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Abstract

This survey discusses three aspects of the ways in which probability has
been applied to the theory of finite groups: probabilistic statements about
groups; construction of randomized algorithms in computational group
theory; and application of probabilistic methods to prove deterministic
theorems in group theory. It concludes with a brief summary of related
results for infinite groups.

Cet article donne un apercu sur trois aspects des fagons dont la proba-
bilité est appliquée a la théorie des groupes finis: les faits probabilistiques
des groupes; la construction d’algorithmes aléatoires dans la computa-
tion; et ’application des moyens probabilistiques pour obtenir les theo-
rems déterministiques dans la théorie des groupes. On termine avec un
bref sommaire de resultats se rapportant aux groupes infinis.
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In the past 20 years, and particularly during the last decade, there has been
a growing interest in the use of probability in finite groups. It has been my
experience that many pure mathematicians still look on probability theory as an
“applied” subject (perhaps because of the way it is taught in our universities),
and are dubious about the validity of using probabilistic reasoning in their own
discipline. Kolmogorov’s axiomatization [51] of probability theory still seems to
be a well kept secret. However, no-one should be uncomfortable in a discussion
of the applications of probability theory to finite groups, since in these cases
the probabilistic statements can be always be simply understood in terms of
proportions.

In the current article I shall consider three aspects of the ways in which prob-
ability has been applied to problems in group theory. These are: probabilistic
statements about groups which give some alternative description of the struc-
ture of the group and its elements (Sects. 1 and 2); applications of probability to
construct algorithms in computational group theory (Sect 3); and applications
of probabilistic methods to prove deterministic theorems in group theory (see
Sect. 4). The last section (Sect. 5) deals with some related results in infinite
groups.

Since my focus is on group theory, I shall ignore several very important
areas where the primary interest is in probability theory such as random walks



on groups and amenable groups (but see Sect. 3.2). There is also interesting
recent work on probability and conjugacy classes of the classical groups (see [36]
and [37]).

There are two surveys by Shalev (see [74] and [76]) which partially overlap
with this paper.

1 Probabilistic questions about elementary prop-
erties of groups

1.1 “Statistics” of the symmetric group

During the 1960’s Erdés and Turdn published a series of papers [31], [32], [33]
and [34] on the “statistics” of the symmetric group S,,. A typical result describes
the probability distribution of the logarithm of the order of a random element x
from S,,; they prove that the distribution of In(ord(x)) is asymptotically normal
with mean % In” n and variance % In®n. This contrasts sharply with the classical
result of E. Landau that the maximum of In(ord(z)) is (1 4 o(1))/nln(n) (see
[68]) The results of Erdos and Turdn have been refined and extended in a
number of other papers such as [17], [7], [29], [45], [30], [11] (see also [73]). All
of these results are essentially combinatorial and do not use significant group
properties of S,,. A little more group theory is used to prove the results in [23].
Similar results for the finite classical linear groups are found in [35].

1.2 Group laws

An earlier example of a probabilistic statement about groups describes how
commutative a nonabelian group can be (I am not sure who first made this
observation):

e If GG is a nonabelian finite group with k(G) conjugacy classes, then

{(z,y) € G x Glay =yz}| _ k(G)
lelE G|

5
< Z
-8

This can be interpreted as saying that, for any finite nonabelian group, the

probability that two elements chosen at random from G commute is at most 5/8
(the bound is achieved when G is nonabelian group of order 8). Elementary
extensions of this result can be found in [43], [77] and [78].
Note: We are assuming (as we shall generally assume for finite groups through-
out this paper) that random elements are chosen independently with the uniform
distribution on G. Thus every pair (,y) has the same probability 1/ |G| of be-
ing chosen.

This suggests the following general question:



e Let w := w(Xy, Xo,...,X,,) be a nontrivial word. Does there exist a
constant 7 < 1 (depending on w) such that, if w = 1 is not a law for a
finite group G, then a random m-tuple (x1, xa, ..., ., ) of elements from G
satisfies w(x1, 2, ..., T, ) = 1 with probability < n?

