3 = 1.

This equation implies that x4 = x`33 ∈ T (R). Similarly, Int(x4) = θ`1`2`3

commutes with θ and this in turn implies that Int(θ(x4)x−1
4 ) is the identity

automorphism and θ(x`44 ) = x`44 for some positive integer `4. Set x5 = x`44 ∈
T θ(R). Finally, being the real points of an algebraic group, the group T θ(R)
has finitely many connected components as a real manifold. Therefore, there
is a positive integer `5 such that y = x`55 belongs to T θ(R)0. Set ` = `1 · · · `5.
Then θ` = Int(y) and there exists Y ∈ tθ such that exp(Y ) = y. Let g0 =
exp(− 1

`Y ) ∈ T θ(R)0. Clearly,

(Int(g0)θ)` = Int(g`0) θ` = Int(y−1)θ`

is the identity automorphism.

Proposition A.2. Suppose G is semisimple and Θ is any tempered G(R)-
invariant eigendistribution on G(R)θ. Then Θ = 0 if and only if Θ(xδθ) = 0
for all θ-regular elements xδ ∈ Sδθ(R)δ.

Proof. Since G is semisimple the centre ZG is finite. Fix an element g0 ∈ G(R)
as in Proposition A.1 and let θ′ = Int(g0)θ be the resulting finite algebraic R-
automorphism. Let δ′ = δg−1

0 . It is easily verified that Gδθ = Sδθ = Sδ
′θ′ =

Gδ
′θ′ and that x ∈ G is θ-regular if and only if xg−1

0 is θ′-regular. The dis-
tribution Θ may be regarded as a locally integrable function on the θ-regular
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subset of G(R)θ (Theorem 2.1.1 [Bou87]). We define Θ′ to be the distribution
on G(R)θ′ ⊆ G(R) o 〈θ′〉 through the function

Θ′(xθ′) = Θ(xg0θ)

defined on the θ′-regular subset of G(R)θ′. It is a simple exercise to show that
Θ′ is also a tempered G(R)-invariant eigendistribution. Obviously, Θ = 0 if
and only if Θ′ = 0. Theorem 15.1 [Ren97] applies to Θ′ (Proposition 3.6.1
[Bou87]). Consequently, Θ = 0 if and only if Θ′(xδ′θ′) = 0 for all θ′-regular
xδ′ ∈ Sδ′θ′(R)δ′. The proposition now follows from Θ′(xδ′θ′) = Θ(xδg−1

0 g0θ) =
Θ(xδθ).

Corollary A.3. Suppose Θ is any tempered G(R)-invariant eigendistribution
on G(R)θ. Then Θ = 0 if and only if Θ(xδθ) = 0 for all θ-regular elements
xδ ∈ ZG(R)Sδθ(R)δ.

Proof. Suppose first that G(R) ∼= ZG(R) × Gder(R) and let δ = (δZ , δder)
accordingly. The multiplication map

C∞c (ZG(R))⊗ C∞c (Gder(R)θ)→ C∞c (G(R)θ)

has dense image (Theorem III IV.3 [Sch57]). On the left we are abusively
identifying θ with its restriction to Gder. For a fixed function h ∈ C∞c (ZG(R)),
define Θh to be the distribution on Gder(R)θ given by

Θh(f) = Θ(hf), f ∈ C∞c (Gder(R)θ).

As a locally integrable function on the θ-regular set of Gder(R)θ we may write

(A.1) Θh(xθ) =

∫
ZG(R)

h(z) Θ(zxθ) dz.

It is simple to show that Θh is a tempered Gder(R)-invariant eigendistribution
so that Proposition A.2 applies. Together with the density of the map above we
find that Θ = 0 if and only if (A.1) vanishes for every h ∈ C∞c (ZG(R)) and when
restricted to Sδθder(R)δder. Allowing h to approach a Dirac delta function, we see
that this is equivalent to Θ(zxδθ) = 0 for almost all z ∈ ZG(R) and θ-regular
xδder ∈ Sδθder(R)δder. This proves the corollary when G(R) ∼= ZG(R)×Gder(R).

