MATH 2100 Assignment 11 Solutions

Problem 1. If $n, a \in \mathbb{Z}^+$ and d = (n, a), show that the equation $ax \equiv 1 \pmod{n}$ has a solution if and only if d = 1.

Proof. (\implies): Let x be a solution to the equation. Then

$$ax \equiv 1 \pmod{n}$$
$$ax = 1 + kn \quad \text{for some } k \in \mathbb{Z}$$
$$ax - kn = 1$$

Thus 1 is a linear combination of a and n. But we know (Theorem 0.2) that d = (a, n) is the smallest positive integer we can make that way, so we must have d = 1. (Another way to see this is to notice that d divides the left side, so it must divide the right.)

(\Leftarrow): If d = 1, we can write 1 as a linear combination of a and n. Say

$$as + nt = 1$$

But now

$$as = 1 + nt$$
$$as \equiv 1 \pmod{n}$$

Thus x = s is a solution to the given equation.

 $\therefore (\iff)$

(Note: We *could* do this proof with a chain of if-and-only-ifs, but it would take more care. It's easy for mistakes to creep in when every step has to be reversible. In most cases, proving one direction at a time is wiser.)

Problem 2. If $a, x, n \in \mathbb{Z}$, n > 1, and $r \equiv x \pmod{n}$, then

$$ax \equiv 1 \pmod{n} \implies ar \equiv 1 \pmod{n}.$$

Proof. Begin by "decoding" the mod statement $r \equiv x \pmod{n}$ to get r = x + kn for some $k \in \mathbb{Z}$. (This is very often a good way to start.) Now

$$ar = a(x + kn)$$

= $ax + akn$
= ax (mod n)
= 1 (mod n),

as required.

Problem 3. Show that $U(n) = \{m \in \mathbb{Z}_n : (m, n) = 1\}$ is a group for any $n \in \mathbb{Z}^+$.

Proof.

- Associativity: This property is usually inherited somehow, and U(n) is no exception. It lies inside Z_n , where we know multiplication is associative.
- Identity: We know 1 is an identity in Z_n , so we just need to check that it's in U(n). Since (1, n) = 1, it is.
- Inverse: Let $m \in U(n)$; then (m, n) = 1. By problem 1, there is some x such that

$$mx \equiv 1 \pmod{n}$$
.

This x is not in general the inverse of m, because it need not be in U(n). We can fix this by using the division algorithm to write x = qn + r for some $q \in \mathbb{Z}$, $0 \le r < n$. Then $r \equiv x \pmod{n}$, so problem 2 gives

$$mr \equiv 1 \pmod{n}$$
.

Finally, applying problem 1 in reverse, we see that (r, n) = 1. Together with $0 \le r < n$, this gives $r \in U(n)$, and it multiplies with m to make the identity, so $r = m^{-1}$.

• Closure: (You were allowed to assume this, but let's prove it anyway.) Let $m, m' \in U(n)$ and suppose $(mm', n) \neq 1$. Then there is at least one prime p that divides both mm' and n. But if $p \mid mm'$, it must divide either m or m' (Euclid's Lemma). If it divides m, we have $p \mid m$ and $p \mid n$, so $p \mid (m, n)$ – impossible since $m \in U(n)$. Similarly, p can't divide m'. This is a contradiction. $\therefore (mm', n) = 1$, and we can convert mm' to an element of U(n) the same way we did with m^{-1} .

-	-	

Problem 4. Show that U_n is a subgroup of GL(V), where V is a complex finite-dimensional vector space, U_n is the unitary linear operators on V, and GL(V) is the invertible linear operators on V.

Proof. Clearly $I \in U_n$, so the set is nonempty. We'll use the one-step subgroup test. Let $S, T \in U_n$; then $S^* = S^{-1}, T^* = T^{-1}$. We want to check if $ST^{-1} \in U_n$, so we'll see if it has the defining property.

$$(ST^{-1})^* = (T^{-1})^* S^*$$

= $(T^*)^* S^{-1}$
= TS^{-1}
= $(ST^{-1})^{-1}$,

so $ST^{-1} \in U_n$. $\therefore U_n$ is a subgroup of GL(V).

(Note: The proof can also be done with inner products, but this method is simpler. Don't forget to ask yourself why U_n is a subset of GL(V).)

Problem 5. Show that if G meets all group conditions except invertibility, the existence of left inverses in G is sufficient to show that G is a group.

Proof. We must show that (two-sided) inverses exist. Let $x \in G$. We know x has a left inverse, i.e. there is some $a \in G$ such that ax = e. By the same token, a has a left inverse b such that ba = e. Left-multiplying both sides of the first equation by b gives

$$b(ax) = b\epsilon$$
$$(ba)x = b$$
$$ex = b$$
$$x = b$$

But now the second equation becomes xa = e. Thus a is both a left and a right inverse for x, and x was arbitrary, so we have true inverses for every element of G.

(Note: You lost marks here if you used the $^{-1}$ symbol before the end. x^{-1} always means the *two-sided* inverse of x, and you have to show that it exists before you use it.)

Problem 6. Show that $\mu_n = \{e^{2\pi i k/n} : 0 \le k < n\}$ is a subgroup of \mathbb{C}^{\times} .

Proof. Since μ_n is finite, we need only show that it's closed under the group operation. Let $a, b \in \mu_n$; then $a = e^{2\pi i k/n}$, $b = e^{2\pi i l/n}$ for some $0 \le k, l < n$. So

$$ab = e^{2\pi i k/n} e^{2\pi i l/n}$$
$$= e^{2\pi i (k+l)/n}$$

If k + l were in the required range, we'd be done, but this is not guaranteed. However, since $e^{2\pi i n/n} = e^{2\pi i} = 1$, we can "cast out" any multiple of n from the exponent without changing the answer. This should remind you of modular arithmetic, and we'll use the same tricks here. Let

$$k+l = qn+r$$

where $q \in \mathbb{Z}, 0 \leq r < n$. Then

$$ab = e^{2\pi i (qn+r)/n}$$

= $e^{2\pi i (qn)/n} e^{2\pi i (r)/n}$
= $(e^{2\pi i n/n})^q e^{2\pi i r/n}$
= $1^q e^{2\pi i r/n}$
= $e^{2\pi i r/n} \in \mu_n.$

Thus μ_n is closed under multiplication and is a subgroup of \mathbb{C}^{\times} .

(Note: Some of you noticed that k + l is less than 2n, so at most one n needs casting out; we don't need the more general approach above. However, it is applicable to other situations, such as looking at *powers* of elements of μ_n .)