Of course the theorem quoted above is just the case when w(X,Y) =
X~'Y~1XY. Although the question has been answered positively in some
special cases, for example, for some words representing nilpotent varieties and
metabelian varieties (unpublished work), the problem appears to be open in the
general case. For results related to nilpotent varieties see the recent paper [38].

Some related results are known. For example, [41] shows that if G is a finite
group which is not solvable, then the probability that two random elements
generate a solvable subgroup is at most 11/30. A further result appears in [21]
(see Sect. 4.2). Both of these results require the classification of finite simple
groups for their proofs.

2 Generators

2.1 Generating the symmetric group

In 1969 I was reading the classical book of E. Netto [66] and came across the
following claim (p. 90 of the English translation):

If we arbitrarily select two or more substitutions of n elements, it
is to be regarded as extremely probable that the group of lowest
order which contains these is the symmetric group, or at least the
alternating group. In the case of two substitutions the probability
in favor of the symmetric group may be taken as about %7 and in
favor of the alternating, but not symmetric, group as about i. In
order that any given substitutions may generate a group which is
only a part of the n! possible substitutions, very special relations
are necessary, and it is highly improbable that arbitrarily chosen
substitutions [..] should satisfy these conditions. The exception
most likely to occur would be that all the given substitutions were
severally equivalent to an even number of transpositions and would
consequently generate the alternating group.

Perhaps Netto was expressing his frustration after trying to generate inter-
esting subgroups of S,, from random permutations. He gives no supporting
evidence for his claim.

Let A,, denote the alternating group. Then Netto’s conjecture can be writ-

ten:
 H(@w) € 80 X Sa | {2,9) > An}|
|Sn‘7l

where (x,y) denotes the subgroup generated by = and y. Since |S, : A,| = 2
for n > 2, we have (z,y) < A, for exactly 1 of the pairs, so the rest of his

—lasn— o0

Pn :



claim follows easily. Netto’s conjecture can be rephrased as “almost all pairs
of elements of S,, generate either A,, or S,, as n — o0” or

e the probability p, that two elements chosen at random from S,, generate
either A,, or S,, tends to 1 as n — oo.

Netto’s conjecture was proved in [22] where it is shown that p, > 1 —
2(Inlnn)~2 for all sufficiently large n. The proof consists of two main steps.
Let x,y be random elements of S,,. Then it is shown that: (i) the probability
that (z,y) is a primitive subgroup of S, is 1 — 1/n + O(1/n?); and (ii) the
probability that neither (x) nor (y) contains a p-cycle for some prime p < n — 2
is < 1.8(Inlnn)~2 for all n large enough. The result now follows by applying
a classical theorem of Jordan: a primitive subgroup of S, which contains a
p-cycle for some prime p < n — 2 must contain A,,.

The result in [22] was progressively refined in [13] and in [12]. Finally,
assuming the classification of finite simple groups, Babai [5] proved that p, =
1 —1/n+ O(1/n?) as conjectured in [22].

2.2 Generating finite simple groups

It follows from Netto’s conjecture that almost all pairs of elements from A,
generate all of A,, as n — co. At the end of [22] the author made the conjecture
that a similar result might be true for the other finite simple groups. More
precisely, as S runs through the finite nonabelian simple groups:

e if 2,y are random elements from S, then the probability that (x,y) = S
tends to 1 as |S| — oo

This was a rash conjecture in 1969 since the proof that every finite simple
group is 2-generator is based on the classification of finite simple groups (an-
nounced in 1980). However it turned out to be very fruitful. Naturally the
complete proof of this conjecture was much more difficult than the special case
where G = A,,. The general proof follows a different approach (closer to the
one used in [5] for Netto’s conjecture). We shall describe this approach now.