If G(R) = ZG(R)Gder(R) then the surjective map from ZG(R)×Gder(R)→
ZG(R)Gder(R) has some finite kernel F . The automorphism θ induces an auto-
morphism of the direct product, and in this case the tempered invariant eigendis-
tributions on G(R)θ may be identified with the tempered invariant eigendistri-
butions on (ZG(R) × Gder(R))θ which are fixed under left-multiplication by
elements of F . Combining this identification with the case already proved, we
see that the corollary holds when G(R) = ZG(R)Gder(R).

In general, the quotient group G(R)/ZG(R)Gder(R) is finite with represen-
tatives y1, . . . , yt. For any f ∈ C∞c (R) define

f1(xθ) =

t∑
j=1

f(yjxθy
−1
j ), x ∈ ZG(R)Gder(R).
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Then by the G(R)-invariance of Θ we have∫
G(R)

f(xθ) Θ(xθ) dx =

∫
ZG(R)Gder(R)

t∑
j=1

f(yjxθ) Θ(yjxθ) dx

=

∫
ZG(R)Gder(R)

t∑
j=1

f(yjxθy
−1
j ) Θ(xθ) dx

= Θ1(f1),

where Θ1 is the restriction of Θ to ZG(R)Gder(R). It follows that Θ = 0 if and
only if Θ1 = 0 and we are reduced to the previous case of the proof.

Corollary A.3 takes care of general θ. The principal tool in handling a non-
trivial quasicharacter ω is the central extension

1→ C → G′
p→ G→ 1

constructed recently by Waldspurger (Proposition 2.4 [Wal13]). The group C
is a central torus in the connected reductive algebraic group G′. The group
G′ is defined over R and the algebraic homomorphism p is defined over R and
remains surjective as a homomorphism from G′(R) to G(R). This extension
was constructed so that θ extends to a finite order algebraic R-automorphism
θ′ of G′ and there exists a unitary character µ′ of G′(R) such that

(A.2) ω ◦ p = µ′ ◦ (1− θ′).

We introduce the extension G′(R) into the discussion of 6.4 [Mez12] by
first lifting the distribution Θ defined there on G(R)θ to a distribution Θ′ on
G′(R)θ′. We shall then be able apply Corollary A.3 to a variant of Θ′ and
thereby deduce the desired vanishing results for Θ.

Proposition A.4. Suppose Θ is a tempered eigendistribution on G(R)θ. Sup-
pose further that

Θ(fy) = ω(y) Θ(f), f ∈ C∞c (G(R)θ),

where fy(xθ) = f(y−1xθy) for all x, y ∈ G(R). Then Θ is given by a locally
integrable function on the θ-regular subset. Moreover, Θ = 0 if and only if
Θ(xδθ) = 0 for all θ-regular elements xδ ∈ Sδθ(R)δ.

Proof. We shall lift Θ to a distribution on G′(R)θ′ by using the map υ :
C∞c (G′(R)θ′)→ C∞c (G(R)θ) defined by

υ(f ′)(p(g′)θ) =

∫
C(R)

f ′(zg′θ′) dz, g′ ∈ G′(R).

Our first claim is that υ is a continuous surjection. To see this, we regard the
central extension

1→ C(R)→ G′(R)→ G(R)→ 1
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as the set G(R)×C(R) together with a group multiplication given by a cocycle
in Z2(G(R), C(R)). In this perspective we obtain the sequence

C∞c (G(R))⊗ C∞c (C(R))→ C∞c (G′(R)θ′)
υ→ C∞c (G(R)θ)

The map on the left is the injection given by multiplication and it has dense
image (Theorem III IV.3 [Sch57]). If one identifies C∞c (G(R)) ⊗ C∞c (C(R))
with its image in C∞c (G′(R)θ′) under the subspace topology then it is simple
to show that υ is continuous surjection of this subspace onto C∞c (G(R)). By
density then, the map υ is continuous on C∞c (G′(R)θ′).

We define the distribution Θ′ on the component G′(R)θ′ by Θ′ = Θ ◦ υ.
Since Θ is tempered and υ is continuous, the distribution Θ′ is tempered. Now
define (µ′)−1 ·Θ′ = Θ′ ◦ L(µ′)−1 , where L(µ′)−1 : C∞c (G′(R)θ′)→ C∞c (G′(R)θ′)
is left-multiplication by (µ′)−1. The map L(µ′)−1 is continuous since µ′ is a
smooth function (Proposition 1 4.6 [Hor66]). It now follows that (µ′)−1 · Θ′ is
tempered. By (A.2), the distribution (µ′)−1 ·Θ′ satisfies

(µ′)−1 ·Θ′((f ′)y
′
) = Θ(υ(L(µ′)−1(f ′)y

′
))

= µ′ ◦ (1− θ′)((y′)−1) Θ(υ(L(µ′)−1f ′)p(y
′))

= µ′ ◦ (1− θ′)((y′)−1)ω(p(y′)) Θ(υ(L(µ′)−1f ′))

= (µ′)−1 ·Θ′(f ′)

for y′ ∈ G′(R). This means that (µ′)−1 · Θ′ is a G′(R)-invariant tempered
distribution.

