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Abstract

Let G be a finite group and H be a subgroup. We say that H is degree
homogeneous if, for each χ ∈ Irr(G), all the irreducible constituents of
the restriction χH have the same degrees. Subgroups which are either
normal or abelian are obvious examples of degree homogeneous subgroups.
Following a question of E.M. Zhmud’, we investigate general properties of
such subgroups. It appears unlikely that degree homogeneous subgroups
can be characterized entirely by abstract group properties, but we provide
mixed criteria (involving both group structure and character properties)
which are both necessary and sufficient. For example, H is degree ho-
mogeneous in G if and only if the derived subgroup H ′ is normal in G
and, for every pair α, β of irreducible G-conjugate characters of H ′, all
irreducible constituents of αH and βH have the same degree.
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1 Introduction

Let G be a finite group and H be a subgroup. We say that H is degree ho-
mogeneous (and write (G,H) ∈ ∆) if, for each χ ∈ Irr(G), all the irreducible
constituents of the restriction χH have the same degrees. We have two obvious
examples of degree homogeneous subgroups: normal subgroups are degree ho-
mogenous by Clifford’s theorem, and abelian subgroups are degree homogeneous
because their irreducible characters are all of degree 1. Following a question
in [2, page 304], our object is to investigate general properties of such pairs
(G,H). As Lemma 1 shows, it is unlikely that the class ∆ can be characterized
entirely by abstract group properties, but Theorems 5, 12 and 9 give mixed cri-
teria (involving both group structure and character properties) for these pairs.
Theorems 17 and 18 describe some related classes.

Notation We shall generally follow the notation of [6]. In particular, Irr(G)
denotes the set of all irreducible (ordinary) characters of G, Lin(G) is the set of
characters of degree 1 and, for any character θ, Irr(θ) is the set of irreducible
constituents of θ. If K is a normal subgroup of G, and α ∈ Irr(K), then
IG(α) := {x ∈ G |αx = α} is the inertia subgroup of α. We use cd(G) to denote
the set of degrees of the irreducible characters of G.

2 Degree homogeneous subgroups

We begin with some simple properties of ∆.

Lemma 1 (a) If (Gi,Hi) ∈ ∆ for i = 1, 2 then (G1 ×G2,H1 ×H2) ∈ ∆.
(b) If (G,H) ∈ ∆ and H ≤ L ≤ G, then (L,H) ∈ ∆.
(c) If (G,H) ∈ ∆ and K ≤ H is normal in G, then (G/K,H/K) ∈ ∆.

Proof. (a) Every irreducible character χ of G1×G2 has the form χ((x, y)) =
θ(x)φ(y) for all (x, y) ∈ G1 ×G2 where θ ∈ Irr(G1) and φ ∈ Irr(G2), and con-
versely every function of this form is an irreducible character (see, for example,
[6, (4.21)]). Thus the irreducible constituents of the restriction of χ to H1×H2

are characters of the form ψ((x, y)) = λ(x)µ(y) where λ and µ are irreducible
constituents of θH1 and φH2 , respectively. The assertion now follows.

(b) By Frobenius reciprocity every irreducible character ψ of L is an irre-
ducible constituent of some χ ∈ Irr(G). Now (b) follows since Irr(ψH) ⊆
Irr(χH).

(c) This follows at once since each irreducible character of G/K corresponds
to some χ ∈ Irr(G) of the same degree with K ≤ kerχ.

Suppose that (G,H) ∈ ∆. Then for each d ∈ cd(H) we define

Cd := {χ ∈ Irr(G) | all constituents of χH have degree d}

and
Dd := {θ ∈ Irr(H) | θ(1) = d}
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Set
Kd :=

⋂
χ∈Cd

kerχ and Ld :=
⋂

θ∈Dd

ker θ

Then the following holds.

Theorem 2 If (G,H) ∈ ∆ then, with the notation above, Kd = Ld, and so
Ld C G. In particular, H ′ = L1 C G and Ld ≤ H

′
whenever d ∈ cd(H)

Proof. If x ∈ Ld, then clearly χ(x) = χ(1) for all χ ∈ Cd, and so x ∈
Kd. Conversely, by Frobenius reciprocity, θ ∈ Dd if and only if Irr(θG) ⊆ Cd.
Thus x ∈ Kd implies that θG(x) = θG(1) for each θ ∈ Dd. Since ker θG =⋂

y∈G y
−1(ker θ)y ≤ ker θ, we conclude that x ∈ Ld. Thus Kd = Ld as asserted.