In 1936 Philip Hall [44] introduced the Eulerian function ¢(G,d) which is
defined to be equal to the number of d-tuples from G which generate the finite
group G. (The ordinary Euler function ¢(n) counts the number of 1-tuples
which generate the cyclic group of order n.) He proved that his function has
the form

p(G.d) =Y p(G, H)|H|

H<G

where the sum is over all subgroups H of G and u denotes the Mobius function
on the lattice of subgroups of G. (Specifically u is defined recursively by
w(G,G) =1and ), peq (G, K) =0 for all subgroups H < G.) The zeta
function ((G, s) for G is then defined to be the reciprocal of the finite Dirichlet



series

P(G,s) := (p(G;S) = i (&) where ap,(G) = Z w(G, H)
‘G| n=1 H<G,|G:H|=n

Clearly, P(G,d) is the probability that a random d-tuple of elements from G
generates GG, and for specific groups Hall’s formula may be used to compute
this probability exactly (see [1] and [46]). The general zeta function has a
number of interesting properties, many of which are not well understood. See,
for example, [14].

A lot of information about G is usually required if we want to calculate
P(G, s) exactly. However, in many cases a useful estimate can be obtained by
using just the terms involving the maximal subgroups of G. If M is maximal
in G, then u(G, M) = —1, and for all s > 0 we have the inequality

P(G,s)>1- > b”;f)
m=2

where b,,(G) is the number of maximal subgroup of index m in G. If we are
lucky, then sufficient knowledge of the maximal subgroups of G may lead to a
nontrivial estimate on P(G,d) for sufficiently large d.

For example, in the alternating group A, the maximal subgroups which are
not primitive are easily described, and the maximal subgroups of A,, which are
primitive are known to have small orders (see [26] Sect.8.5 and Theorem 5.6B)
It is therefore possible to show that P(A4,,2) — 1 as n — oco. This is the idea
behind the proof in [5] although it is not stated in exactly this way. Indeed it is
now known [55] that there are exactly n/2 + o(n) conjugacy classes of maximal
subgroups in A,, and Babai’s theorem follows easily from this because every
proper subgroup of A,, has index at least n.

In [49] and [53] Kantor, Lubotzky, Liebeck and Shalev completed the proof
of the conjecture in [22] by showing that as S runs over the finite simple groups,
P(S,2) — 1 as |S| — oo. Their proof uses detailed knowledge of the maximal
subgroups of the various classes of simple groups and is, of course, dependent
on the classification. As we shall see later (Sect. 4.2), the theorem which they
proved has applications to problems which seem to have nothing to do with
probabilistic questions.

In the past few years much more has been proved about this problem and
related questions. For example, Liebeck and Shalev [56] proved a conjecture of
Kantor and Lubotzky for finite nonabelian simple groups S:

e If x israndom element and y is a random involution from S then S = (z,y)
with probability approaching 1 as |S| — oc.

Guralnick and Kantor [42] have also proved:

e In each finite nonabelian simple group S there is a conjugacy class C' such
that for each fixed element x # 1 from S and a random element y from
C, the probability that (z,y) = S is at least 1/10.



3 Algorithms

A probabilistic algorithm is an algorithm which, at some stages, does not pre-
scribe a determined step but “tosses a coin” to decide what the next step should
be. The effect of introducing randomization into the execution of an algorithm
can often speed up the running time of the algorithm as well as simplify its pro-
gramming. Randomized algorithms of this type have been used over the past
40 years, and have become increasingly important in solution of computational
problems in combinatorics and algebra. A good general reference is [65]. The
paper [15] gives a good overview of probabilistic algorithms applied to groups
(see, also [16]). The papers in the proceedings [50] give a good idea of the com-
putational problems in group theory of current interest, and the importance
that probabilistic methods play.

Of particular interest are Monte Carlo algorithms. These are randomized
algorithms whose reliability (probability of returning the correct answer) can be
increased arbitrarily at the expense of extra time. A Monte Carlo algorithm
which never returns an incorrect answer (but may sometimes return “fail” to
indicate that it cannot find the solution) is called a Las Vegas algorithm.