The final requirement for us to apply Corollary A.3 to (µ′)−1 ·Θ′ is that it
be an eigendistribution of Z(g′ ⊗C). This is easily verified by considering the
decomposition g′ = g⊕ c and noting that Θ is an eigendistribution . Indeed, Θ′

is an eigendistribution whose infinitesimal character is that of Θ extended by
zero on c⊗C.

For the first assertion of the proposition, we use Theorem 2.1.1 [Bou87] to
express (µ′)−1 · Θ′ as a locally integrable function. It then follows that the
product of this locally integrable function with µ′ is an expression of Θ′ as a
locally integrable function. For any f = υ(f ′) ∈ C∞c (G(R)θ) we also have
f = υ(Lzf

′), where Lzf
′(x′θ′) = f ′(zx′θ′) and z ∈ C(R). As a result∫

G′(R)

f ′(x′θ′) Θ′(x′θ′) dx′ = Θ′(f ′) = Θ(f) = Θ′(Lzf
′)

=

∫
G′(R)

f ′(x′θ′) Θ′(z−1x′θ′) dx′.

This shows that Θ′ is a (left) C(R)-invariant function. We may therefore set
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Θ(xθ) = Θ′(xθ′) for θ-regular x ∈ G(R) ∼= G′(R)/C(R), and conclude that

Θ(f) =

∫
G′(R)

f ′(x′θ′) Θ′(x′θ′) dx′

=

∫
G′(R)/C(R)

∫
C(R)

f ′(zx′θ′) dz Θ′(x′θ′) dx′

=

∫
G(R)

f(xθ) Θ(xθ) dx.

For the final assertion of the proposition, the surjectivity of υ implies that Θ = 0
if and only if Θ′ = 0. Clearly, Θ′ = 0 if and only if (µ′)−1 ·Θ′ = 0. The assertion
now follows by applying Corollary A.3 to (µ′)−1 · Θ′ = 0 and tracing back to
Θ.

This last vanishing result was the missing link to Theorem 1 [Mez12] and its
subsequent arguments. The subsequent arguments and results therefore hold
for non-trivial ω and θ of any order.

B Parabolic descent in twisted geometric trans-
fer

The purpose of this appendix is to delineate results given in a preprint of Shel-
stad (11 [She]) concerning parabolic descent in twisted geometric transfer. The
results given here are considerably simpler than the original ones, as we are
working under the assumption that the cocycles given by (3.10) and (6.1) are
trivial.

The main point is to prove (6.7), namely that

(f (P̄ ))M̄H1
= (fH1

)(P̄H1
), f ∈ C∞c (G(R)θ)

under twisting by (Int(δ)θ, ω). To simplify the notation we shall sketch the
proof under the assumption that δ is the identity and P̄ is preserved by θ. After
the proof, we shall describe how transfer differs when twisting with respect to
Int(δ)θ or with respect to θ. Ultimately, we show that the spectral transfer
identity (4.1) is unaffected by the shift from Int(δ)θ to θ.

Suppose then that δ is trivial so that P̄ is preserved by θ, θM̄ = θ|M̄ and
ψM̄ = ψ|M̄ , etc. (cf. section 6.1). The crux of identity (6.7) lies in the compar-

ison of the transfer factor ∆M̄ (γ′, δ′), defined for M̄ , with the transfer factor
∆G(γ′, δ′) = ∆(γ′, δ′) defined for G. Each of these factors is a product of four
terms (4 [KS99]). The first terms of these transfer factors depend only on the
torus T ′ and the endoscopic datum s (Gx = T x in 4.2 [KS99]) and are there-
fore equal. The second term of ∆M̄ (γ′, δ′) depends on χ-data, which may be
chosen to be trivial on roots outside M̄ . In this way the second terms of the
two transfer factors may be taken to be equal. The third terms of both transfer
factors depend the strongly θ-regular element δ′ ∈ M̄(R). To be more precise,