The group L1 is simply the intersection of the kernels of the linear characters
of H and so L1 = H ′. Moreover, if θ ∈ Irr(H) has degree d, then for each
linear characters λ of H, θλ ∈ Irr(H) and so θλ ∈ Dd. Hence x ∈ Ld implies
that θ(x)λ(x) = θ(x) = d for each linear character λ, and so x ∈ kerλ. Thus
Ld ≤ L1 as claimed.

As an immediate corollary we get:

Corollary 3 Suppose that (G,H) ∈ ∆. If G is simple and H 6= G, then H
must be abelian. On the other hand if H is perfect, then H must be normal.

In general, the necessary conditions given in Theorem 2 are not sufficient for
a subgroup to be degree homogeneous as the following example shows.

Example 4 Let V be the regular embedding in S9 of the elementary abelian
3-group of order 32. Define G as the normalizer of V in S9. Then G is
the holomorph of V , and a point stabilizer L in G is isomorphic to GL(2, 3).
The group L contains a single conjugacy class of elementary abelian 2-groups of
order 22; let A be one of these groups. Finally define H := V A.

A simple computation shows that H ′ = V C G. Using GAP [3] we find that
G has a unique irreducible character χ of degree 16 and that χH = ψ1+ψ2+ψ3+
ψ4+2φ where the irreducible constituents ψ1, ψ2, ψ3, ψ4, φ are of degrees 2, 2, 2, 2
and 4, respectively. Hence H is not degree homogeneous in G. GAP also shows
that the characters of H are all of degrees 1, 2 or 4 and that L2 = L4 = 1
(so all the necessary conditions of Theorem 2 are satisfied). Note also that H
is a product of two degree homogeneous subgroups, namely, the normal abelian
subgroup V and the abelian subgroup A.

(An alternative proof that H is not degree homogeneous can be given using
the theorem below.)

We can characterize the pairs which lie in ∆ as follows.

Theorem 5 Let H be a subgroup of a finite group G. If (G,H) ∈ ∆, then for
each normal subgroup K of G with H ′ ≤ K ≤ H we have

(*) if α, β ∈ Irr(K) are G-conjugate, then all constituents of

αH and βH have the same degree
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(Recall that H ′ C G by Theorem 2).
Conversely, if there exists at least one normal subgroup K of G with H ′ ≤

K ≤ H such that (*) is satisfied, then (G,H) ∈ ∆.

Proof. First recall (see [6, Problem (6.2)]) that, because H/K is abelian,
the irreducible constituents of αH all have the same degree (and, of course,
similarly for βH).

Since α, β ∈ Irr(K) are G-conjugate, therefore αG = βG. Choose χ ∈
Irr(αG). By Frobenius reciprocity, α and β are irreducible constituents of
χK . Thus for some ψ, φ ∈ Irr(χH) we have α ∈ Irr(ψK) and β ∈ Irr(φK).
Equivalently, ψ ∈ Irr(αH) and φ ∈ Irr(βH).

If (G,H) ∈ ∆, then ψ(1) = φ(1), and so all constituents of αH and βH have
the same degree by the remark at the beginning of this proof. Thus (*) holds
for every normal subgroup K of G with H ′ ≤ K ≤ H. This proves the first part
of the theorem.

Conversely, assume that (*) holds for some normal subgroup K of G with
H ′ ≤ K ≤ H, and χ is an arbitrary irreducible character of G. Suppose that
ψ, φ ∈ Irr(χH) and choose α ∈ Irr(ψK) and β ∈ Irr(φK). Since α and β
are constituents of χK , they are G-conjugate by Clifford’s theorem. Now the
argument above and the condition (*) shows that ψ and φ have the same degree.
Thus (G,H) ∈ ∆ as claimed.

Corollary 6 Suppose that H is a subgroup of G and H ′ C G. If every H-
conjugacy class lying in H ′ is mapped into itself under conjugation by G, then
(G,H) ∈ ∆.