3.1 An example: the structure of U,

An example of a LasVegas algorithm which may be familiar is a pseudo-prime
test. These are fast tests used to determine when a large integer n is composite
and to give convincing evidence for primality when the integer is prime. The
tests are based on recognizing distinguishing properties of the group U,, of units
of the ring Z/nZ. We take a few moments to describe one of these tests here
(see [72]).

Let n > 1 be an odd integer. Then we can represent the group U, by the
set of integers k with 1 < k < n with greatest common divisor GCD(k,n) = 1
with the operation - of multiplication modulo n. If n is prime, then U, is a
cyclic group of order n — 1 whose unique element of order 2 isn — 1. If n is
not prime then: either n is a prime power and so |U,| does not divide n — 1;
or else n has at least two odd prime divisors and so U,, at least two elements
of order 2. Suppose that n is not prime, and write n — 1 = 2!m where t > 1
and m is odd. We say that an integer k with 1 < k < n is a witness to the
compositeness of n if any of the following hold: (i) GCD(k,n) # 1; (ii) k has
order not dividing n — 1; or (iii) k has even order 2h in U,, but k" is not equal
ton — 1. We can check these three conditions as follows: a particular value of
k is a witness unless k™ = 1 or one of the elements k™, k2™, ..., k2Im g equal
to n — 1. (The usefulness of this criterion depends on the fact that there is a
fast way to compute powers of k£ modulo n; see, for example, [65].)

We now have a Las Vegas algorithm for checking compositeness of an odd
integer. Choose a random integer k from the interval 1 < k < n and test to
see whether k is a witness to the compositeness of n. If n is composite, then
it can be proved that a randomly chosen k£ will be a witness with probability
at least 1/2. If we find a witness, then we know that n is composite and so



we are finished. The test can never give us a proof that n is prime. However,
if we perform d independent repetitions of the test on n and do not find a
witness, then we should become increasingly convinced that n is prime since
the probability that this event happens for a composite n is < (1/2)4. This
pseudo-prime test (or a similar test) is widely used in programs such as Maple
as an inexpensive partial substitute for primality testing.

A similar search for witnesses can be used to determine whether or not
a given finite set of matrices from GL(d,q) generates a subgroup containing
SL(d,q) or one of the other classical groups (see [67], [69], [70] and [75]).

3.2 Finding random elements

A problem which arises in many probabilistic algorithms in group theory is:

o If we are given a set of generators for a group G, how can we efficiently
generate random elements of G7

In some cases this can be done easily; an important case is when the group
is given as a permutation group and a stabilizer chain and strong generating set
are known. However, in other cases, when we have less information about G or
a less structured generating set, the problem may be much more difficult.

In practice we do not require that the probability distribution be exactly
uniform, but it should be close to uniform. Consideration of this problem
leads to the analysis of random walks on the group (more precisely, on the
Cayley graph associated with the set of generators) which can be described in
terms of Markov chains. Measuring the efficiency of the algorithms to generate
near random elements then reduces to determining how fast the Markov chain
converges. This in turn uses some interesting linear representation theory (see
[20] for an excellent introduction). Along similar lines we note that [2] discusses
the problem of random walks on S,, and explains why 6 random riffle shuffles of
an ordinary deck of cards are not sufficient to randomize the deck, but 7 shuffies
suffice.

The general problem of generating random elements in a group is not yet
satisfactorily solved, and it is clear that naive methods of computing random
elements are not adequate (see [6] and [71]). The problem is particularly
important when G is a group of matrices over a finite field.

We remark that Babai, Luks and Seress have introduced a simple technique
called random subproducts which can sometimes be used to substitute for the
problem of finding random elements. This is based on the following easily
proved proposition (see [15] Prop. 2.1):

e If H is a proper subgroup of G and z1, ..., x,, is a set of generators of G,
then with probability > 1/2 a random element from the set

{7t a5?..a5m |e1, 82, .., em € {0,1}}

does not lie in H.