41



there is an element g′ ∈ M̄(R) such that g′m(δ′)θ∗(g′)−1 = g′ψ(δ′)δ∗θ∗(g′)−1

corresponds to γ′ under an admissible embedding (cf. (3.12)). The third term
of ∆M̄ (γ′, δ′) depends on the Galois cocycle defined by g′uσσ(g′)−1 (Lemma
4.4.A [KS99]). One may choose this cocycle to serve the same purpose in the
definition of the third term of ∆G(γ′, δ′) so that the third terms are equal. In
summary we have

(B.1) ∆M̄ (γ′, δ′) =
∆M̄,IV (γ′, δ′)

∆IV (γ′, δ′)
∆(γ′, δ′),

where the terms with IV in subscript are defined in 4.5 [KS99].

Lemma B.1. Under suitable normalization of geometric transfer factors and
measures, we may assume that equation (6.7) holds.

Proof. Suppose f ∈ C∞c (G(R)θ). Then by (3.14) there exists a function (f (P̄ ))M̄H1

such that

(B.2)
∑
γ′′1

Oγ′′1 ((f (P̄ ))M̄H1
) =

∑
δ′

∆M̄ (γ′1, δ
′)Oδ′θ(f (P̄ )).

The sum on the right is taken over the θ-conjugacy classes under M̄(R) of
elements in M̄(R) whose norm is γ′1. It follows from the remark following
Lemma 4.9, that this collection of θ-conjugacy classes over M̄(R) is in bijection
with the collection of θ-conjugacy classes under G(R) of elements in G(R) whose
norm is γ′1. This bijection is necessary for us to convert the right-hand side of
(B.2) into the analogous sum over G(R). Still looking at the right-hand side,
one may imitate the computations of Lemma 10.17 [Kna86] to obtain

Oδ′θ(f (P̄ )) = |det(1−Ad(δ′θ))|g/m|1/2 Oδ′θ(f).

Making this substitution and cancelling with the IV -terms in (B.1), we arrive
at ∑

γ′′1

Oγ′′1 ((f (P̄ ))M̄H1
) = |det(1−Ad(γ))|h/mH |

1/2
∑
γ′′1

Oγ′′1 (fH1
)

=
∑
γ′′1

Oγ′′1 ((fH1)(P̄H1
)).

In the sums over γ′′1 we have also used the bijection between stable conjugacy
classes over H1 and M̄H1

(Lemma 4.9 with trivial θ, cf. §14 [She08a]). The
above identity between orbital integrals justifies the assertion of the lemma.

From now on we drop the assumption that δ is the identity and distinguish
between twisting with respect to Int(δ)θ and twisting with respect to θ. We
begin with the concept of norm. There is a norm with respect to θ and a norm
with respect to Int(δ)θ. We call the former a θ-norm and the latter a δθ-norm.
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It is simple to show that δ′δ−1 ∈ G(R) is a strongly Int(δ)θ-regular element
if and only if δ′ ∈ G(R) is strongly θ-regular. Suppose δ′ is strongly θ-regular
with θ-norm γ′1 ∈ H1(R). We wish to prove that δ′δ−1 has δθ-norm γ′1. To do
this we must retrace the definitions of the maps in section 3.3. These maps are
defined in terms of the endoscopic data and the automorphism θ∗. Replacing θ
with Int(δ)θ does not have an effect on θ∗ for the automorphism

Int(gθψ(δ)−1)ψInt(δ)θψ−1 = θ∗

preserves the splitting (B∗, T ∗, {X∗}). However, this replacement does have
an effect on gθ. The effect is to replace gθ with gθψ(δ)−1, and this affects the
definition of (3.9). By substituting gθψ(δ)−1 in place of gθ and δ′δ−1 in place
of δ in (3.9), we find that

ψ(δ′δ−1)(gθψ(δ)−1)−1 = ψ(δ′)g−1
θ ,

and the expression on the right is equal to the image of δ′ under the original
map (3.9). Conjugating this equation by gT ′ (cf. (3.12)), it is evident that δ′δ−1

corresponds to an element δ′∗ under twisting by Int(δ)θ in the same way that
δ′ corresponds to δ′∗ under twisting by θ.