Proof. A lemma of Brauer (see, [1] or [6, (6.32)]) applied to the character
table ofH ′ shows that the number ofG-orbits (respectivelyH-orbits) on Irr(H ′)
is equal to the number ofG-orbits (respectivelyH-orbits) on the set of conjugacy
classes of H ′. Thus the hypothesis shows that the number of G-orbits on
Irr(H ′) is equal to the number of H-orbits on Irr(H ′). This implies that
whenever α, β ∈ Irr(H ′) are G-conjugate, then αx = β for some x ∈ H, and
hence αH = βH . Hence the criterion of the theorem is satisfied and (G,H) ∈ ∆.

Corollary 7 Suppose that H ≤ G with H ′ C G and that, for each imprimitive
irreducible character χ of G, all constituents of χH have the same degree. Then
(G,H) ∈ ∆.

Proof. By Theorem 5 we have to show that if α and β are distinct irreducible
characters of H ′ which are G-conjugate, then the degrees of the irreducible
constituents of αH and βH are the same. Since the characters are G-conjugate
we can choose χ ∈ Irr(G) such that α, β ∈ Irr(χH′). The G-orbit for α
has length > 1, so χ is imprimitive (see [6, (6.11)]), and hence the degrees of
the constituents of χH are all equal by hypothesis. These constituents include
some constituents of both αH and of βH by Frobenius reciprocity. Since all
constituents of αH have the same degree (and similarly for βH), the result
follows.
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Corollary 8 Suppose that H ≤ G with H ′ C G, and for each x ∈ G there
exists σ ∈ Aut(H) such that σ(u) = x−1ux for all u ∈ H ′. Then (G,H) ∈ ∆.

Proof. Suppose that α = βx for α, β ∈ Irr(H ′) and x ∈ G. Then α◦σ = β
where σ ∈ Aut(H) is chosen as above. Now a straightforward computation
shows that βH = (α◦σ)H = αH◦σ. For each ψ ∈ Irr(H) we have ψ◦σ ∈ Irr(H)
and ψ(1) = (ψ ◦ σ)(1). Thus the irreducible constituents of αH and βH have
the same degree as required.

In the special case where the degree homogeneous subgroup is a maximal
subgroup, we can be more precise.

Theorem 9 Suppose that H is a maximal subgroup of the group G which is
not normal in G, and put K := coreG(H). Then (G,H) ∈ ∆ if and only if the
following conditions hold:

(i) G/K is a solvable Frobenius group in which H/K is an abelian Frobenius
complement; and

(ii) if M/K is the Frobenius kernel for G/K then, for each α ∈ Irr(K),
either IG(α) ≤M or IG(α) ≥M .

Proof. Suppose that properties (i) and (ii) hold. We shall show that
(G,H) ∈ ∆. Indeed, (i) shows that the normal subgroup K of G contains H ′

so it is sufficient to verify that condition (*) of Theorem 5 holds. Suppose
that α, β ∈ Irr(K) are G-conjugate. Then the inertia subgroups for α and β
are conjugate in G. Thus, if IG(α) ≤ M C G, then IG(β) ≤ M , and hence
IH(α) = IH(β) = K. This implies that αH and βH are irreducible. Since they
have the same degree, (*) is satisfied in this case. On the other hand, G = MH
and so, if IG(α) ≥M , then every G-conjugate of α is also an H-conjugate. Thus
αH = βH and so (*) is satisfied in this case as well.

Conversely, suppose that (G,H) ∈ ∆. ThenH ′ C G and soH ′ ≤ coreG(H) =
K. For each subgroup L with K ≤ L ≤ G we denote L/K by L̄. Then H̄ is an
abelian, maximal, core-free subgroup of Ḡ, and hence Ḡ is a solvable, Frobenius
group with H̄ as a Frobenius complement (see [4] or [8, Theorem 13.4.6]). This
proves (i).

Now consider (ii) and suppose that for some α ∈ Irr(K) we have IG(α) � M .
We have to show that IG(α) ≤M . Since Ḡ is solvable, and H̄ is a Hall subgroup,
we may replace α by aG-conjugate character and assume that T := IG(α) = NS
where N = T ∩M and S = T ∩ H. By our assumption, N 6= M . For each
u ∈ N̄ we have uS̄u−1 ≤ T̄ ∩ uH̄u−1. Since H̄ is a Frobenius complement, the
trivial intersection property shows that∣∣∣∣∣∣

⋃
u∈N̄

uS̄u−1

∣∣∣∣∣∣ =
∣∣N̄ ∣∣ (∣∣S̄∣∣− 1

)
+ 1 =

∣∣T̄ ∣∣− (∣∣N̄ ∣∣− 1
)