3.3 Recognizing 5,

Let f(X) be a monic separable polynomial of degree n with integer coefficients,
and let G = Gal(f) denote the Galois group of the splitting field of f where G
is considered as a permutation group on the set of n roots. For each prime p
we can consider the factorization

f(X) = [1(X) f2(X)...fr(X) (mod p)

where the f;(X) are monic irreducible modulo p. Suppose that p does not
divide the discriminant disc(f) of f (so the factors f;(X) are distinct) and let
niy < ng < ... < n, be the degrees of the factors. Then Frobenius showed that
G contains permutations with cycle type (n1,ns,...,n,) (see [82] Sect. 61); and
later Chebotarev showed that, in a suitable sense, the proportion of p which
give rise to a particular cycle type is equal to the proportion of permutations
in G with that cycle type (see [81]). This theorem is used to help identify the
Galois groups of irreducible polynomials.

Van der Waerden also proved that “almost all” irreducible polynomials over
the rationals have the full symmetric group as their Galois group. It is therefore
worthwhile having a quick test to determine whether this is true for Gal(f).
This leads to the following heuristic. For a sequence of “random” primes p find
the associated cycle type (n1,nz, ..., n,) which must appear in Gal(f) according
to Frobenius’ theorem. Try to determine whether the existence of these cycle
types in Gal(f) implies that Gal(f) is the full symmetric group. Recalling that
two elements of S5, have the same cycle type exactly when they are conjugate in
Sy, and taking into consideration Chebotarev’s theorem, we have the following
(slightly idealized question) about recognizing when we have the full symmetric
group.

We shall say that a list z1, 29, ..., x4 from a group G invariably generates G
if (y1,92,...,94) = G whenever y; is conjugate to z; in G for i = 1,2,..,d. We
then ask:

e Given d > 2 what is the probability that d random elements of S, invari-
ably generate S,,7

This problem was first posed by John McKay (private communication). He
conjectured from numerical experiments that the expected number of random
elements required to invariably generate S, is a constant (about 5) independent
of n. Tt is shown in [25] that O((Inn)'/?) random elements are enough, and
soon after that Euczak and Pyber [59] improved this to show that for each € > 0
there exists a constant C' (depending on e but independent of n) such that C
random elements of S, invariably generate S,, with probability at least 1 — ¢.
A good value of C is still not known.

3.4 Other algorithmic problems

There are many other algorithmic problems in which probabilistic methods play
a part. For example, suppose that we are given a permutation group G. How



difficult is it to find an element of order p in G? One answer is given by [47]
where it is shown:

e If G is a permutation group of degree n, and p is a prime which divides |G|,
then the probability that a random element of G has its order divisible by
p is at least 1/n.

Thus there is a good probability that a randomly chosen element will have
its order divisible by p, and then some power of this element has order p. Sur-
prisingly, the proof uses the classification of finite simple groups.

The paper [52] proposes a probabilistic algorithm for determining when a
linear group has a tensor product decomposition, [79] describes a probabilistic
algorithm to find the structure of a finite abelian group, and [64] considers the
discrete logarithm problem in GL(n, q).

4 Applications to deterministic theorems

A famous theorem of Georg Cantor states that, because the set of real numbers
is uncountable and the set of algebraic real numbers is countable, therefore the
set of transcendental real numbers is uncountable; in particular, transcendental
real numbers exist. In 1947 Paul Erdés [28] popularized similar arguments
(they had occasionally been used earlier by other authors) to prove existence
theorems in finite structures. This extension of the pigeonhole principle is now
called the probabilistic method (see [3]) and has been used with great success in
combinatorics. Recently probabilistic methods have been successfully applied
to problems in group theory.

The possibility of such applications was predicted by Paul Turan. In a letter
dated (Budapest. 16.3.1970) to the author, Turdn concludes with:

My “Einstellung” with statistical group theory will be perhaps more
understandable by repeating how I came to the idea of statistical
group theory. My “old age dream” (an expression, imitating “Kro-
necker’s Jugendtraum?”) is to disprove Burnside’s conjecture (if G
is finitely generated and for all elements x we have with the same n
2™ = e then G is finite) by finding for such groups an appropriate
representation in a space so that one could find that in this space
the “points” belonging to finite groups form a “small” set. But I
could not find a good representation so far.