We should observe that the change from gθ to gθψ(δ)−1 does not affect
assumption (3.10). Indeed, substituting gθψ(δ)−1 in place of gθ into (3.10)
yields

gθψ(δ)−1uσσ((gθψ(δ)−1)−1)θ∗(uσ)−1

= gθψ(δ)−1 (Int(uσ)σψ(δ))uσσ(g−1
θ )θ∗(uσ)−1

= gθψ(δ)−1 ψ(σ(δ))uσσ(g−1
θ )θ∗(uσ)−1

= gθuσσ(g−1
θ )θ∗(uσ)−1 ∈ (1− θ∗)ZG∗sc .

This ensures the Γ-equivariance of m relative to twisting by Int(δ)θ. The rest
being the same, we conclude that δ′δ−1 has δθ-norm γ′1.

We now examine the effect of replacing θ by Int(δ)θ on twisted characters.
Clearly, if π ∈ Πϕ satisfies (4.9) then it also satisfies

(B.3) π(δ)U ◦ ω−1(x)π(x) = πδθ(x) ◦ π(δ)U, x ∈ G(R).

This presents us with the intertwining operator Uδπ = π(δ)U and the correspond-
ing twisted character Θπ,Uδπ

defined by

(B.4) f 7→ tr

∫
G(R)

f(xθ)π(x)π(δ)U dx, f ∈ C∞c (G(R)θ),

Define Rx on C∞c (G(R)θ) by

Rxf(yθ) = f(yxθ), x, y ∈ G(R).

Then

(B.5) Θπ,Uδπ
(f) =

∫
G(R)

f(x)π(xδ)U dx = Θπ,Uπ (Rδ−1f), f ∈ C∞c (G(R)),
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by the invariance of the Haar measure (cf. (5.1) [DM08]).
There is a dual identity to (B.5) for twisted orbital integrals. We denote the

orbital integral of f ∈ C∞c (G(R)θ) at δ′δ−1 as Oδδ′θ(f) when twisted by Int(δ)θ.
Evidently,

(B.6) Oδδ′θ(f) =

∫
Gδ′θ(R)\G(R)

ω(g) f(g−1δ′δ−1 δθ(g)δ−1) dg = Oδ′θ(Rδ−1f),

where the orbital integral on the right is twisted by θ. Let us denote geometric
transfer factors with respect to twisting by Int(δ)θ with ∆δ. It follows for purely
formal reasons that we may take ∆δ(γ′1, δ

′δ−1) = ∆(γ′1, δ
′). In this way∑

γ′′1

Oγ′′1 (fH1
) =

∑
δ′

∆(γ′1, δ
′)Oδ′θ(f)

=
∑
δ′

∆δ(γ′1, δ
′δ−1)Oδδ′θ(Rδf)

and we may define geometric transfer of Rδf with respect to Int(δ)θ by

(B.7) (Rδf)δH1
= fH1 ,

where on the right we mean transfer with respect to θ.
Now the assumption of δ = 1 above was made only to simplify the notation.

In the notation we have just established the transfer factors in the proof of
Lemma B.1 are given a δ in superscript and the assertion of the lemma is

(f (P̄ ))δM̄H1
= ((f)δH1

)(P̄H1
).

Similarly, the assertion of Theorem 6.6 reads as
(B.8)∫

H1(R)/Z1(R)

(f)δH1
(h)

∑
πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆δ(ϕH1 , π) Θπ,Tδπ
(f)

when twisting by Int(δ)θ. Here, the spectral transfer factor ∆δ(ϕH1 , π) is de-
fined with respect to twisting by Int(δ)θ. As with the geometric transfer factors,
we may set

∆(ϕH1 , π) = ∆δ(ϕH1 , π), π ∈ Πϕ.

In light of this equation and equations (B.7) and (B.5), identity (B.8) becomes∫
H1(R)/Z1(R)

(Rδ−1f)H1
(h)

∑
πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Tπ (Rδ−1f)

for all f ∈ C∞c (G(R)θ); or equivalently∫
H1(R)/Z1(R)

fH1(h)
∑

πH1
∈ΠϕH1

ΘπH1
(h) dh =

∑
π∈Πϕ

∆(ϕH1 , π) Θπ,Tπ (f).

This proves that Theorem 6.6 remains the same when twisting by θ or by Int(δ)θ.
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