Thus T̄ = N̄∪
⋃

u∈N̄ uS̄u−1. Again by the property of a Frobenius complement,
we conclude that T̄ ∩vH̄v−1 = 1 whenever v ∈ M̄ \ N̄ . Thus by our assumption
that M 6= N there exists v such that v−1Tv ∩H = K. Since IG(αv) = v−1Tv,
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we have IH(αv) = K and so (αv)H is irreducible (see [6, (6.11)]). Since (G,H) ∈
∆, condition (*) of Theorem 5 holds, and so αH must also be irreducible. This
implies that IH(α) = S = K, and so IG(α) ≤M as required.

Remark 10 The kernel M/K of a solvable Frobenius group of the form de-
scribed in the theorem above must be a minimal normal subgroup of G/K and
hence is elementary abelian. The abelian complement H/K acts fixed point free
on M/K and so is cyclic (see, for example, [5, page 499]).

This gives another necessary condition for a degree homogeneous subgroup.

Corollary 11 Suppose that (G,H) ∈ ∆ with H 6= G. Then, for each subgroup
L of G in which H is a maximal subgroup, L′′ ≤ H and |L : H| is a prime
power.

Proof. Lemma 1 shows that (L,H) ∈ ∆. Since H is maximal in L, either
H C L and |L : H| is a prime, or Theorem 9 applies. In the latter case the
remark above shows that L′′ ≤ H and that |L : H| is a prime power.

3 Universal degree homogenous groups

We shall call a finite group H universally degree homogeneous if, whenever H
is embedded as a subgroup in a finite group G with H ′ C G, then (G,H) ∈ ∆.
For example, abelian groups and perfect groups are universally degree homoge-
neous. The class of universal degree homogeneous groups can be characterized
as follows.

We define an equivalence relation ∼ on Irr(H ′) by

α ∼ β if and only if α ◦ σ = β for some σ ∈ Aut(H ′)

Theorem 12 A finite group H is universally degree homogeneous if and only if
α ∼ β (for α, β ∈ Irr(H ′)) implies that the irreducible constituents of αH and
βH are all of the same degree.

Proof. Suppose that α ∼ β (for α, β ∈ Irr(H ′)) implies that the irreducible
constituents of αH and βH are all of the same degree. If H is embedded as a
subgroup in G with H ′ C G and two irreducible characters of α and β of H ′

are G-conjugate, then α ◦σ = β where σ is the automorphism of H ′ induced by
conjugation by some element of G, and therefore α ∼ β. Now (G,H) ∈ ∆ by
Theorem 5. Thus H is universally degree homogeneous.

Conversely, suppose that for some α ∼ β (for α, β ∈ Irr(H ′)) the irreducible
constituents of αH and βH are not of the same degree. By hypothesis α ◦ σ =
β for some σ ∈ Aut(H ′). Suppose that σ has order s and let K be the
semidirect product of H ′ by 〈σ〉. The permutational product construction
of B.H. Neumann [7] of the amalgam H and K with common subgroup H ′

gives a permutation group G of degree |H| s in which H and K are embedded
as subgroups with H ∩ K = H ′ (in general, the construction does not give a
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unique G). Since α and β are K-conjugate, they are also G-conjugate. Thus
Theorem 5 shows that H is not degree homogeneous in G and hence H is not
universally degree homogeneous.

Example 13 Let H be a group whose irreducible characters all have degrees 1
or m for some m > 1. Then H is universally degree homogeneous. Indeed,
if α ∈ Irr(H ′) is not the trivial character, then Frobenius reciprocity shows
that no irreducible constituent of αH can have degree 1 and hence the criterion
of Theorem 12 is satisfied. The class of groups whose characters have only
two distinct degrees includes the dihedral groups, extraspecial p-groups (see, for
example, [5, page 562]) and A4. If m = p is prime, then the class consists
precisely of those groups H such that: either H has an abelian normal subgroup
of index p; or |H : Z(H)| = p3. For further information on this class of groups
see [6, Chapter 10].

Example 14 Let H be a Frobenius group with an abelian Frobenius comple-
ment. Then H ′ is the Frobenius kernel, and αH is irreducible for every α ∈
Irr(H ′) with α 6= 1H′ (see [6, (6.34)]). On the other hand, if α = 1H′ , then αH

is equal to the sum of the characters of degree 1 for H since H/H ′ is abelian.
Thus H is universally degree homogeneous by Theorem 12.