So far no-one has succeeded in tackling Burnside’s problem in this way, but in
recent years there have been a number of successful applications of probabilistic
group theory somewhat along the lines which Turdn describes. We discuss some
of these.



4.1 The (2,3)-generator problem

The (2,3)-generator problem was open for nearly a century. It arose from the
study of groups acting on Riemann surfaces and asks:

e Which finite simple groups S can be generated by two elements x,y of
orders 2 and 3, respectively?

The modular group PSL(2,Z) is isomorphic to a free product (z) * (y) of a
group of order 2 and a group of order 3. Therefore the (2, 3)-generator problem
is equivalent to: which simple groups S are homomorphic images of PSL(2,7)?

It is easily verified that A,, is (2, 3)-generated for all n > 8, but for the other
families of simple groups the problem is more complicated. In 1996 it was
shown that the simple groups PSL(d,q) are (2, 3)-generated for odd ¢ except
when d = 2 and ¢ = 9 (see [18] and [19]). At that time it was conjectured
that, with a finite number of exceptions, every finite simple group was (2, 3)-
generated. A strengthened form of this conjecture was tackled by Liebeck and
Shalev [54] who proved:

e If S runs over the finite classical simple linear groups which are not of the
form PSp(4,q), then the probability that two random elements of order
2 and 3, respectively, generate S tends to 1 as |S| — co. Moreover, the
corresponding probability as S runs over the groups PSp(4, q) with ¢ # 2F
or 3% is 1/2.

Unexpectedly, it turned out that the groups from the two infinite families
PSp(4,2%) and PSp(4,3F) fail to be (2,3)-generated. However, Liebeck and
Shalev’s result shows that, except for these families, all finite simple classical
groups — with finitely many possible exceptions — are (2, 3)-generated (what
the exceptions may be is still unknown).

Since then Liibeck and Malle [57] settled the (2,3)-generation problem for
exceptional groups of Lie type using more direct methods. They show that,
except for G2(2)" and the Suzuki groups, all of these groups are (2, 3)-generated.

4.2 Residual properties of free groups

A group G is called residually-C for a class C of groups if for each  # 1 in G
there is a normal subgroup N of G with z ¢ N and G/N isomorphic to a group
in C. It is well known that any free group F of rank > 2 is residually finite;
indeed F is a residually finite p-group for each prime p. In 1969 Magnus [60]
asked the question:

e Is it true that I residually-X for every infinite set X of finite nonabelian
simple groups?

Equivalently, is it true that for each x # 1 in F there exists a normal
subgroup N, such that = ¢ N, and F/N, is isomorphic to one of the groups S
in X7

10



The problem is easily reduced to the case where F' has rank 2 since every free
group of rank > 2 is residually free of rank 2. After several partial solutions,
Magnus’ question was completely answered in the affirmative by Weigel in a
series of three long papers ([85], [83] and [84]). More recently, a stronger
probabilistic version of Weigel’s theorem has proved in [21] (both theorems
require the classification of finite simple groups). We can explain the latter
result as follows.

Let F be the free group on two generators X,Y and let w(X,Y’) be a non-
trivial word in F. In order to prove Magnus’ conjecture it is necessary to show
that there exists S € X and a homomorphism of F' onto S such that w(X,Y)
is not mapped onto the identity of S. Equivalently, there exist z,y € S such
that S = (z,y) and w(z,y) # 1. In [21] the following is proved.

o Let w(X,Y) be a nontrivial word in F'. Then, as S runs over the set of all
finite nonabelian simple groups, the probability that two random elements
x,y from S generate S and satisfy w(x,y) # 1 tends to 1 as |S| — oc.

Weigel’s theorem clearly follows from this. The proof is simplified because
we already know (see Sect. 2.2) that z,y generate S with probability tending
to 1, so it is enough to show that w(z,y) # 1 also with probability tending to 1
as |S| — oo. This is done by considering separately each family in a finite set
of infinite families of nonabelian simple groups.

