
MATH 2100 Assignment 11 Solutions

Problem 1. If n, a ∈ Z+ and d = (n, a), show that the equation ax ≡ 1 (mod n) has a solution if
and only if d = 1.

Proof. ( =⇒ ): Let x be a solution to the equation. Then

ax ≡ 1 (mod n)

ax = 1 + kn for some k ∈ Z
ax− kn = 1

Thus 1 is a linear combination of a and n. But we know (Theorem 0.2) that d = (a, n) is the smallest
positive integer we can make that way, so we must have d = 1. (Another way to see this is to notice
that d divides the left side, so it must divide the right.)

(⇐= ): If d = 1, we can write 1 as a linear combination of a and n. Say

as+ nt = 1

But now

as = 1 + nt

as ≡ 1 (mod n)

Thus x = s is a solution to the given equation.

∴ (⇐⇒ )

(Note: We could do this proof with a chain of if-and-only-ifs, but it would take more care. It’s easy
for mistakes to creep in when every step has to be reversible. In most cases, proving one direction at
a time is wiser.)

Problem 2. If a, x, n ∈ Z, n > 1, and r ≡ x (mod n), then

ax ≡ 1 (mod n) =⇒ ar ≡ 1 (mod n).

Proof. Begin by “decoding” the mod statement r ≡ x (mod n) to get r = x+ kn for some k ∈ Z.
(This is very often a good way to start.) Now

ar = a(x+ kn)

= ax+ akn

≡ ax (mod n)

≡ 1 (mod n),

as required.
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Problem 3. Show that U(n) = {m ∈ Zn : (m,n) = 1} is a group for any n ∈ Z+.

Proof.

• Associativity: This property is usually inherited somehow, and U(n) is no exception. It lies
inside Zn, where we know multiplication is associative.

• Identity: We know 1 is an identity in Zn, so we just need to check that it’s in U(n). Since
(1, n) = 1, it is.

• Inverse: Let m ∈ U(n); then (m,n) = 1. By problem 1, there is some x such that

mx ≡ 1 (mod n).

This x is not in general the inverse of m, because it need not be in U(n). We can fix this by
using the division algorithm to write x = qn+ r for some q ∈ Z, 0 ≤ r < n. Then r ≡ x
(mod n), so problem 2 gives

mr ≡ 1 (mod n).

Finally, applying problem 1 in reverse, we see that (r, n) = 1. Together with 0 ≤ r < n, this
gives r ∈ U(n), and it multiplies with m to make the identity, so r = m−1.

• Closure: (You were allowed to assume this, but let’s prove it anyway.) Let m,m′ ∈ U(n) and
suppose (mm′, n) 6= 1. Then there is at least one prime p that divides both mm′ and n. But if
p | mm′, it must divide either m or m′ (Euclid’s Lemma). If it divides m, we have p | m and
p | n, so p | (m,n) – impossible since m ∈ U(n). Similarly, p can’t divide m′. This is a
contradiction. ∴ (mm′, n) = 1, and we can convert mm′ to an element of U(n) the same way
we did with m−1.

Problem 4. Show that Un is a subgroup of GL(V ), where V is a complex finite-dimensional vector
space, Un is the unitary linear operators on V , and GL(V ) is the invertible linear operators on V .

Proof. Clearly I ∈ Un, so the set is nonempty. We’ll use the one-step subgroup test. Let S, T ∈ Un;
then S∗ = S−1, T ∗ = T−1. We want to check if ST−1 ∈ Un, so we’ll see if it has the defining property.

(ST−1)∗ = (T−1)∗S∗

= (T ∗)∗S−1

= TS−1

= (ST−1)−1,

so ST−1 ∈ Un. ∴ Un is a subgroup of GL(V ).

(Note: The proof can also be done with inner products, but this method is simpler. Don’t forget to
ask yourself why Un is a subset of GL(V ).)
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Problem 5. Show that if G meets all group conditions except invertibility, the existence of left
inverses in G is sufficient to show that G is a group.

Proof. We must show that (two-sided) inverses exist. Let x ∈ G. We know x has a left inverse, i.e.
there is some a ∈ G such that ax = e. By the same token, a has a left inverse b such that ba = e.
Left-multiplying both sides of the first equation by b gives

b(ax) = be

(ba)x = b

ex = b

x = b

But now the second equation becomes xa = e. Thus a is both a left and a right inverse for x, and x
was arbitrary, so we have true inverses for every element of G.

(Note: You lost marks here if you used the −1 symbol before the end. x−1 always means the
two-sided inverse of x, and you have to show that it exists before you use it.)

Problem 6. Show that µn = {e2πik/n : 0 ≤ k < n} is a subgroup of C×.

Proof. Since µn is finite, we need only show that it’s closed under the group operation. Let a, b ∈ µn;
then a = e2πik/n, b = e2πil/n for some 0 ≤ k, l < n. So

ab = e2πik/ne2πil/n

= e2πi(k+l)/n

If k + l were in the required range, we’d be done, but this is not guaranteed. However, since
e2πin/n = e2πi = 1, we can “cast out” any multiple of n from the exponent without changing the
answer. This should remind you of modular arithmetic, and we’ll use the same tricks here. Let

k + l = qn+ r

where q ∈ Z, 0 ≤ r < n. Then

ab = e2πi(qn+r)/n

= e2πi(qn)/ne2πi(r)/n

= (e2πin/n)qe2πir/n

= 1qe2πir/n

= e2πir/n ∈ µn.

Thus µn is closed under multiplication and is a subgroup of C×.

(Note: Some of you noticed that k + l is less than 2n, so at most one n needs casting out; we don’t
need the more general approach above. However, it is applicable to other situations, such as looking
at powers of elements of µn.)
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