Example 15 If every automorphism of H ′ is induced by conjugation by an
element of H, then H is universally degree homogeneous. Indeed, in this case,
if α, β ∈ Irr(H ′) and α ∼ β then αx = β for some x ∈ H. Hence αH = βH , and
Theorem 12 applies. Similarly, if S is a nonabelian simple group whose outer
automorphism group is abelian, then any group H satisfying S ∼= Inn(S) ≤
H ≤ Aut(S) is universally degree homogeneous. Indeed, consider such an
H and suppose that α ∼ β for some α, β ∈ Irr(H ′). Since H ′ ∼= S, every
automorphism of H ′ is induced by conjugation by some element in Aut(S), and
so α = βx for some x ∈ Aut(S). Since the outer automorphism group of
S is abelian, H C Aut(S) and so αH = βxH = βHx. Thus the irreducible
constituents of αH are images under x of the irreducible constituents of βH .
Now Theorem 12 applies to show that H is universally degree homogeneous.
For example, all symmetric groups Sn and subgroups of the projective general
linear groups PGL(2, p) (where p > 3 is prime) which contain PSL(2, p) are
universally degree homogeneous.

4 L-classes of characters

If ψ is an irreducible character of degree d in the group H and λ is a linear
character of H then ψλ is also an irreducible character of degree d. We define
the L-class of ψ to be {ψλ |λ ∈ Lin(H)} and note that the L-classes partition
Irr(H) into subsets of characters of the same degree.

Lemma 16 C ⊆ Irr(H) is an L-class of characters if and only if C = Irr(αH)
for some α ∈ Irr(H ′).
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Proof. If α ∈ Irr(H ′), then [6, Problem (6.2)] shows that αH = f
∑t

i=1 ψi

for some integer f where the distinct characters ψ1, .., ψt form an L-class in
Irr(H). Thus Irr(αH) is an L-class. Conversely, if an L-class C contains an
irreducible character ψ, say, of H, and we choose α ∈ Irr(ψH′), then Frobenius
reciprocity shows that ψ ∈ Irr(αH). Since the L-classes partition Irr(H), this
shows that C = Irr(αH).

Let H be a subgroup of G. Then we define (G,H) ∈ ∆∗ if for each χ ∈
Irr(G) the irreducible constituents of χH are contained in a single L-class.
Clearly ∆∗ ⊆ ∆, and we have the following criterion.

Theorem 17 Let H be a subgroup of G. The following conditions are equiva-
lent:

(a) (G,H) ∈ ∆∗;
(b) every H-conjugacy class in H ′ is also a G-conjugacy class;
(c) H ′ C G and if α, β ∈ Irr(H ′) are G-conjugate then they are also H-

conjugate.

Proof. The lemma of Brauer quoted in the proof of Corollary 6 proves the
equivalence of (b) and (c).

We next prove that (a) implies (c). The property H ′ C G follows from
Theorem 5 since ∆∗ ⊆ ∆. Let α, β ∈ Irr(H ′) be G-conjugate. Then
αG = βG. Choose χ ∈ Irr(αG). Then Frobenius reciprocity shows that
[χH , α

H ] = [χH , β
H ] = [χ, αG] > 0. Now (G,H) ∈ ∆∗ and Lemma 16 imply

that Irr(αH) = Irr(βH), and indeed αH = βH since they have the same degree.
On the other hand, (αH)H′ is a sum of characters which are H-conjugate to α
whilst (βH)H′ is a sum of characters which are H-conjugate to β. Thus α is
H-conjugate to β.

Finally we prove that (c) implies (a). Assume that (c) holds. Let χ ∈
Irr(G) and let α ∈ Irr(χH′). Since χ ∈ Irr(αG), in proving (a) it is enough
to show that Irr((αG)H) ⊆ Irr(αH) (where the latter is a single L-class by
Lemma 16). By hypothesis, the characters α = α1, ...., αt of H ′ which are G-
conjugate to α are the same as those which are H-conjugate. Therefore there
exist integers e and f such that

(αG)H′ = e(α1 + ...+ αt) and (αH)H′ = f(α1 + ...+ αt)

On the other hand, since H ′ C G, the induced characters αG and αH are both
0 outside of H ′. Thus (αG)H = (e/f)αH , and so (a) follows.