We illustrate the proof for the family of alternating groups A, (the easiest
case). Assume that w(X,Y) is a reduced word of length » > 1, and write
w(X,Y) = wi(X,Y)..w,(X,Y) where w;(X,Y) € {X, X1 Y,Y '} for each
i. Suppose that s of these factors are X or X! and ¢ of the factors are Y or
Y ~land assume that n > r + 2. Let ag be a fixed element from the set 2 on
which 4,, acts. Now for each (r + 1)-tuple («ag, a1, ..., ;) of distinct points in

Q, there exist (n—s)!/2 values of x € A,, such that o; = aﬁ”_i(lm’y) for the indices

where w;(X,Y) € {X, X'}, and (n — t)!/2 values of y such that a; = ("%
for the indices where w;(X,Y) € {Y,Y~!}. Since af)"(f’y) = a, # o for such
choices of z and y, we must have w(x,y) # 1. Since there are (n—1)!/(n—r—1)!
(r + 1)-tuples of distinct points starting with g, this guarantees that there are
at least (n — s)!(n — t)!(n — 1)!/(n — r — 1)! pairs (z,y) from A, for which
w(z,y) # 1. This latter number is asymptotic to [%n!P and so the probability
that two random elements from A,, satisfy w(z,y) # 1 tends to 1 asn — co. In
particular, this gives a simple solution to Magnus’ question in the special case
whenever X is an infinite set of alternating groups.

5 Infinite groups and the ubiquity of free sub-
groups

When we consider infinite groups, even the statement of probabilistic questions
becomes a little subtle. First we need a suitable probability distribution de-
fined on the group. For some groups this can be done very naturally. For
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example, there is a natural probability distribution on a profinite group defined
in terms of the uniform distribution on its finite quotients (its Haar measure).
In this context Mann and Shalev ([62] and [61]) have considered the problem
(for integers k > 1) :

e For which profinite groups G is there a positive probability that the
(closed) subgroup generated by a random k-tuple of elements from G is
equal to G?

In particular, they show that, if G satisfies this condition for some k, then G
also satisfies the condition of polynomial maximal subgroup growth. Related
theorems are proved in [58], [8] and [48].

If we have no natural probability distribution on our group, it may still be
possible to make “almost all” statements in a sense similar to “almost all real
numbers are transcendental”. These are not probabilistic statements, but they
have much the same flavour as “probability 1”7 statements.

An early example of such a theorem is due to Epstein [27] who proved that

e If GG is a simple Lie group, then almost all k-tuples from G generate a free
group of rank k.

In this case “almost all” means all but a set of measure 0 in the natural
measure on GG. If G is not compact, this measure does not define a probability
distribution on G.

In 1990 the author proved in [24] a parallel result on the ubiquity of free
subgroups in the infinite symmetric group of countably infinite degree:

e If k > 2, then almost all k-tuples from Sym(N) generate a subgroup which
is free of rank k. Moreover, almost all of these subgroups are m-transitive
for every m > 1.

This gave a nonconstructive proof of the existence of highly transitive free
subgroups of Sym(N) (examples of such subgroups had been constructed earlier
in [63]). For G = Sym(N) there is no natural measure. However, we can
define a simple metric d on G by setting d(x,y) := 27! if 2y~ ! fixes 0,1,...,t — 1
but does not fix t. Under this metric G is a complete metric space and also
a topological group. In particular, the Baire category theorem holds in G*,
and so it makes sense to consider meagre sets (= sets of the “first category”)
as “null”. So in this context we say that a subset of G* includes almost all
k-tuples in G if its complement is meagre.

The result above has been extended by Glass and others (see [39], [80] and
[40]). The proper setting for these theorems appears to be in the context of
metrizable topological groups which are Polish spaces (see [10]) since these are
precisely the spaces in which a Baire category theorem holds.

Other theorems on the ubiquity of free subgroups in other contexts are found
in [9] and [4].
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