In the following we shall use Irr(G,H ′) to denote the set of characters
χ ∈ Irr(G) for which H ′ � kerχ.

Theorem 18 Suppose that H is a subgroup of G with H ′ C G. Then the
following are equivalent:

(a) The sets Irr(χH) (χ ∈ Irr(G,H ′)) are pairwise disjoint and each of
these sets is a union of complete L-classes.

(b) For each χ ∈ Irr(G,H ′) there exists α ∈ Irr(H ′) and an integer m such
that αG = mχ.

(c) For each χ ∈ Irr(G,H ′) we have χ = 0 on G \H ′.
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Proof. Assume that (a) holds; we shall prove (b). Let χ ∈ Irr(G,H ′)
and take α ∈ Irr(χH′). Note that α 6= 1H′ since H ′ � kerχ, and Lemma 16
shows that C := Irr(αH) is an L-class with Irr(χH) ∩ C 6= ∅. . By Frobenius
reciprocity χ ∈ Irr(αG), so in order to prove (b) it is enough to show that
Irr(αG) contains no other character. However, ψ ∈ Irr(αG) implies that
α ∈ Irr(ψH′) (so ψ ∈ Irr(G,H ′)) and Irr(ψH) ∩ C 6= ∅. Thus (a) implies
ψ = χ as required.

Clearly, (b) implies (c) because any character αG induced from the normal
subgroup H ′ is 0 outside of H ′.

Finally, assuming that (c) holds, we shall prove (a). Fix χ ∈ Irr(G,H ′) and
let ψ ∈ Irr(G). Then (c) shows that

|G| [χ, ψ] =
∑

x∈H′

χ(x)ψ(x) = |H ′| [χH′ , ψH′ ]

and so Irr(χH′) ∩ Irr(ψH′) = ∅ whenever ψ 6= χ. In particular, Irr(χH)
and Irr(ψH) are disjoint when ψ 6= χ. On the other hand, Lemma 16 shows
that if C is an L-class such that C ∩ Irr(ψH) 6= ∅ then C = Irr(αH) for some
α ∈ Irr(ψH′). Thus C ∩ Irr(χH) 6= ∅ implies that C ∩ Irr(ψH) = ∅ whenever
ψ 6= χ, and so Irr(χH) consists of complete L-classes. This proves that (c)
implies (a).

Corollary 19 Whenever H and G satisfy the (equivalent) conditions of Theo-
rem 18 and G 6= H ′ then:

(i) H ′ is solvable and p-nilpotent for all primes p | |G : H ′|;
(ii) for each x ∈ G \H ′ and each u ∈ H ′, x is conjugate to xu in G; and
(iii) if H ′ is a Hall subgroup of G, then G is a Frobenius group with Frobenius

kernel H ′.

Proof. (i) Let χ ∈ Irr(G) with H ′ � kerχ. Then by part (b) we have
mχ = αG for some integer m and some α ∈ Irr(H ′). By Frobenius reciprocity
and Clifford’s theorem, χH′ = m(α1 + ...,+αs) where α1, ..., αs are the distinct
G-conjugates of α. Thus m | χ(1) and mχ(1) = αG(1) = α(1) |G : H ′| . Let p
be a prime which divides |G : H ′|. Then p | χ(1) whenever H ′ � kerχ. Now
it is proved in [2, page 21] (for a general finite group G) that if X is the set
of all χ ∈ Irr(G) such that χ(1) > 1 and p - χ(1), then G(p′) :=

⋂
χ∈X kerχ

is a solvable p-nilpotent subgroup of G. In our case G(p′) ≥ H ′, and so H ′ is
solvable and p-nilpotent for all p | |G : H ′|.

(ii) It is enough to show that χ(x) = χ(xu) for all χ ∈ Irr(G). If H ′ � kerχ,
then this follows from part (c) of the theorem (both sides are 0). On the other
hand, if H ′ ≤ kerχ, then a representation affording χ maps u onto the identity
and so again we have χ(x) = χ(xu) as required.

(iii) If H ′ is a Hall subgroup then by the Schur-Zassenhaus theorem H ′ has
a complement, K say, in G. Now (ii) shows that every x ∈ G \H ′ is conjugate
in G to some element of K. This is sufficient to show that G is a Frobenius
group with kernel H ′ (see, for example, [6, Problem (7.1)])
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